?

CBOC調制方式及其性能分析*

2010-09-26 04:32周艷玲王代萍
電訊技術 2010年7期
關鍵詞:鑒別器定義功率

周艷玲,2,王代萍

(1.湖北大學 知行學院,武漢 430011;2.華中科技大學 電信系,武漢 430074)

1 引 言

2004年,美國GPS和歐盟Galileo小組達成協議,將BOC(1,1)作為L1(E1)頻段的基線信號,同時聲明雙方可共同致力于該頻段信號調制的優化和改進。2007年7月,GPS-Galileo工作組共同提出采用MBOC(6,1,1/11)替代BOC(1,1)。MBOC(6,1,1/11)和原定的BOC(1,1)信號兼容,又可改進系統的性能[1]。

MBOC(6,1,1/11)的定義是其功率譜密度是由BOC(1,1) 和BOC(6,1)的功率譜密度按10:1比例組合而成。MBOC信號增加了BOC(6,1)分量,目的在于增加頻譜的高頻分量,從而改善信號的捕獲跟蹤性能和抗多徑能力。

滿足MBOC(6,1,1/11)功率譜密度定義有多種具體的實現方式。GPS和Galileo分別提出了TMBOC和CBOC兩種典型的實現方式,前者是在時間上按一定的順序規律分別將擴頻碼碼片賦形為BOC(1,1)和BOC(6,1),后者則是直接將BOC(1,1)和BOC(6,1)按一定的比例相加。

本文著重討論了CBOC調制方式實現的MBOC(6,1,1/11)的相關函數、功率譜密度、譜分離系數、根均方帶寬和抗多徑能力。

2 CBOC相關函數及功率譜密度

MBOC(6,1,1/11)的功率譜密度如圖1所示。

圖1 BOC(1,1)和MBOC(6,1,1/11)歸一化功率譜密度

由于MBOC中BOC(1,1) 的能量占10/11,所以可以保證很好地與BOC(1,1)接收機兼容。從圖1中可以看出,MBOC主要是在離中心頻點6 MHz的位置增加了能量,這是由于BOC(6,1)的存在引起的。

Galileo 衛星導航系統E1頻段OS 服務采用CBOC(6,1,1/11)調制方式。CBOC定義的是E1頻段的總功率譜,包括導航通道和數據通道的總和,所以CBOC(6,1,1/11) 在具體實現上有多種組合[2]。

時域的E1數據通道信號可以表示為

(1)

式中,xE1,d(t)為數據通道信息和擴頻碼,α為數據通道功率分配比例。

時域的E1導航通道信號可以表示為

(2)

以下考慮兩種典型的實現方式。

方式1:導航通道和數據通道都為CBOC(6,1,1/11),兩通道功率比為1:1。

導航通道每個PN碼片賦形為

(3)

數據通道每個PN碼片賦形為

(4)

方式2:導航通道為CBOC(6,1,2/11),數據通道為BOC(1,1)調制,兩通道功率比為1:1。

導航通道每個PN碼賦形為

(5)

以上3種CBOC信號的自相關函數如下[2]:

(6)

(7)

(8)

RBOC(1,1)BOC(6,1)(t)是交叉相關項,由于該項導致CBOC(6,1,γ/ρ,‘+’)和CBOC(6,1,γ/ρ,‘-’)的頻譜接近MBOC定義的頻譜,而不完全等于MBOC定義的頻譜;交叉項越小,CBOC的頻譜越接近MBOC的頻譜。所以CBOC(6,1,γ/ρ,‘+’)和CBOC(6,1,γ/ρ,‘-’)單獨使用就不能滿足MBOC(6,1,1/11)定義的功率譜了。方式1中導航通道和數據通道的交叉項相互抵消,總功率譜等于MBOC(6,1,1/11)定義的功率譜。方式2中導航通道本身相關函數沒有交叉項,導航通道和數據通道的總功率譜等于MBOC(6,1,1/11)定義的功率譜。

圖2 CBOC信號的歸一化相關函數

3 CBOC譜分離系數

導航信號的譜分離系數的定義[3]為

(9)

式中,Ps(f)和Pj(f)是歸一化到發射功率上的功率譜密度,Br為接收機帶寬。譜分離系數反映了兩信號間頻譜的重疊程度,主要用于評價分析系統間不同導航信號間的相互干擾程度。

自譜分離系數定義為

(10)

它反映了具有相同功率譜的信號間的等效干擾程度,用于分析同一系統內同類服務的不同PN碼衛星信號間的干擾。在干擾信號功率一定情況下,譜分離系數或者自譜分離系數越小,兩信號間相互干擾越小。

GPS和Galileo系統在L1頻段(中心頻點為1 575.42 MHz)的信號比較擁擠,GPS中有GPS L1 C/A、GPS L1 C、GPS L1 P和GPS L1 M 4個服務信號,Galileo系統中有Galileo E1 PRS 和Galileo E1 OS 2個服務信號。

對于Galileo E1 OS服務采用CBOC(6,1,1/11)和BOC(1,1)兩種不同的調制方式,假設信號發射和接收帶寬都為30.69 MHz,不考慮多普勒的影響時,這兩種調制方式與同頻點其它服務信號間的譜分離系數如表1所示??梢?,除了CBOC(6,1,1/11)與Galileo E1 PRS間的譜分離系數稍大于BOC(1,1)外,其它幾項都比BOC(1,1)要小,所以選用CBOC(6,1,1/11)調制方式相比BOC(1,1)調制方式,系統間各衛星信號間的干擾整體上較小。

表1 CBOC(6,1,1/11) 和 BOC(1,1) 與其它信號的譜分離系數

假設信號發射和接收帶寬都為30.69 MHz,不考慮多普勒的影響時,CBOC(6,1,1/11) 的自譜分離系數與BOC(1,1)的自譜分離系數比較如表2所示??梢?,CBOC(6,1,1/11)的自譜分離系數比BOC(1,1)的自譜分離系數小,所以選用CBOC(6,1,1/11)調制方式相比BOC(1,1)調制方式,系統內不同衛星信號間的干擾較小。

表2 CBOC(6,1,1/11)與BOC(1,1)的自譜系數

4 CBOC根均方帶寬

跟蹤環在白噪聲前提下的熱噪聲抖動可以用Cramer-Rao邊界來評估。跟蹤抖動標準偏離表示為

式中,BL是回路單邊帶帶寬,C/N0是載噪比,βRMS是根均方(RMS)帶寬[4],其定義為

(11)

式中,Br為前端帶寬;G(f)為信號在前端帶寬上的歸一化功率譜密度;βRMS是測量一個信號的頻率擴展情況,βRMS越大,跟蹤抖動越小。

CBOC(6,1,1/11)和BOC(1,1)的根均方帶寬隨前端帶寬的分析如圖3所示。

圖3 CBOC(6,1,1/11)與BOC(1,1)的RMS帶寬

由圖3可見,當雙邊帶信號帶寬小于12 MHz時,CBOC(6,1,1/11)的RMS帶寬相對BOC(1,1)沒有優勢,但是雙邊帶信號帶寬大于12 MHz時,CBOC(6,1,1/11)的RMS帶寬相對BOC(1,1)顯著增加。這是由于只有當帶寬大于12 MHz時,BOC(6,1)分量的作用才能充分體現出來。增加的高頻分量體現在相關函數上是使得自相關函數峰值更窄,以至于鑒別器在零點附近有較高的斜率,從而跟蹤抖動更小。

5 CBOC抗多徑性能

多徑信號與直達信號疊加組合,導致接收信號與本地信號的相關函數和鑒別曲線發生變形,從而使鑒別曲線的過零點偏離原點。通常以多徑信號的相對時延為變化量,以多徑誤差的最大值(多徑誤差包絡)來描述多徑誤差。

圖4 CBOC(6,1,1/11)與BOC(1,1)在相關器間隔為0.1Tc的EML鑒別器下的多徑誤差包絡

圖5 CBOC(6,1,1/11)與BOC(1,1)在兩對相關器間隔分別為0.1Tc和0.2Tc的HRC鑒別器下的多徑誤差包絡

當多徑信號與直達信號相位相同或者相差180°時,多徑誤差出現極值[5]。多徑誤差的大小除了和信號本身有關外,還與鑒別器的類型有關。假設多徑信號與直達信號幅度比為-6 dB,接收機前端帶寬為24.552 MHz。當使用相關間隔為0.1Tc的EML鑒別器時,CBOC(6,1,1/11)和BOC(1,1)的多徑誤差包絡曲線如圖4所示。當使用HRC鑒別器,且兩對相關器間隔分別為0.1Tc和0.2Tc時,CBOC(6,1,1/11)和BOC(1,1)的多徑誤差包絡曲線如圖5所示。由兩圖對比可見:HRC鑒別器抗多徑能力整體上優于窄相關EML鑒別器,CBOC(6,1,1/11)的抗多徑性能整體上優于BOC(1,1)。

6 結 論

本文主要分析了衛星導航系統中CBOC(6,1,1/11)調制信號的定義、實現方式及其性能。通過仿真計算,對比分析了CBOC(6,1,1/11)和BOC(1,1)的譜分離系數、根均方帶寬和多徑誤差包絡。由于CBOC(6,1,1/11)相對BOC(1,1) 調制增加了部分高頻分量,使其在降低系統內和系統間干擾、減小跟蹤抖動和抗多徑干擾方面均在整體上優于BOC(1,1),提高了導航系統性能。

參考文獻:

[1] Guenter W Hein,John W Betz,José-Angel Avila-Rodríguez,et al.MBOC:The New Optimized Sp reading Modulation Recommended for GALILEO L1 OS and GPS L1C [ C ]//Proceedings of IEEE / ION Position,Location, and Navigation Symposium. [S.l.]:IEEE,2006:883-892.

[2] Julien O, Macabiau C, Avila Rodriguez J-A, et al. On Potential CBOC/TMBOC Common Receiver Architectures[C]// Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007). France:[s.n.],2007:1530-1542.

[3] Wallner S, Hein G, Pany T, et al. Interference Computations between GPS and Galileo[C]//Proceedings of the 18th International Technical Meeting of the Satellite Division(ION GNSS). Long Beach, CA:[s.n.],2005:861-876.

[4] Maurizio Fantino, Paolo Mulassano,Fabio Dovis ,et al. Performance of the Proposed Galileo CBOC Modulation in Heavy Multipath Environment[J]. Wireless Persional Communication,2008, 44(3): 323-339.

[5] 唐祖平,胡修林,黃旭芳. 衛星導航信號設計中的抗多徑性能分析[J].華中科技大學學報,2009(4):1-4.

TANG Zu-ping, HU Xiu-lin, HUANG Xu-fang. Analysis of multipath rejection performance in GNSS signal design[J]. Journal of Huazhong University of Science and Technology, 2009(4):1-4.(in Chinese)

猜你喜歡
鑒別器定義功率
基于多鑒別器生成對抗網絡的時間序列生成模型
『功率』知識鞏固
功與功率辨
追本溯源識功率
衛星導航信號無模糊抗多徑碼相關參考波形設計技術*
做功有快慢功率來表現
陣列天線DOA跟蹤環路鑒別器性能分析
成功的定義
修辭學的重大定義
山的定義
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合