?

全光Cs原子磁力儀的溫度特性研究

2014-07-08 20:33劉強卓艷男黃強張軍海孫偉民
光學儀器 2014年2期
關鍵詞:工作溫度

劉強++卓艷男++黃強++張軍海+孫偉民+

文章編號: 10055630(2014)02015204

收稿日期: 20131008

摘要: 全光銫(Cs)原子磁力儀是一種高靈敏度弱磁檢測儀,核心器件Cs原子氣室的工作溫度直接決定了原子磁力儀的靈敏度。實驗系統中采用頻率鎖定在Cs原子D1線F=3→F′=4共振線的圓偏振光極化Cs原子,檢測光采用頻率鎖定在Cs原子D2線F=4→F′=5共振線的線偏振光,檢測介質的圓二向色性。實驗發現,隨著Cs原子氣室工作溫度的升高,磁力儀輸出信號幅度先增加然后逐漸衰減,而磁力儀的線寬近似線性增加。實驗測試了溫度由25 ℃升高至45 ℃時的磁力儀輸出信號,結果表明:當溫度為37.6 ℃時,原子磁力儀達到最佳靈敏度。

關鍵詞: 原子磁力儀; 工作溫度; 原子氣室; 圓二向色性

中圖分類號: O 433.5文獻標志碼: Adoi: 10.3969/j.issn.10055630.2014.02.013

Temperature dependence of all optical Cs atomic magnetometer

LIU Qiang1, ZHUO Yannan1, HUANG Qiang2, ZHANG Junhai2, SUN Weimin2

(1.College of Electronic Science, Northeast Petroleum University, Daqing 163318, China;

2.College of Science, Harbin Engineering University, Harbin 150001, China)

Abstract: All optical atomic magnetometer with high sensitivity is an important device to detect weak magnetic field. The sensitivity of the atomic magnetometer will be influenced by the operating temperature of Cs vapor cell. As the frequency of circularly polarized pump light and the linearly polarized probe light are locked to Cs D1 transition F=3→F′=4 and Cs D2 transition F=4→F′=5 respectively, linearly polarized probe light will rotate a small angle due to circular dichroic medium. With the increase of the operating temperature of Cs vapor cell, the output peak signal will increase first and then decrease, but the bandwidth has been increasing. The output signal of magnetometer was measured as the operating temperature varied from 25 ℃ to 45 ℃. The result shows that 37.6 ℃ is the optimal temperature to achieve the highest sensitivity.

Key words: atomic magnetometer; operating temperature; atomic vapor cell; circular dichroism

引言磁場測量方法種類繁多[1],而原子磁力儀是近年出現的一種高靈敏度弱磁場檢測技術,磁測量靈敏度已經優于超導磁力儀達到0.16fT/Hz1/2 [2],并且這種磁力儀結構簡單,更易于小型化使其成為近年研究的熱點。目前,已經采用原子磁力儀在實驗室條件下進行爆炸危險物品檢測,醫學領域的心磁、腦磁測量等相關領域的前期研究工作,同時還用于研究物理學中的基本對稱性[35]。原子磁力儀的基本原理是利用線偏振光檢測被極化的原子在磁場中的拉莫進動頻率[6]。參與作用的原子數對原子磁力儀的靈敏度通常起著決定性作用,基于無自旋互換弛豫效應的原子磁力儀通常將原子氣室加熱至100 ℃以上來消除自旋互換碰撞弛豫[78];而利用非線性磁光旋轉效應的原子磁力儀卻通常將原子氣室置于常溫環境下[9];基于相干布居囚禁技術的87Rb原子磁力儀中原子氣室的工作溫度為70 ℃[10]。由此可見,為達到極限磁測量靈敏度,基于不同原理的原子磁力儀均存在最佳的工作溫度值。本文研究了一種高靈敏度全光Cs原子磁力儀,在Cs原子氣室內充入13 332.2 Pa的He緩沖氣體。將泵浦光頻率鎖定在Cs原子D1線F=3→F′=4共振線,檢測光頻率鎖定在Cs原子D2線F=4→F′=5共振線,測量了Cs原子氣室工作溫度由25 ℃升高至45 ℃時的磁力儀輸出信號,通過對實驗結果進行分析發現,當Cs原子氣室工作溫度為37.6 ℃時,原子磁力儀達到最佳靈敏度。圖1原子磁力儀原理圖

Fig.1Principle of atomic magnetometer1基本原理全光Cs原子磁力儀的工作過程可分成三部分[11],如圖1所示:(1)圓偏振泵浦光極化Cs原子,極化方向沿泵浦光的傳播方向;(2)被極化的原子繞著磁場的方向作拉莫進動;(3)線偏振光檢測被極化的原子在檢測光方向上的投影,偏振面產生旋轉。檢測光偏振面旋轉角θ為[12]θ∝lcrenfDPxL(ν)(1)其中:l為泵浦光與檢測光交叉區長度,c為光速,re為經典電子半徑,n為粒子數密度,fD為振子強度,Px為原子極化在檢測光方向的投影,L(ν)為洛倫茲線型。光學儀器第36卷

第2期劉強,等:全光Cs原子磁力儀的溫度特性研究

原子磁力儀的靈敏度可表示為δB=ΔBS/N(2)其中:ΔB為原子磁力儀信號的線寬,S/N為偏振面旋轉角檢測的信號與噪聲之比。提高原子磁力儀的靈敏度的直接方法是減小磁力儀線寬,同時增大系統信噪比。由式(1)可知,提高Cs原子氣室工作溫度可使粒子數密度n顯著增加,輸出信噪比增大。然而Cs原子粒子數增加會導致自旋破壞碰撞和自旋互換碰撞幾率的增大,使原子磁力儀特性曲線的線寬增加。因此,由式(2)可知存在最佳的工作溫度,使磁力儀靈敏度達到最優值。圖2原子磁力儀實驗原理圖

Fig.2Experimental schematic diagram of atomic magnetometer2實驗裝置全光Cs原子磁力儀實驗系統如圖2所示。直徑為30 mm的球型Cs原子氣室置于三層磁屏蔽筒中,氣室內充入13 332.2 Pa的He緩沖氣體,亥姆霍茲線圈在y方向產生待測磁場。泵浦光選用輸出波長為894.6 nm的外腔半導體激光器,采用飽和吸收譜技術可將頻率鎖定在Cs原子D1線的F=3→F′=4超精細共振線處,經準直擴束后采用電光幅度調制器(EOAM)對光強進行方波調制。被調制的泵浦光進入磁屏蔽筒后,經偏振片和λ/4波帶片將其變成圓偏振光極化Cs原子。檢測光選用波長為852.3 nm的外腔半導體激光器,利用飽和吸收譜將激光器頻率鎖定在Cs原子D2線F=4→F′=5共振線處,經偏振片后變成線偏振光通過Cs原子氣室檢測介質的圓二向色性,出射后由λ/4和PBS組成的光學系統進行檢測,經光電轉換、放大、做差、濾波后送入鎖相放大器和示波器,實現磁場測量,同時估算原子磁力儀的靈敏度。3實驗結果與分析將Cs原子氣室置于亥姆霍茲線圈中心,產生100nT待測磁場,泵浦光強Ip=6 mW/cm2,頻率鎖定在Cs原子D1線F=3→F′=4共振線,檢測光強Id=0.2 mW/cm2,頻率鎖定在Cs原子D2線F=4→F′=5共振線,Cs原子氣室工作溫度為37.6 ℃,測量到的原子磁力儀響應特性曲線如圖3所示。橫軸表示泵浦光強的調制頻率,縱軸表示鎖相放大器的同相輸出信號,其幅值為線偏振檢測光偏振面的旋轉角度。當泵浦光的調制頻率與被極化原子繞磁場的拉莫進動頻率相等時,檢測光偏振面旋轉角出現極大值,即同相輸出信號幅值達到峰值,此時峰值對應的橫坐標頻率為350 Hz。根據拉莫進動頻率與磁場的關系 ω=γB(對于Cs原子γ=3.5 Hz/nT)可知,Cs原子氣室所在位置的磁場值為100 nT,從而實現磁場測量。為分析溫度對原子磁力儀靈敏度的影響,實驗中首先固定泵浦光強和檢測光強,測量了原子磁力儀響應特性曲線的峰值隨溫度的變化關系,如圖4中離散點所示。隨著溫度的增加,Cs原子粒子數密度增加導致磁力儀輸出信號的增大,在40 ℃左右達到極值,然后逐漸減小。產生這種現象的原因是:(1)隨著溫度的升高,Cs原子將由光學薄介質向光學厚介質轉變,而泵浦光與檢測光的交叉區域并未覆蓋整個氣室(如圖2所示),導致泵浦光在與檢測光交叉前會被Cs原子強烈吸收,有效泵浦光強減小。(2)與泵浦光類似,處于Cs原子共振線的檢測光也會在與泵浦光交叉前后的區域中被Cs原子吸收,檢測光強通常都比較小,如果這種吸收較強將直接影響輸出信號的幅度,等價于在公式(1)的基礎上乘吸收項exp(-nσl)。其中,n為粒子數密度,σ為吸收截面,l為泵浦光與檢測光的非交叉區長度。理論計算結果如圖4實線所示,與實驗結果基本一致。

圖3原子磁力儀響應特性曲線

Fig.3Output signal of atomic

magnetometer圖4不同溫度下的輸出信號幅度

Fig.4Output amplitude of atomic

magnetometer at different temperature

為了估算磁力儀獲得最佳靈敏度時的Cs原子氣室工作溫度,除了考慮磁力儀特性曲線的峰值幅度外,還需考慮曲線線寬。為此,在不同的溫度下,測量得到的磁力儀特性曲線的峰值如圖5所示,隨著泵浦光強的增加輸出信號峰值先迅速增加然后逐漸趨緩,說明泵浦光強逐漸達到原子極化所需的飽和光強。各溫度下曲線峰值隨泵浦光強的變化具有相同的變化趨勢,說明非交叉區Cs原子對泵浦光的吸收可通過增加泵浦光強進行補償。圖6給出不同溫度下,磁力儀特性曲線的線寬隨泵浦光強的變化關系。在某一固定溫度下,泵浦光強的增加將導致曲線線寬非線性增加。然而,當泵浦光強固定的條件下,隨著溫度的升高,線寬將近似線性增加,如圖7所示,在此溫度范圍內,擬合函數為ΔB=0.6T+13.5。由此可見,溫度的變化不僅影響曲線峰值,同時影響曲線線寬。忽略Cs原子氣室工作溫度的變化導致的磁力儀噪聲,將此式與圖4的仿真結果帶入式(2),計算結果如圖8所示,可知Cs原子氣室的最佳工作溫度為37.6 ℃。

圖5不同溫度下響應特性曲線峰值與泵浦光強的關系

Fig.5Dependence of amplitude on pumping

intensity at different temperature圖6不同溫度下泵浦光強與線寬的關系

Fig.6Dependence of bandwidth on pumping

intensity at different temperature

圖7不同溫度下的曲線線寬

Fig.7Bandwidth of inphase signal at

different temperature圖8不同溫度下原子磁力儀的相對靈敏度

Fig.8The relative sensitivity of atomic

magnetometer at different temperature

4結論本文介紹了一種高靈敏度全光Cs原子磁力儀,指出Cs原子氣室的工作溫度直接決定了原子磁力儀的靈敏度。當泵浦光頻率鎖定在Cs原子D1線F=3→F′=4共振線,檢測光頻率鎖定在Cs原子D2線F=4→F′=5共振線時,分別測量了Cs原子氣室工作溫度對輸出信號幅度和線寬的影響。發現隨著Cs原子氣室工作溫度的升高,磁力儀輸出信號幅度先增加然后逐漸衰減,而磁力儀的線寬近似線性增加。分析結果表明,當Cs原子氣室的工作溫度為37.6 ℃時,原子磁力儀可獲得最佳靈敏度。這項工作對進一步優化磁力儀結構,提高測磁靈敏度具有重要意義。參考文獻:

[1]王關德,李艷敏,李孟超,等.受控等效光速減緩及其在磁場強度測量中的應用[J].光學儀器,2008,30(2):48.

[2]DANG H B,MALOOF A C,ROMALIS M V.Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer[J].Applied Physics Letters,2010,97(15):15111011511103.

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.第36卷第2期2014年4月光學儀器OPTICAL INSTRUMENTSVol.36, No.2April, 2014

[3]XIA H,BENAMAR BARANGA A,HOFFMAN D,et al.Magnetoencephalography with an atomic magnetometer[J].Applied Physics Letters,2006,89(21):21110412111043.

[4]LEE S K,SAUER K L,SELTZER S J,et al.Subfemtotesla radiofrequency atomic magnetometer for detection of nuclear quadrupole resonance[J].Applied Physics Letters,2006,89(21):21410612141063.

[5]BROWN J M,SMULLIN S J,KORNACK T W,et al.New limit on Lorentz and CPTViolating neutron spin interactions[J].Physical Review Letters,2010,105(15):15160411516044.

[6]KOMINIS I K,KORNACK T W,ALLRED J C,et al.A subfemtotesla multichannel atomic magnetometer[J].Nature,2003,422(6932):596599.

[7]SHAH V,VASILAKIS G,ROMALIS M V.High bandwidth atomic magnetometery with continuous quantum nondemolition measurements[J].Physical Review Letters,2010,104(1):136011136014.

[8]SHAH V,ROMALIS M V.Spinexchange relaxationfree magnetometry using elliptically polarized light[J].Physical Review A,2009,80(1):134161134166.

[9]HOVDE C,PATTON B,CORSINI E,et al.Sensitive optical atomic magnetometer based on nonlinear magnetooptical rotation[C]∥Conference on Unattended Ground,Sea,and Air Sensor Technologies and Applications XII.Orlando:SPIE,2010,7693,769313176931310.

[10]LIU G B,GU S H.Experimental study of the CPT magnetometer worked on atomic energy level modulation[J].Journal of Physics B:Atomic,Molecular and Optical Physics,2010,43(3):350041350044.

[11]BUDKER D,ROMALIS M V.Optical magnetometry[J].Nature Physical,2007,3(4):227234.

[12]Seltzer S J.Developments in alkalimetal atomic magnetometry[D].Princeton:Princeton University,2008.

猜你喜歡
工作溫度
提高汽車水泵效率的主要措施探討
配件耐溫排行榜
SC2310T/SC4210T CMOS圖像傳感器
鋯釩鐵在亞真空領域凈化的應用
工作溫度對ZrO2基NOx傳感器泵電流影響測試分析
基于浮子運動的三浮陀螺儀工作溫度標定方法
半導體氫傳感器工作溫度特性
發動機冷卻系統常見故障的診斷與排除
新能源馕坑的工作原理及最佳工作狀態的試驗研究
英飛凌旗下IR HiRel發布專為用于石油和天然氣勘探的井下工具而優化的額定工作溫度為185°C的緊湊式直流-直流電源
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合