?

微流控芯片快速鑒定多重細菌

2014-07-10 21:14文小霞等
分析化學 2014年6期
關鍵詞:快速檢測

文小霞等

摘 要 [HTSS]建立了一種用于多重細菌鑒定的微流控芯片分析方法。在芯片上實現細菌進樣、培養和鑒定,結合培養池陣列的空間分辨力以及菌種特異性顯色培養基的顏色分辨力,可以實現多重細菌檢測。實驗選用4種泌尿系統感染常見病原菌作為模擬測試對象,結果顯示,這種芯片方法在15 h內可完成細菌鑒定,

關鍵詞 微流控芯片; 細菌鑒定; 多重顯色反應; 快速檢測

1 引 言

細菌感染可以引發多種疾病,不僅發病率高而且經常引發危重病情,因而需要及時診治。細菌感染的主要治療手段是使用抗生素,而抗生素治療需要在明確病原的前提下合理選擇抗生素的種類和劑量[1]。傳統的細菌鑒定方法是將病人體液標本涂布在含有培養基的瓊脂平板上培養增菌,繼而挑選優勢細菌培養鑒定并且進行藥敏實驗。這種方法存在的問題在于樣品消耗量大和檢測時間長[2,3],經常無法有效滿足臨床工作的需求[4]。此外,傳統細菌鑒定方法大多依賴于眾多的大型專業化設備[5~8],限制了該技術在基層醫療單位的推廣。因此,應發展簡便、快速和便攜式細菌鑒定平臺, 以滿足臨床工作的迫切需要。

為解決傳統細菌鑒定平臺的不足,先期研究報導了一系列基于微流控芯片的細菌鑒定[9~15]和藥物敏感性分析技術[16~20]。上述微流控細菌分析技術較之傳統方法具有多方面優勢:首先,芯片微分析平臺有效降低了試樣消耗量并提高了測試通量[21];其次,大多數芯片細菌分析方法可以省略增菌步驟,因而顯著縮短了分析時間[22];再者,芯片細菌分析平臺操作簡便且小巧便攜,非常適合于應對現場快速檢測[23]。綜上所述,微流控芯片技術為細菌分析提供了一種理想的解決方案。

臨床上,細菌感染多表現為呼吸、消化、泌尿等系統的炎癥,每個系統感染的病原均包括多種細菌,故而要求細菌分析平臺具備多重病原菌鑒定能力。前期報導的微流控細菌分析技術,大多只針對一種特定細菌[14,23,24],因而臨床應用價值有限。微流控芯片具有結構設計靈活的特點,便于在微小尺寸下實現集成式和高通量分析,這一優勢非常適合于高通量細菌分析鑒定[25]。因此,有望借助微流控技術實現多重細菌鑒定。

本研究發展了一種用于多重細菌鑒定的微流控分析方法。所用微流控裝置結合芯片和外部控制檢測系統,可以實現進樣、細菌培養和鑒定。實驗選用一組泌尿系統感染常見病原菌作為模擬對象,測試了系統的性能,繼而使用臨床樣品驗證了該分析方法的實用性。實驗結果顯示,這種微流控細菌鑒定方法可以簡便可靠地實現多重細菌鑒定。

2 實驗部分

2.1 儀器、試劑與材料

3 結果與討論

3.1 微流控芯片設計

細菌生長需要適宜的溫度、濕度、氧含量以及足夠的養份供應。本實驗的檢測對象均為需氧菌,因此選用具有透氣性的PDMS加工芯片。芯片底層為PDMS薄層,芯片頂部的扣板具有空隙,允許芯片與外部進行充分的氣體交換。芯片置放于37 ℃溫控板上為細菌生長提供適宜溫度,同時加熱條件下蓄水池內水分的蒸發可以保證足夠的濕度。芯片培養池內固定的瓊脂內包含培養基,為細菌生長提供養分。實驗設計培養池體積約為19 μL,容納14 μL凝固顯色培養基及5 μL細菌懸液,可以為細菌生長提供足夠的空間。

在重力和表面張力作用下,引入芯片的細菌懸液在流動過程中會順序充滿一系列培養池[27]。由于層流效應,進樣中頂層的流體極少擾動培養池中液體,加之瓊脂的阻滯效應可以限制不同培養池中顯色試劑的交叉污染。培養中,相鄰培養池之間的通道被扣板上的突起壓閉,起到微閥作用限制培養池間顯色物質的相互干擾(圖2b)。培養池內的瓊脂含有菌種特異性顯色培養基,只有某種特定細菌的代謝產物方可使培養基中底物顯色。依據顯色培養池位置,就可以判定細菌的種類。這樣,結合細菌培養池陣列的空間分辨力以及特異性顯色反應的菌種分辨力,就可以實現多重細菌檢測。

3.2 顯色培養基濃度的選擇

實驗使用的瓊脂培養基中含有顯色底物,可以在細菌產生的特異性酶作用下發生顯色反應。實驗考察了培養基濃度對芯片培養細菌顯色效果的影響,結果顯示顯色強度隨著培養基濃度的增高而加深(圖3a)。然而,使用過高濃度培養基時由于粘度增加使得操作困難。綜合考慮,實驗選用金黃色葡萄球菌培養基濃度為0.2 g/mL,大腸桿菌、腸球菌、沙門氏菌培養基濃度均為0.15 g/mL。[TS(][HT5”SS]圖3 圖a1~4為相機拍照不同濃度培養基的顯色效果,每種培養基配制4種不同濃度,每種濃度做3個平行測試,培養15 h后拍照。(1:金黃色葡萄球菌;2:大腸桿菌;3:糞腸球菌;4:腸炎沙門氏菌); 圖b 1~8為相機拍照不同金黃色葡萄球菌

實驗比較了芯片和傳統細菌培養方法中細菌的生存率與增殖率。以金黃色葡萄球菌(ATCC25923)為例,在分別培養0,2,4,6,8,10 h后,顯微鏡下計數結果顯示使用兩種方法培養的細菌數量在此階段不斷增加(圖4 a~f),呈現指數增殖狀態(圖4g),細菌生存率均為100%。得益于芯片微小培養池中充足的養分和良好的氧氣供應,芯片組細菌的增殖率總體上要高于培養瓶組(圖4h)。

[TS(][HT5”SS]圖4 SYTO 9 /PI染色熒光圖片顯示金黃色葡萄球菌(ATCC25923)在培養0,2,4,6,8,10 h后的生長情況(a~f)(放大倍數10×10,標尺50 μm);(g)芯片和培養瓶中金黃色葡萄球菌生長曲線;(h)芯片和培養瓶中金黃色葡萄球菌增殖率比較

Fig.4 Fluorescence images (a-f) showing the density of Staphylococcus aureus(ATCC25923)(stained with SYTO 9 /PI)at different incubation time ( 0, 2, 4, 6, 8, 10 h).(Magnification factor: 10×10,scale bar: 50 μm); (g) Plots of bacteria density vs time; (h) Proliferation rates of Staphylococcus aureus cultured on chips and in flasks [HT5][TS)]

3.4 芯片上多重細菌的鑒定

顯色培養基的原理是通過微生物自身代謝產物與相應底物反應顯色反應進行細菌鑒定。顯色底物是由產色基因和微生物可代謝物質組成,在微生物代謝產物作用下游離出產色基因因而顯示一定顏色,便于在細菌培養的同時完成菌種鑒定。利用顯色培養基進行微生物的篩選分離,其靈敏度和特異性都要優于傳統培養基。臨床上使用傳統方法細菌培養時間需要16~48 h[28],而本實驗利用基于顯色培養基的芯片方法可以在15 h內同步完成增菌與鑒定。灌入等比例的4種細菌懸液培養后,所得的顯色結果與產品說明書一致(圖5b)。將4種顯色培養基分別加入一張芯片的指定細菌培養池中,即可同時檢測4種細菌。這種芯片細菌鑒定方法具有良好的擴展能力,未來我們將使用更多種類的顯色培養基以實現多種細菌的同步檢測。實驗還發現某些細菌具有產氣特性導致培養池中較多氣泡,因而影響了顏色判讀,這個問題需要在后續工作中解決。

3.5 芯片細菌檢測方法與傳統方法的比較

實驗利用芯片和傳統方法平行檢測了40例尿路感染病人的尿液標本,檢測結果如表1所示。在40例標本中,芯片方法鑒定出10例大腸桿菌,5例腸球菌,2例金黃色葡萄球菌,10例陰性,其余13例為除上述金黃色葡萄球菌,大腸桿菌,糞腸球菌和腸炎沙門氏菌以外的其它細菌感染。標本中各種菌的典型顯色效果(圖5c~e)與陽性對照(標準菌液,圖b)一致。對于實驗包含的檢測對象,芯片方法與傳統方法的符合率為

96.3%。由于目前實驗設定的檢測范圍有限,芯片方法的總檢出率較低,需要在后續實驗中增加顯色培養基的種類。

[TS(][HT5”SS]圖5 芯片上多重細菌檢測結果

Fig.5 Multiplex bacteria identification on the microchip

a. 陰性對照 (含有四種標準菌株等比例混合液的尿液標本,4℃保存15 h);b. 陽性對照 (含有四種標準菌株等比例混合液的尿液標本培養15 h,從左往右4列培養池分別含有金黃色葡萄球菌、大腸桿菌、腸球菌、沙門氏菌顯色培養基); c. 金黃色葡萄球菌(+)臨床尿液標本(第1列顯綠色);d. 大腸桿菌(+)臨床尿液標本(第2列顯紅色);e腸球菌(+)臨床尿液標本(第3列顯暗黃色)。

a. Negative control (Urine sample contains the four standard bacteria strains of equal density, kept at 4℃ for 15 h); b-e: Urine samples were incubated at 37℃ for 15 h, for simultaneous detection of 4 bacteria using the chromogenic method. b. Positive control (Urine sample contains the four standard bacteria strains of equal density. The four rows of chambers from left to right contains chromogenic medium specific to Staphylococcus aureus,Escherichia coli,Enterococcus and Salmonella, respectively); c. A typical Staphylococcus aureus (+) case, with the first row of chambers appeared green; d. A typical Escherichia coli (+) case, with the second row of chambers appeared red; e. A typical Enterococcus (+) case, with the third row of chambers appeared dark yellow.(Incubation time for b-e: 15 h).[HT5][TS)]

[HT5”SS][HJ*4]表1 微流控芯片和傳統方法細菌檢測結果比較

Table 1 Comparison of bacteria identification using the microchip and the conventional method

[HT6SS][BG(][BHDFG3,WK9*3/4,WK9*4\.2,K*2,K93/4,WK94。2W]菌名Bacteria傳統細菌鑒定法Conventional method微流控芯片顯色法Microchip method菌名Bacteria傳統細菌鑒定法Conventional method微流控芯片顯色法Microchip method

大腸埃希菌Escherichia coli1010

腸球菌Enterococcus55

金黃色葡萄球菌Staphylococcus aureus32無細菌生長Bacteria (-)99其它菌Other bacteria or fungi13*0檢出率

Detection rate100%65%[BHDFG6,WKZQ0W]* 傳統方法鑒定結果為除外本實驗所選4種檢測對象的其它細菌和真菌: 5例為奇異變形桿菌、2例為銅綠假單胞菌、4例為白色念珠菌、2例為酵母菌。

* Samples were identified as containing bacteria or fungi other than the 4 detection objects: Proteus mirabilis, 5 cases; Pseudomonas aeruginosa, 2 cases; Candida albicans, 4 cases and Candida, 2 cases. [BG)W][HT5][HJ]

上述結果表明,本研究發展的微流控細菌分析系統可以簡便快速地實現多重細菌鑒定,因而有望發展成為一種有力的細菌檢測工具。

References

1 Takagi R, Fukuda J, Nagata K, Yawata Y, Nomura N, Suzuki H. Analyst, 2013, 138(4): 1000-1003

2 Gan M, Tang Y, Shu Y, Wu H,Chen L. Small, 2012, 8(6): 863-867

3 Luo X, Shen K, Luo C, Ji H, Ouyang Q,Chen Y. Biomedical Microdevices, 2010, 12(3): 499-503

4 Pulido M R, GarcíaQuintanilla M, MartinPea R, Cisneros J M, McConnell M J. Journal of Antimicrobial Chemotherapy, 2013, 68(12): 2710-2717

5 Driskell J D K K M, Lipert R J, Porter M D, Neill J D,Ridpath J F. Anal. Chem., 2005, 77(19): 6147-6154

6 Matos Pires N M D T. Sensors (Basel), 2013, 13(12): 15898-15911

7 Salam Faridah U Y, Tothill Ibtisam E. Talanta, 2013, 115: 761-767

8 Pierce S E, Bell R L, Hellberg R S, Cheng C M, Chen K S, WilliamsHill D M, Martin W B, Allard M W. Applied and Environmental Microbiology, 2012, 78(23): 8403-8411

9 Zuo P, Li X, Dominguez D C,Ye B C. Lab Chip, 2013, 13(19): 3921-3928

10 Issadore D, Chung H J, Chung J, Budin G, Weissleder R, Lee H. Advanced Healthcare Materials, 2013, 2(9): 1224-1228

11 Cooper R, Leslie D C, Domansky K, Jain A, Yung C W, Cho M, Workman S, Super M,Ingber D. Lab Chip, 2013, 14(1): 182-188

12 Bouguelia S, Roupioz Y, Slimani S, Mondani L, Casabona M G, Durmort C, Vernet T, Calemczuk R, Livache T. Lab Chip, 2013, 13(20): 4024-4032

13 Wang S Q, Inci F, Chaunzwa T L, Ramanujam A, Vasudevan A, Subramanian S, Ip A C F, Sridharan B, Gurkan U A, Demirci U. International Journal of Nanomedicine, 2012, 7: 2591-2600

14 Derda R, Lockett M R, Tang S K Y, Fuller R C, Maxwell E J, Breiten B, Cuddemi C A, Ozdogan A,Whitesides G M. Anal. Chem., 2013, 85(15): 7213-7220

15 David Cowcher Y X, Goodacre R. Anal. Chem., 2013, 85(6): 3297-3302

16 Shariff V A AR S M S, Yadav T, M R. Journal of Clinical and Diagnostic Research, 2013, 7(6): 1027-1030

17 Choi J, Jung Y G, Kim J, Kim S, Jung Y, Na H, Kwon S. Lab Chip, 2013, 13(2): 280-287

18 Deiss F, FunesHuacca M E, Bal J, Tjhung K F,Derda R. Lab Chip, 2013, 14(1): 167-171

19 Kalashnikov M, Lee J C, Campbell J, Sharon A,SauerBudge A F. Lab Chip, 2012, 12(21): 4523-4532

20 Mohan R, Mukherjee A, Sevgen S E, Sanpitakseree C, Lee J, Schroeder C M,Kenis P J A. Biosensors and Bioelectronics, 2013, 49: 118-125

21 Sun P, Liu Y, Sha J, Zhang Z, Tu Q, Chen P,Wang J. Biosensors and Bioelectronics, 2011, 26(5): 1993-1999

22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121

23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278

24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270

25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092

26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984

27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001

張 瓊, 周小棉, 嚴 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學, 2012, 40(7): 996-1001

28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24

Rapid Identification of Multiple Bacteria on a Microfluidic Chip

WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,

CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2

1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,

Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)

2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)

Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.

Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection

(Received 23 December 2013; accepted 2 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)

22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121

23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278

24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270

25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092

26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984

27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001

張 瓊, 周小棉, 嚴 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學, 2012, 40(7): 996-1001

28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24

Rapid Identification of Multiple Bacteria on a Microfluidic Chip

WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,

CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2

1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,

Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)

2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)

Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.

Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection

(Received 23 December 2013; accepted 2 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)

22 Sakamoto C, Yamaguchi N,Nasu M. Applied and Environmental Microbiology, 2005, 71(2): 1117-1121

23 FunesHuacca M, Wu A, Szepesvari E, Rajendran P, KwanWong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R. Lab Chip, 2012, 12(21): 4269-4278

24 Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Khler C, Radespiel R, Büttgenbach S, FrancoLara E,Krull R. Biotechnology Progress, 2010, 26(5): 1259-1270

25 Gan M, Su J, Wang J, Wu H,Chen L. Lab Chip, 2011, 11(23): 4087-4092

26 Duffy D C, McDonald J C, Schueller O J A, Whitesides G M. Anal. Chem., 1998, 70(23): 4974-4984

27 ZHANG Qiong, ZHOU XiaoMian,YAN Wei, LIANG GuangTie, ZHANG QiChao, LIU DaYu. Chinese J.Anal.Chem., 2012, 40(7): 996-1001

張 瓊, 周小棉, 嚴 偉, 梁廣鐵, 張其超, 劉大漁. 分析化學, 2012, 40(7): 996-1001

28 Morris K W C, Wilcox M H. Journal of Hospital Infection, 2012, 81(1): 20-24

Rapid Identification of Multiple Bacteria on a Microfluidic Chip

WEN XiaoXia1, XU BangLao1,2, WANG WeiXin1, LIANG GuangTie1,2,

CHEN Bin1,2, YANG YinMei1,2, LIU DaYu*1,2

1(Department of Laboratory Medicine, Guangzhou First People′s Hospital,

Affiliated Hospital of Guangzhou Medical University, Guangzhou 510180, China)

2 (Clinical Molecular Medicine and Molecular Diagnosis Key Laboratory of Guangdong Province, Guangzhou 510180, China)

Abstract We developed a microfluidic device to integrate sample introduction, bacteria culturing and results reading. The identification of multiple bacteria was achieved by combining the spatial resolution of the arrayed bacteria culture chambers and the color resolution benefited from the bacteria specific chromogenic media. A set of 4 common pathogenic bacteria responsible for urinary tract infection were used as a model to test the microfluidic assay. Our results showed that the bacteria identification assay can be completed in 15 h, with a limit of detection (LOD) of bacteria density down to 10 cfu/mL. Clinical sample testing using the microchip approach showed a coincidence rate of 96.3% as compared with the conventional method. The developed microfluidic approach is simple and rapid, thus hold the potential to serve as a powerful tool for detection of multiple bacteria.

Keywords Microfluidic chip; Bacteria identification; Multiplex chromogenic reaction; Rapid detection

(Received 23 December 2013; accepted 2 March 2014)

This work was supported by the National Natural Science Foundation of China (Nos. 81371649, 81171418, 81201163)

猜你喜歡
快速檢測
免疫檢測技術在中藥質量快速評價中的應用
低溫肉制品中3 種食源性致病菌多重聚合酶鏈式反應快速檢測方法的建立
基于近紅外光譜法的藜麥脂肪含量快速檢測
利福平和異煙肼耐藥基因突變快速檢測方法在結核病中的應用
大腸菌群冷水凝膠快速檢測試紙片的研發
表面增強拉曼光譜法定量檢測食品中香豆素
水相分子印跡光子晶體水凝膠傳感器檢測尿液中的痕量嗎啡
水產品氯霉素膠體金試紙條快速檢測研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合