?

H2在AlnCr(n=1-7)團簇上吸附和解離的密度泛函研究

2015-03-23 05:04李向富李高清
原子與分子物理學報 2015年5期
關鍵詞:過渡態結合能鍵長

李向富, 李高清

(隴東學院電氣工程學院, 慶陽 745000)

H2在AlnCr(n=1-7)團簇上吸附和解離的密度泛函研究

李向富, 李高清

(隴東學院電氣工程學院, 慶陽 745000)

采用密度泛函理論中的B3LYP方法研究了H2在AlnCr(n=1-7)團簇上的吸附和解離.結果表明:AlnCr團簇結構與Aln+1團簇結構相似;物理吸附是H2以側向的形式吸附在Cr原子上,H-H鍵長略微增長,H2的振動頻率發生了紅移;除了n=5外,其它AlnCrH2團簇的最穩定結構均是AlnCr團簇的最穩定結構與兩個氫原子成鍵而成;AlnCr團簇向H原子轉移了電荷;AlnCrH2團簇的平均結合能,垂直電離勢和能隙均大于AlnCr團簇的,即AlnCrH2團簇比AlnCr團簇更穩定;Al7Cr對H2的化學吸附表現出較強的惰性,而AlnCrH2(n=1,2,6)則表現出較強的化學活性;由化學反應路徑跟蹤可知,通過改變AlnCr團簇中Al原子的個數可以調節H2的物理化學吸附行為.

AlnCr團簇; 氫分子; 吸附; 解離

1 引 言

2 計算方法

采用用密度泛函理論中的B3LYP方法研究了H2在AlnCr(n=1-7)團簇上的吸附和解離.所有計算均在Gaussian03程序包[12]下完成.Al和H采用全電子基組6-31g*,Cr原子的內層電子和價電子均采用LANL2DZ贗勢.根據最小振動頻率是否為正值判斷所得結構是否為局域穩定結構.使用QST方法尋找物理吸附到化學吸附的中間過渡態,通過計算反應路徑來確認過渡態的正確性.為了使得所得結構盡可能是全局最穩定結構,根據已報道的Aln和AlnX(X=Cu, Au, Co, V) 團簇的幾何結構,通過替換或擔載的方式獲得豐富的初始結構.考慮了自旋多重度的影響.

為了驗證所采用計算方法的可行性,計算了Cr2, Al2和AlCr二聚體,結果見表1.由表1可以看出:Cr2和Al2的鍵長、平均結合能和垂直電離勢的本文計算值與實驗值符合得很好;AlCr的鍵長和垂直電離勢的本文計算值與理論和實驗值符合得很好,但是,平均結合能比實驗值小得多,而與理論值符合得很好.綜上所述,本文采用的計算方法是可行的.

表1 Cr2、Al2和AlCr團簇的鍵長r、平均結合能Eb、垂直電離勢VIP的理論和實驗值

Table 1 Theoretical and experimental values of bond length r, average binding energy Eband vertical ionization potential IP of Cr2, Al2and AlCr clusters

Cr2Al2AlCrthisworkExpt.[13]thisworkExpt.[14]thisworkTheo.15]Expt.[16]r(?)1.6111.6792.5142.5602.7422.742.74Eb(eV)1.5951.420±0.1001.1890.997±0.1081.1251.172.272±0.009IP(eV)6.0996.3046.200±0.2005.9875.945.96±0.04

3 結果與討論

3.1 AlnCr (n=1-7)團簇的基態結構

圖1(na) 給出了AlnCr (n=1-7)團簇的基態結構.表2給出了AlnCr(n=1-7)團簇基態結構的自旋多重度、對稱性、總能量、能隙、平均結合能、垂直電離勢和垂直電子親和勢.AlCr的鍵長為2.611 ?,自旋多重度為6,與文獻[17]的結果相一致;Al2Cr呈平面等腰三角形,自旋多重度為5,呈C2V對稱性;Al3Cr是呈CS對稱性的三棱錐結構,自旋多重度為4;Al4Cr是呈C4V對稱性的四棱錐結構,自旋多重度為5;Al5Cr是在Al4Cr的四邊形底面一側鄰接一Cr原子,自旋多重度為4;Al6Cr是在三棱柱Al6團簇的四邊形面上鄰接一Cr原子,自旋多重度為5,對稱性為C2V;Al7Cr 團簇是在呈C4V對稱性的Al6團簇上鄰接一Al原子和Cr原子,自旋多重度為6.總之,AlnCr團簇的基態結構均是Cr原子替換Aln+1團簇[18]中一個Al原子而得到.

圖1 AlnCr (na), AlnCr-H2 (nb)和AlnCrH2 (nc)團簇的基態結構 (灰、黑、白色小球分別表示Al, Cr, H原子)Fig.1 Ground state structures of AlnCr (na), AlnCr-H2 (nb) and AlnCrH2 (nc) clusters (gray ball: Al, black ball: Cr, white ball: H)

表2 AlnCr(n=1-7)團簇基態結構的自旋多重度M,對稱性Sym,總能量E,能隙Gap,平均結合能Eb,垂直電離勢VIP和垂直電子親和勢VEA

Table 2 Multiplicities M, symmetries Sym, total energies Et, HOMO-LUMO Gaps Gap, averaged binding energies Eb, Vertical ionization potentials VIP and Vertical electron affinities VEA for the most stable AlnCr(n=1-7) clusters

ClusterMSymEt(eV)Gap(eV)Eb(eV)VIP(eV)VEA(eV)AlCr6C∞V-8943.8141.9051.1245.9950.605Al2Cr5C2V-15540.7011.3861.3946.1981.441Al3Cr4CS-22138.0161.2371.6275.9991.312Al4Cr5C4V-28735.2201.2651.7136.1441.793Al5Cr4C1-35332.0181.1341.6845.8991.902Al6Cr5C2V-41930.1471.2601.8876.2812.159Al7Cr6C1-48527.631271.4201.9395.8921.746

3.2 H2在AlnCr (n=1-7)團簇上的物理吸附

考慮了頂位,橋位和面位三種可能的吸附模式.最穩定的吸附結構如圖1(nb)所示.吸附能,能隙,H-H鍵長,平均H-Cr鍵長和H-H振動頻率如表3所示.吸附能的定義式如下:

ΔEad=E(AlnCr)+E(H2)-E(AlnCr-H2)

(1)

(1)式中E(AlnCr ), E(H2)和E(AlnCr -H2)分別表示AlnCr,自由H2和AlnCr-H2團簇的能量.吸附能均為負值,即都是放熱反應.H2分子以側向的形式吸附在Cr原子的頂位上,這是由于Cr原子低配位,化學鍵未飽和所致.H-H鍵長范圍為0.744—0.751 ?,相對自由H2鍵長0.7428 ?,略微變長;吸附能的范圍為0.009-0.064 eV,相對較??;兩個H原子與Cr原子的平均距離為2.391-3.701 ?,是典型的范德華相互作用;這三點均說明了典型的物理吸附特征.吸附在團簇上氫分子的振動頻率為4295-4427 cm-1,相對自由H2的頻率4650 cm-1,發生了紅移,這是由氫分子鍵長增加所致.

表3 H2物理吸附在AlnCr(n=1-7)團簇上的吸附能△Ead,能隙Gap,H-H鍵長DH-H,平均H-Cr鍵長DH-Cr和H-H振動頻率ωH-H

Table 3 Adsorption energies △Ead, HOMO-LUMO gaps Gap, H-H bond lengths DH-H, averaged H-Cr bond lengths DH-Crand H-H vibration frequencies ω for the physisorption of H2on AlnCr(n=1-7) clusters

Cluster△Ead(eV)Gap(eV)DH-H(?)DH-Cr(?)ωH-H(cm-1)AlCr-H2-0.0121.9160.7463.7014393Al2Cr-H2-0.0151.5720.7483.4284351Al3Cr-H2-0.0091.5350.7443.3044427Al4Cr-H2-0.0111.2740.7443.1144419Al5Cr-H2-0.0121.1320.7443.1254415Al6Cr-H2-0.0131.2570.7462.7874391Al7Cr-H2-0.0641.4120.7512.3914295

3.3 H2在AlnCr (n=1-7)團簇上的化學吸附

AlnCrH2的最穩定吸附結構如圖1(nc)所示.AlCrH2是平面結構,H-Al鍵長均為1.609 ?,H原子獲得等量電荷(0.116e).Al2CrH2是兩個氫原子分別鄰接在Al-Al鍵橋位上,H-Al鍵長幾乎相等(1.786 ?,1.787 ?),H原子獲得等量電荷(0.122e).Al3CrH2是兩個氫原子分別鄰接在兩個Al原子的頂位上,H-Al鍵長均為1.597 ?,H原子獲得等量電荷(0.061e).Al4CrH2是兩個氫原子分別鄰接在相對的兩個Al原子的頂位上,H-Al鍵長均為1.591 ?,H原子獲得等量電荷(0.058e).Al5CrH2的基態結構相對Al5Cr發生了根本性變化,不是在Al5Cr基礎上鄰接H原子,而是在Al5Cr亞穩定結構基礎上鄰接H原子,一個H位于Al-Al鍵橋位上,另一個H位于Al-Cr橋位上,兩個H原子得到電荷分別為0.118e和0.124e.Al6CrH2是兩個H原子分別接在相對的兩個Al原子的頂位上,H-Al鍵長均為1.592 ?,H原子獲得等量電荷(0.058e).Al7CrH2團簇中一個H原子接在Al的頂位上,一個H原子接在Cr的頂位上;H-Al鍵長為1.589 ?,H-Cr鍵長為1.713 ?;H分別獲得電荷(0.056e, 0.132e).總之,n=5的最穩定結構不是由Al5Cr的最穩定結構吸附兩個H原子,其它AlnCrH2的最穩定結構均是在最穩定的AlnCr團簇上吸附兩個氫原子;AlnCr向H原子轉移了電荷.

由表4和圖1(nc)可以看出,AlnCrH2團簇中H-H距離遠遠大于H2分子中的H-H鍵長,即H2發生了解離化學吸附.化學吸附能大小反應了H2與團簇間的化學反應活性,其定義式如下:

ΔECE=E(AlnCr)+E(H2)-E(AlnCrH2)

(2)

(2)式中E(AlnCr ),E(H2),E(AlnCrH2)分別表示AlnCr團簇,自由H2和AlnCrH2團簇的能量.由表4可以看出Al7CrH2的化學吸附能最小,即Al7Cr與H2相互作用時表現出較強的惰性;而AlCrH2,Al2CrH2和Al6CrH2的化學吸附能相對較大,對H2的化學吸附表現出較強的化學活性.

表4 AlnCrH2團簇的吸附能△ECE、平均結合能Eb、能隙Gap、H-H距離DH-H、垂直電離勢VIP和垂直親和勢VEA

Table 4 Adsorption energies △ECE, average binding energies Eb, HOMO-LUMO gaps, distances between H-H DH-H, Vertical ionization potentials VIP and Vertical electron affinities VEA for the most stable AlnCrH2(n=1-7) clusters

Cluster△ECE(eV)Eb(eV)Gap(eV)DH-H(?)VIP(eV)VEA(eV)AlCrH21.0646.9493.3012.7207.6060.319Al2CrH21.0404.2921.7222.2196.2281.160Al3CrH20.5883.4071.3861.5976.3301.580Al4CrH20.8063.1041.4097.1626.2711.706Al5CrH20.4882.7341.4092.5266.2521.936Al6CrH20.9002.8301.6636.8106.4711.886Al7CrH20.2952.6621.6284.2036.4632.083

3.4 AlnCr與AlnCrH2的穩定性比較

通過計算平均結合能、能隙、垂直電離勢和垂直親和勢比較了AlnCr與AlnCrH2的穩定性.平均結合能的定義式如下:

Eb(AlnCr)=[nE(Al)+E(Cr)-E(AlnCr)]/n

(3)

Eb(AlnCrH2)=[nE(Al)+E(Cr)+

2E(H)-E(AlnCrH2)]/n

(4)

由表2,表4和圖2可以看出,AlnCr 和AlnCrH2團簇的平均結合能變化范圍分別為:1.124-1.939 eV,2.662-6.949 eV,很明顯AlnCrH2團簇的平均結合能大于AlnCr團簇,即AlnCrH2團簇更穩定;隨著團簇尺寸的增加,AlnCrH2團簇的平均結合能逐漸減小,AlnCr團簇的平均結合能逐漸增加;可以推測出當團簇尺寸大于某一臨界值時,二者的平均結合能幾乎相等,因為那時H2分子的影響可以忽略了.

圖2 AlnCr和AlnCrH2團簇平均結合能隨團簇尺寸的變化Fig.2 Average binding energies per atom of AlnCr and AlnCrH2 versus cluster size

圖3 AlnCr和AlnCrH2團簇垂直電離勢和垂直親和勢隨團簇尺寸的變化Fig.3 Vertical ionization potentials and Vertical electron affinities of AlnCr and AlnCrH2 versus cluster size

保持陰陽離子團簇結構與中性團簇結構相同的情況下,計算的電離勢或親和勢稱為垂直電離勢或垂直親和勢.由圖3可以看出AlnCrH2的電離勢均大于AlnCr團簇的電離勢,這也說明AlnCrH2團簇更加穩定,較不容易電離電子;AlnCrH2和AlnCr的電子親和勢隨團簇尺寸變化趨勢相似,表現出奇偶振動現象.由圖4可以看出AlnCrH2和AlnCr的能隙隨團簇尺寸變化趨勢相同,且AlnCrH2的能隙值均大于AlnCr,即AlnCrH2比AlnCr更穩定.

圖4 AlnCr和AlnCrH2團簇的能隙隨團簇尺寸的變化Fig.4 Energy gaps of AlnCr and AlnCrH2 versus cluster size

3.5 H2分子在AlnCr (n=1-7)團簇上的解離機制

以自由AlnCr和H2的能量之和作為勢能零點,以此得出反應物(H2在AlnCr團簇上的物理吸附),過渡態和產物(H2在AlnCr團簇上的化學吸附)的相對能量.反應物、過渡態和產物的能量,反應能(產物與反應物的能量之差)以及反應勢壘(過渡態與反應物能量之差)的計算結果見表5.反應能均為負值,說明H2的解離為放熱過程.AlCrH2、Al2CrH2和Al6CrH2的反應勢壘較小,反應能較大,化學吸附能也較大(見表4);說明AlCrH2、Al2CrH2和Al6CrH2較容易與H2發生化學反應,當H2與它們相互作用時,H-H鍵較容易斷裂.Al7CrH2團簇有最大的反應勢壘(17.154 kcal/mol),H2不容易發生化學吸附.詳細分析了H2在AlnCr團簇上的解離反應路徑,即H2+AlnCr→AlnCrH2,搜尋了中間產物和過渡態.圖5給出了H2在AlnCr團簇上的解離反應路徑以及反應物,過渡態(只有一個虛頻,其值見表5)和產物的幾何結構.對于AlnCr(n=1-7,n≠4)團簇,H2由物理吸附到化學吸附經歷了一個過渡態(TS),跨越的勢壘值分別為:9.507, 8.070, 5.103, 11.989, 0.821, 17.154 kcal/mol;對于Al4Cr團簇,H2由物理吸附到化學吸附經歷了兩個過渡態(TS1和TS2),首先由反應物R經過渡態TS1生產中間產物IM,跨越的勢壘值為27.928 kcal/mol,中間產物H-H間距離為1.242 ?(產物中H-H距離值見表4),H-H鍵已斷裂,兩個氫原子分別與相鄰的兩個Al原子成鍵;然后由中間態IM反應至最后產物P,跨越的勢壘值為11.542 kcal/mol,產物P中的兩個H原子處在相對的兩個Al原子上,產物P的能量比中間產物IM低了3.733 kcal/mol.上述結果表明,H2在不同尺寸AlnCr團簇上的反應路徑是不同的,故可通過改變AlnCr團簇中Al原子的個數來調節H2的物理化學吸附行為.

(a)AlCrH2

(b)Al2CrH2

(c)Al3CrH2

(d)Al4CrH2

(e) Al5CrH2

(f) Al6CrH2

(g) Al7CrH2圖5 H2分子在AlnCr團簇上的解離反應路徑Fig.5 The dissociation reaction pathway of H2 on AlnCr clusters

表5 H2分子在AlnCr團簇上解離過程中的反應物能量ER、過渡態能量ETS、產物能量EP、反應能ERe、反應勢壘EAc、過渡態的虛頻ωTS

Table 5 Energies of reactant ER, energies of transition state ETS, energis of product EP, reaction energies ERe, activation barriers EAcand imaginary frequencies of transition state ωTSfor H2dissociation process on AlnCr clusters

ClusterER(kcal/mol)ETS(kcal/mol)EP(kcal/mol)ERe(kcal/mol)EAc(kcal/mol)ωTS(cm-1)AlCrH2-0.2799.227-25.544-25.2649.507-1199Al2CrH2-0.3477.723-23.973-23.6268.070-1113Al3CrH2-0.2084.894-13.559-13.3515.103-463Al4CrH2-0.25827.670-3.315-18.591-18.33327.92811.542-1299-329Al5CrH2-0.27511.714-11.248-10.97311.989-33Al6CrH2-0.3030.518-20.751-20.4480.821-232Al7CrH2-1.47915.676-6.793-5.31417.154-1047

4 結 論

采用密度泛函理論中的B3LYP方法研究了H2在AlnCr(n=1-7)團簇上的吸附和解離.結果表明:AlnCr團簇結構與Aln+1團簇結構相似;物理吸附是H2以側向的形式吸附在Cr原子的頂位上,H-H鍵略微增長,H2的振動頻率發生了紅移;n=5的最穩定結構不是Al5Cr的最穩定結構吸附兩個H原子,其它AlnCrH2的最穩定結構均是在最穩定的AlnCr團簇上吸附兩個氫原子;AlnCr向氫原子轉移了電荷;AlnCrH2的平均結合能,垂直電離勢和能隙均大于AlnCr的,即AlnCrH2比AlnCr更穩定;Al7Cr對H2的化學吸附能最小,表現出較強的惰性,而AlnCrH2(n=1,2,6)對H2的化學吸附能較大,表現出較強的化學活性;H2在不同尺寸AlnCr團簇上的反應路徑是不同的,故可通過改變AlnCr團簇中Al原子的個數來調節H2的物理化學吸附行為.

[1] Arakawa H, Aresta M, Armor J N,etal. Catalysis research of relevance to carbon management: progress, challenges, and opportunities[J].Chem.Rev., 2001, 101: 953.

[2] Guo L, Li S Y, Zhang X,etal. Hydrogen adsorption and dissociation on small AlnAu clusters: an electronic structure density functional study[J].Eur.Phys.J. D, 2013, 67: 137

[3] Li X F, Li G Q. Density functional theory study on the stability and electronic properties of Cun(n=1-20) clusters[J].J.At.Mol.Phys., 2014, 31(4): 575 [李向富, 李高清. Cun(n=1-20)團簇的穩定性和電子性質的密度泛函研究[J]. 原子與分子物理學報, 2014, 31(4): 575]

[4] Fayet P, Kaldor A, Cox D M. Palladium clusters: H2, D2, N2, CH4, CD4, C2H4, and C2H6reactivity and D2saturation studies[J].J.Chem.Phys., 1990, 92: 254.

[5] Doyle A M, Shaikhutdinov S K , Jackson S D,etal. Hydrogenation on metal surfaces: Why are nanoparticles more active than single crystals?[J].J.Angew.Chem.Int.Ed., 2003, 42: 5240.

[6] Lee H W, Chang C M. Size effect of Pd clusters on hydrogen adsorption[J].J.Phys.:Condens.Matter, 2011, 23: 045503.

[7] Kadioglu Y, Demirkiran A, Yaraneri H,etal. Investigation of NH3and H2adsorption on Ptn(n=2-15, 18, 22, 24) clusters by using density functional theory[J].JournalofAlloysandCompounds, 2014, 591: 188.

[8] Ge G X, Yan H X, Jing Q,etal. Theoretical study of hydrogen adsorption on ruthenium clusters[J].J.Clust.Sci., 2011, 22: 473.

[9] Ge G X, Cao H B, Jing Q,etal. Density functional theory study of the interaction of H2with rhodium clusters[J].ActaPhysicaSinica, 2009, 58: 8236 (in Chinese)[葛桂賢, 曹海濱, 井群, 等. 密度泛函理論研究H2與Rhn(n=1-8)團簇的相互作用[J]. 物理學報, 2009, 58: 8236]

[10] Guo L, Yang Y F. Theoretical investigation of molecular hydrogen adsorption and dissociation on AlnV(n=1-13) clusters[J].InternationalJournalofHydrogenEnergy, 2013, 38: 3640.

[11] Lu Q L, Wan J G. Sc-coated Si@Al12as high-capacity hydrogen storage medium[J].J.Chem.Phys., 2010, 132: 224308.

[12] Frisch M J, Trucks G W, Schlegel H B,etal. Gaussian 03(revision C02), Pittsburgh, PA: Gaussian, Inc, 2003.

[13] Bondybey V E, English J H. Electronic structure and vibrational frequency of Cr2[J].Chem.Phys.Lett., 1983, 94: 443.

[14] Rosen B.Spectroscopicdatarelativetodiatomicmolecules[M]. New York: Oxford University Press, 1970.

[15] Ouyang Y, Wang J, Liu F,etal. Density functional study of 3d-transition metal Aluminides[J].J.Mol.Struct.:THEOCHEM, 2009, 905: 106.

[16] Behm J M, Brugh D J, Morse M D. Spectroscopic analysis of the open 3d subshell transition metal aluminides: AlV, AlCr, and AlCo[J].J.Chem.Phys., 1994, 101: 6487.

[17] Wang M, Huang X, Du Z,etal. Structural, electronic, and magnetic properties of a series of Aluminum clusters doped with various transition metals[J].Chem.Phys.Lett., 2009, 480: 258.

[18] Kiohara Valéria O, Carvalho Edson F V, Paschoal Carlos W A,etal. DFT and CCSD(T) electronic properties and structures of aluminum cluster: Alxn(n=1-9, x=0,±1)[J].Chem.Phys.Lett., 2013, 568: 42.

Density functional theoretical investigation for the adsorption and dissociation of molecular hydrogen on AlnCr(n=1-7) clusters

LI Xiang-Fu, LI Gao-Qing

(College of Electrical Engineering, Longdong University, Qingyang 745000, China)

The adsorption and dissociation of molecular hydrogen on AlnCr(n=1-7) clusters are investigated by using the method of B3LYP in density functional theory. The results show that the structures of AlnCr clusters are similar to those of Aln+1clusters. H2is easily adsorbed physically on Cr atom with a side-on orientation. The bond length of H-H increases slightly. The vibration frequency of H2adsorbed is smaller than that of free molecular H2, namely, a red-shift occurs. Except forn=5, the most stable structures of the other AlnCrH2clusters are composed by the most stable structures of AlnCr clusters and two H atoms. Charge transfers from AlnCr clusters to H atoms. Average binding energy, vertical ionization potential and energy gap of AlnCrH2clusters are all greater than those of AlnCr clusters, namely AlnCrH2clusters are more stable than AlnCr clusters. Al7Cr cluster shows stronger inertness for chemical adsorption of H2, while AlnCrH2(n=1,2,6) show stronger chemical activity. The physical and chemical adsorption behavior of H2on AlnCr clusters can be adjusted by changing the number of Al atom in AlnCr clusters from tracking the chemical reaction path.

AlnCr clusters; Molecular hydrogen; Adsorption; Dissociation

李向富(1982—),男,甘肅環縣人,理學碩士,主要從事團簇結構及性質的研究.

李高清. E-mail: lgaoq@163.com

103969/j.issn.1000-0364.2015.10.010

O641

A

1000-0364(2015)05-0775-08

投稿日期:2015-03-21

猜你喜歡
過渡態結合能鍵長
晶體結合能對晶格動力學性質的影響
基于LMI的過渡態主控回路閉環控制律優化設計
借鑒躍遷能級圖示助力比結合能理解*
高溫下季戊四醇結構和導熱率的分子動力學研究
第一性原理研究鐵銅合金催化氨硼烷水解脫氫
全氟異丁腈分解反應機理
HOOOH的反式和順式轉化機理的理論研究
Gutmann規則及其應用
淺議鍵能與鍵長的關系
苯并三氧化呋咱的晶體結構
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合