?

植物OST1基因功能研究進展

2015-04-07 13:03陳妮妮沈曉艷王增蘭
湖北農業科學 2015年3期
關鍵詞:信號轉導植物

陳妮妮++沈曉艷++王增蘭

摘要:植物在生長過程中會遭受各種逆境脅迫,環境脅迫會引起植物體內一系列的信號反應,其中脫落酸(ABA)信號途徑是一條重要的脅迫應答途徑。作為ABA信號通路中的蛋白質激酶之一,氣孔開放因子1(Stomatal opening factor 1,OST1)在植物逆境應答反應中扮演重要角色。因此,研究OST1基因在植物逆境應答中的功能有助于闡述植物耐逆分子機制。從OST1的相互作用因子及其在信號通路中的調控作用等方面進行闡述,對其介導的逆境應答機制進行了系統總結。

關鍵詞:植物;逆境脅迫;OST1基因功能;信號轉導

中圖分類號:Q789 文獻標識碼:A 文章編號:0439-8114(2015)03-0513-04

DOI:10.14088/j.cnki.issn0439-8114.2015.03.001

Advances in Function of OST1 Gene in Plants

CHEN Ni-ni, SHEN Xiao-yan, WANG Zeng-lan

(Shandong Key Lab of Plant Stress Research/College of Life Sciences,Shandong Normal University, Jinan 250014, China)

Abstract: Plants are subjected to all kinds of stresses in the process of growth. Environmental stresses can make plants to produce a series of signal transduction. Signal pathway of abscisic acid (ABA) is an important stress response pathway. Stomatal opening factor 1 (OST1), one of protein kinases in ABA signaling pathway, plays a pivotal role in plant. Studying the function of OST1 gene in plants will help to elaborate the molecular mechanisms of plant stress tolerance. Interacting factors of OST1 and its regulatory roles in the signal pathway were reviewed. The mechanisms of OST1 in stress response of plants were summarized.

Key words: plant;adversity stress;OST1 gene function;signal transduction

植物的生長發育過程會受到多種逆境脅迫的影響,而植物在進化過程中形成了應對高溫、低溫、高鹽、干旱等環境脅迫的保護機制。蛋白激酶和蛋白磷酸酶通過催化蛋白質磷酸化和去磷酸化來參與細胞信號轉導途徑,如參與ABA信號途徑等,從而在非生物脅迫應答中起到非常重要的作用[1,2]。

蔗糖非酵解型蛋白激酶[SNF1 (Sucrose non-fermenting-1)-related protein kinase,SnRK]是一類廣泛存在于植物中的Ser/Thr類蛋白激酶,參與植物體內包括ABA信號途徑在內的多種信號途徑的轉導,在植物的抗逆境反應中起著非常重要的作用[3,4]。氣孔開放因子1(Stomatal opening factor 1,OST1,即SnRK2E或SnRK2.6)屬于SnRK2激酶家族,通過對其保守區域和作用位點以及上游和下游調控因子等的分析,剖析了其在響應脅迫反應中ABA依賴及ABA不依賴途徑中的作用[5-7]。近幾年通過對其調控網絡的研究還發現,OST1在植物碳源及能源供應[8]以及ABA調控開花周期過程[9]中發揮作用,以此來調節植物的生長和發育。

1 OST1在脅迫響應中的調控機制

1.1 ABA依賴的調控途徑

ABA作為高等植物中普遍存在的一種植物激素能調控多種生理相關反應,比如開花時間、果實成熟以及對逆境脅迫如干旱、鹽堿等的反應[10-14]。其中,OST1作為ABA信號途徑的重要組分,參與ABA調控的逆境脅迫信號途徑。

1.1.1 OST1活性受ABA信號途徑中的上游因子調控 研究發現,OST1在正常情況下是由ABA信號途徑中的負調控因子PP2Cs(Ser/Thr protein phosphatases type 2C)抑制的[15-17]。PP2Cs家族A包括HAB1、ABI1、ABI2、PP2CA等蛋白質。Yoshida等[7]對abi1-1和aba2-1突變體株系的研究發現,只有abi1-1突變體抑制ABA依賴的OST1活性。通過酵母雙雜交等試驗,證明ABI1是通過與OST1 C-末端區域Ⅱ結合,使OST1激酶活性區域的Ser/Thr殘基脫磷酸化失活[18]。不過通過對PP2Cs家族成員HAB1及ABI2的研究,發現兩者都有調控OST1激酶活性方面的功能[15,19]。那么OST1活性是如何被ABA信號途徑調控的,Park等[20]通過酵母雙雜交等試驗發現ABA與PYR/PYL家族結合會抑制PP2Cs。Nishimura等[21]的研究也表明PYR/PYL/RCAR與PP2Cs成員中的ABI1的互作最強,并且發現pyr1/pyl1/pyl2/pyl4 四突變體對ABA調控的氣孔開閉不敏感。之后進一步的研究發現在ABA調控低濕度、高CO2等逆境脅迫過程中PYR/PYL/RCAR與ABA結合,兩者構成的復合物與PP2Cs相互作用,抑制了其去磷酸化活性,從而使OST1磷酸化激活[18,22-26]。endprint

1.1.2 OST1對下游質膜蛋白的調控 OST1在響應脅迫途徑中受ABA信號激活后,作用于下游的SLAC1和KAT1離子通道或NADPH氧化酶,通過調控保衛細胞內的離子含量來調節氣孔的關閉,以此對逆境脅迫做出反應[27-29]。

Geiger等[30]對干旱脅迫下的ABA信號途徑進行研究,通過BiFC分析OST1相互作用因子SLAC1及ABI1,并在爪蟾卵母細胞中共表達SLAC1和OST1,證明OST1磷酸化并激活SLAC1。Xue等[26]研究高CO2脅迫下OST1誘導氣孔關閉的過程,并建立了CO2調控SLAC1導致氣孔關閉的模型:CO2在細胞內轉化成HCO3-,激活ABA信號途徑,誘導PYR/PYL/RCAR激活OST1,OST1使下游SLAC1磷酸化激活,使氣孔關閉。Vahisalu等[27]研究表明在臭氧脅迫下,ABA誘導ROS活性氧的產生,ROS激活的OST1使SLAC1 N-末端磷酸化,激活S-型離子通道,促進保衛細胞陰離子外排,引起質膜去極化,激活外排K+通道,使得保衛細胞K+外排,離子的流失使得保衛細胞膨壓下降,導致氣孔關閉。但ROS激活OST1的機制還需要進一步研究??傊?,在臭氧、低濕度、高CO2等脅迫條件下OST1可以通過磷酸化而激活SLAC1,促進保衛細胞Cl-外排,引起氣孔關閉[25,31,32]。

對于ABA信號通路中OST1對KAT1的調控,Sato等[28]通過LC-MS/MS分析證明KAT1的Thr306和Thr308為其磷酸化位點。通過對其單突變體的研究,并在爪蟾卵母細胞和酵母中檢測KAT1的活性,證明Thr306是KAT1保持活性必需的,并且是OST1使KAT1發生磷酸化引起氣孔關閉的位點。之后的進一步研究證明OST1在應對多種逆境脅迫時通過磷酸化抑制KAT1活性,從而抑制K+的轉運,以此調節氣孔關閉[18,25,33]。

除了對離子通道的調控,OST1還可以直接使NADPH氧化酶之一的AtRbohF磷酸化[18,34]。Sirichandra等[29]通過質譜分析,AtRbohF NADPH氧化酶的Ser174和Ser13由OST1磷酸化,并通過YFP及GFP等試驗證明OST1與AtRbohF相互作用,進而可以形成OST1誘導ROS產生的通路,即OST1通過對下游AtRbohF NADPH氧化酶的激活,產生ROS。而Vahisalu等[27]研究發現ROS可以通過某種途徑激活OST1,并促進OST1對SLAC1的激活,引起氣孔關閉。

1.1.3 OST1對轉錄因子的調控 OST1在逆境應答過程中,除了對膜蛋白的調控外,還有其他調節途徑,如對轉錄因子b-ZIP及SNAC1等的調控。

轉錄因子b-ZIP包括ABF2、ABF3等,Sirichandra等[35]研究OST1及ABF的相互作用,發現保衛細胞的細胞核中的OST1可以直接使ABF3磷酸化。Fujii等[36]通過in-gel激酶活性分析,證明SnRK2蛋白激酶(包括OST1)具有ABA依賴的激活AREB/ABF的作用,從而在ABA響應逆境脅迫及調控植物生長發育的過程中具有一定影響[37-40]。

SNAC1在植物中被廣泛研究,受干旱、鹽漬等逆境脅迫誘導,并受多種脅迫相關基因的調控[41-43]。Vilela等[44]在擬南芥ost1突變體中異位表達玉米中的擬南芥OST1同源基因ZmOST1,植株恢復對干旱響應的氣孔關閉的表型。Vilela等[44]進一步的研究發現ZmOST1使ZmSNAC1轉錄因子磷酸化,并且對其定位和穩定性具有一定的影響,同時ZmSNAC1結合在ZmOST1的ABA-box區域,與PP2Cs形成競爭,參與ABA信號途徑,證明玉米中ABA信號途徑下游ZmOST1激活ZmSNAC1轉錄因子,啟動滲透脅迫相關基因表達,進而對逆境脅迫進行調控。

1.2 ABA不依賴的調控途徑

經過多年的研究發現,OST1同時還存在不依賴ABA的調控機制,比如滲透脅迫。Yoshida等[7]對abi1-1、abi2-1和aba2-1擬南芥突變體株系進行滲透脅迫處理,發現OST1-GFP依然表達,證明了在滲透脅迫條件下OST1的激活可以不需要ABA的參與。另外,OST1的兩個區域是被激活的位點:區域Ⅱ和區域Ⅰ。區域Ⅰ是滲透脅迫條件下不依賴ABA的調控機制必需的,該區域促進OST1磷酸化,進而調控氣孔關閉。

2 OST1在植物生長發育中的作用

ABA不僅在植物脅迫應答中發揮作用,還具有調控植物生長發育(比如種子成熟、根莖生長等)的重要作用[10]。近幾年的研究發現,OST1作為ABA信號通路中的重要成員參與植物生長發育的調控。比如OST1通過對轉錄因子b-ZIP的調控而啟動種子成熟和休眠中相關基因的表達來影響植物生長發育[37-40]。Wang等[9]在擬南芥snrk2.2/2.3/2.6突變體中表達SnRK2.6而恢復FLC的表達,而ABFs同樣促進FLC的表達。Wang等[9]認為OST1通過對b-ZIP的調控來促進下游FLC的表達,以此參與ABA對開花周期的調控過程。

Zheng等[8]對擬南芥OST1的研究發現OST1具有調控植物生長和種子生成等過程中碳源供應的功能。對擬南芥snrk2.6突變體研究發現OST1基因的失活導致擬南芥種子中油料的合成下降7%~25%,種子干重的下降幅度大于24%[8]。而對過表達OST1擬南芥植株的研究發現,生長22 d的過表達植株比野生型植株葉中可溶性糖的含量增加34.7%。OST1可能的作用機理:OST1在葉的維管組織中表達,通過調控蔗糖-6-磷酸合酶的活性來調控蔗糖代謝,進而調控光合作用和碳的固定[8]。固定的碳源可以用于種子中不飽和脂肪酸等的合成,進而提高種子干重。Zheng等[8]的研究還發現,在種子形成和幼苗生長中OST1增強ABA的敏感性,由此得出OST1在植物生長發育中的重要作用。endprint

3 展望

目前對于OST1結構的研究已經相對全面,對其功能上的研究也頗有進展。從最初的只對干旱脅迫應答的研究,到目前的對低光照、O3和高濃度CO2等逆境應答的研究中,均反映出OST1在脅迫應答中的重要作用。PYR/PYL/RCAR及PP2Cs對于OST1的調控以及OST1對下游離子通道及轉錄因子等的調控揭示了其在逆境應答及調控植物生長發育中的分子調節機制。但OST1的調控網絡非常復雜,其調控機制以及其是否與脅迫應答中的其他蛋白激酶相互影響還有待進一步研究。

參考文獻:

[1] GMEZ-CADENAS A, VERHEY S D, HOLAPPA L D, et al. An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers[J]. Proc Natl Acad Sci USA, 1999,96(4):1767-1772.

[2] GOSTI F,BEAUDOIN N,SERIZET C,et al.ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling[J]. Plant Cell, 1999,11(10):1897-1910.

[3] BOUDSOCQ M,BARBIER-BRYGOO H,LAURIERE C. Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana[J].J Biol Chem, 2004,279(40):41758-41766.

[4] KOBAYASHI Y, YAMAMOTO S, MINAMI H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004,16(5):1163-1177.

[5] BELIN C, DE FRANCO P O, BOURBOUSSE C, et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells[J]. Plant Physiol, 2006,141(4):1316-1327.

[6] MUSTILLI A C, MERLOT S, VAVASSEUR A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell, 2002,14(12):3089-3099.

[7] YOSHIDA R, UMEZAWA T, MIZOGUCHI T, et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis[J]. J Biol Chem, 2006,281(8):5310-5318.

[8] ZHENG Z, XU X, CROSLEY R A, et al. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis[J]. Plant Physiol, 2010,153(1):99-113.

[9] WANG Y, LI L, YE T, et al. The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis[J]. J Exp Bot,2013,64(2):675-684.

[10] FINKELSTEIN R R, GAMPALA S S L, ROCK C D. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell, 2002,14(Suppl 1):S15-S45.

[11] HETHERINGTON A M. Guard cell signaling[J]. Cell, 2001,107(6):711-714.

[12] HIMMELBACH A,YANG Y,GRILL E. Relay and control of abscisic acid signaling[J].Curr Opin Plant Biol,2003,6(5):470-479.endprint

[13] NEMHAUSER J L, HONG F, CHORY J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses[J]. Cell, 2006,126(3):467-475.

[14] ZHU J K. Regulation of ion homeostasis under salt stress[J]. Curr Opin Plant Bio, 2003,6(5):441-445.

[15] SUN H L, WANG X J, DING W H, et al. Identification of an important site for function of the type 2C protein phosphatase ABI2 in abscisic acid signalling in Arabidopsis[J]. J Exp Bot, 2011,62(15):5713-5725.

[16] RUBIO S, RODRIGUES A, SAEZ A, et al. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid[J]. Plant Physiol, 2009,150(3):1345-1355.

[17] MA Y, SZOSTKIEWICZ I, KORTE A, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009,324(5930):1064-1068.

[18] JOSHI-SAHA A, VALON C, LEUNG J. Abscisic acid signal off the STARting block[J]. Mol Plant, 2011,4(4):562-580.

[19] VLAD F, RUBIO S, RODRIGUES A, et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis[J]. Plant Cell, 2009,21(10):3170-3184.

[20] PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009,324(5930):1068-1071.

[21] NISHIMURA N, SARKESHIK A, NITO K, et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis[J]. Plant J, 2010,61(2):290-299.

[22] FUJII H, CHINNUSAMY V, RODRIGUES A, et al. In vitro reconstitution of an abscisic acid signalling pathway[J]. Nature, 2009,462(7273):660-664.

[23] ACHE P, BAUER H, KOLLIST H, et al. Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements[J]. Plant J, 2010,62(6):1072-1082.

[24] CUTLER S R, RODRIGUEZ P L,FINKELSTEIN R R,et al. Abscisic acid: Emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010,61:651-679.

[25] MERILO E,LAANEMETS K,HU H,et al.PYR/RCAR receptors contribute to ozone-,reduced air humidity-,darkness-, and CO2-induced stomatal regulation[J]. Plant Physiol, 2013, 162(2):1652-1668.

[26] XUE S, HU H, RIES A, et al. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell[J]. EMBO J, 2011,30(8):1645-1658.endprint

[27] VAHISALU T, PUZORJOVA I, BROSCHE M, et al. Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1[J]. Plant J, 2010,62(3):442-453.

[28] SATO A, SATO Y, FUKAO Y, et al. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase[J]. Biochem J, 2009,424(3):439-448.

[29] SIRICHANDRA C, GU D, HU H C, et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase[J]. FEBS Lett, 2009,583(18):2982-2986.

[30] GEIGER D, SCHERZER S, MUMM P, et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair[J]. Proc Natl Acad Sci USA, 2009,106(50):21425-21430.

[31] WANG Y, PAPANATSIOU M, EISENACH C, et al. Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration[J]. Plant Physiol, 2012,160(4):1956-1967.

[32] LAANEMETS K, BRANDT B, LI J, et al. Calcium-dependent and -independent stomatal signaling network and compensatory feedback control of stomatal opening via Ca2+ sensitivity priming[J]. Plant Physiol, 2013,163(2):504-513.

[33] KOLLIST H, JOSSIER M ,LAANEMETS K. Anion channels in plant cells[J]. FEBS Journal, 2011,278(22):4277-4292.

[34] KWAK J M, MORI I C, PEI Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. EMBO J, 2003,22(11):2623-2633.

[35] SIRICHANDRA C, DAVANTURE M, TURK B E, et al. The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover[J]. PLoS One, 2010, 5(11):e13935.

[36] FUJII H, VERSLUES P E , ZHU J K. Identifi cation of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis[J]. Plant Cell, 2007,19(2):485-494.

[37] NAKASHIMA K, FUJITA Y, KANAMORI N, et al. Three Arabidopsis SnRK2 protein kinases,SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3,involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant Cell Physiol, 2009,50(7):1345-1363.

[38] YOSHIDA T, FUJITA Y, SAYAMA H, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. Plant J, 2010,61(4):672-685.endprint

[39] FUJITA Y,NAKASHIMA K,YOSHIDA T,et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant Cell Physiol, 2009,50(12):2123-2132.

[40] FUJITA Y, YOSHIDA T, YAMAGUCHI-SHINOZAKI K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants[J]. Physiol Plant, 2013,147(1):15-27.

[41] NAKASHIMA K, TRAN L S, VAN NGUYEN D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. Plant J, 2007,51(4):617-630.

[42] OOKA H, SATOH K, DOI K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003,10(6):239-247.

[43] HU H, DAI M, YAO J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci USA, 2006,103(35):12987-12992.

[44] VILELA B, MORENO-CORTES A, RABISSI A, et al. The maize OST1 kinase homolog phosphorylates and regulates the maize SNAC1-type transcription factor[J]. PLoS One, 2013, 8(2):e58105.endprint

猜你喜歡
信號轉導植物
Wnt/β-catenin信號轉導通路在瘢痕疙瘩形成中的作用機制研究
植物的防身術
把植物做成藥
益氣活血方對破裂型腰椎間盤突出大鼠p38MAPK 信號轉導通路的影響
將植物穿身上
脊髓背角MCP-1-JAK2/STAT3信號轉導參與大鼠2型糖尿病神經病理性痛的機制研究
植物罷工啦?
植物也瘋狂
益心解毒方對大鼠心肌細胞內活性氧水平及信號轉導通路的影響
從肺腸ERK信號轉導通路的變化探討“肺與大腸相表里”
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合