?

制動工況下液力偶合器流場湍流模型分析與驗證

2016-03-21 12:40柴博森馬文星寇尊權吉林大學機械科學與工程學院長春300吉林省產品質量監督檢驗院長春3003
農業工程學報 2016年3期
關鍵詞:偶合器液力渦旋

柴博森,項 玥,馬文星※,遇 超,寇尊權(.吉林大學機械科學與工程學院,長春 300; .吉林省產品質量監督檢驗院,長春 3003)

?

制動工況下液力偶合器流場湍流模型分析與驗證

柴博森1,項玥2,馬文星1※,遇超1,寇尊權1
(1.吉林大學機械科學與工程學院,長春 130022;2.吉林省產品質量監督檢驗院,長春 130103)

摘要:合理選擇湍流模型是獲取準確和可靠數值模擬結果的關鍵。該文采用3種湍流模型(標準k-ε模型、分離渦模型、大渦模擬模型)仿真制動工況下方形腔液力偶合器流場,提取流速場和渦量場?;诹W訄D像測速(particle image velocimetry,PIV)技術測量液力偶合器制動工況下流場,將數值模擬結果與PIV試驗結果進行對比,以PIV試驗測量結果作為評價基準,分析采用3種湍流模型計算流場結果的差異性,完成湍流模型的適用性分析。結果表明,標準k-ε模型仿真結果與PIV試驗結果誤差較大;采用大渦模擬模型模擬主流區域流場結構分布更加真實,仿真結果能夠較好地解釋主流區域多尺度渦旋運動規律和能量耗散機理;采用分離渦模型能夠更準確地捕捉近壁面和角渦區高梯度流場結構分布。研究結果可為液力偶合器流場精確計算與性能預測提供參考。

關鍵詞:計算機仿真;可視化;模型;液力偶合器;粒子圖像測速;流速場;渦量場;渦旋

柴博森,項玥,馬文星,遇超,寇尊權. 制動工況下液力偶合器流場湍流模型分析與驗證[J]. 農業工程學報,2016,32(3):34-40.doi:10.11975/j.issn.1002-6819.2016.03.006http://www.tcsae.org

Chai Bosen, Xiang Yue, Ma Wenxing, Yu Chao, Kou Zunquan. Analysis and experimental verification of turbulence models in flow simulation for hydrodynamic coupling under braking condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 34-40. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.006 http://www.tcsae.org

Email:chaibs2012@jlu.edu.cn

0 引 言

液力偶合器具有減緩沖擊、隔離扭振、輕載啟動和防護過載的優點,廣泛應用在工程機械、礦山機械、建筑機械和起重運輸機械等領域[1-3]。

研究液力偶合器內部流場結構分布對于其性能改進和結構優化設計具有重要意義。數值模擬與試驗測量是研究液力偶合器內部流場的主要手段[4-7]。在數值模擬方面,計算流體動力學(computational fluid dynamics,CFD)能夠實現液力偶合器流場計算,但是采用不同湍流模型的計算結果差異性較大。正確選擇合理的湍流模型是獲取準確和可靠數值模擬結果的關鍵[8-9]。在試驗測量方面,粒子圖像測速技術(particle image velocimetry,PIV)占據液力偶合器流場測量的主流地位[10-13]。國內外學者在液力偶合器流場計算與試驗測量方面開展了大量研究,H. Huitenga等[14-15]基于CFD研究了滿充液下液力偶合器內部流動規律,給出啟動特性最優的結構參數組合方案。F.Magagnato等[16]分別采用大渦模擬(large eddy simulation,LES)模型和分離渦(detached eddy simulation,DES)模型仿真渦輪內部流場,在相同網格數量下采用DES模型計算結果更加接近試驗結果。褚亞旭等[17]采用大渦模擬仿真355 mm循環圓直徑的液力偶合器流場,與激光多普勒測速(laser doppler velocimetry,LDV)試驗結果對比后證實LES模型可以較準確地模擬牽引工況下液力偶合器流場。柴博森等[18-20]基于PIV技術測量并分析了液力偶合器在多種工況下的內部流場,識別并提取了流場時空演化特征,為驗證液力偶合器內部流場仿真結果提供了大量試驗依據。雖然國內外學者對液力偶合器內部流場進行了大量研究工作,但是對于處在特殊工況條件下工作的液力偶合器流場研究還不夠深入,對于液力偶合器流場仿真湍流模型適應性分析的相關文獻卻鮮見報道。因此,開展液力偶合器流場湍流模型分析與驗證研究具有重要的工程應用意義。

本文采用3種湍流模型仿真制動工況下滿充液液力偶合器流場,將仿真結果與PIV試驗結果進行對比,針對湍流模型的適應性進行分析,以期將為液力偶合器流場精確計算與性能預測提供參考。

1 湍流模型

1.1標準k-ε模型

標準k-ε模型是通過求解湍流動能k方程和湍流耗散率ε方程,以k和ε值來計算湍流黏度,并通過Boussinesq假設獲得雷諾應力的解[21]。標準k-ε模型方程為

式中t為時間,s;ρ為流體密度,kg/m3;k是紊流脈動動能,J;ui為時均速度,m/s;μ為流體黏度,Pa·s;μt為湍流動力黏度,Pa·s;Gk為由層流速度梯度而引起的湍流動能,J;ε 是紊流脈動動能的耗散率;xi和xj為張量表示的指標符號;C1ε,C2ε,σk,σε為模型常數,具體取值為C1ε=1.44,C2ε=1.92,σk=1.0,σε=1.3。

1.2LES模型

大渦模擬(large eddy simulation,LES)將流場中渦旋分為大尺度渦和小尺度渦,通過濾波函數將湍流瞬時運動方程中小尺度渦旋濾去,大尺度渦旋用瞬時運動方程直接計算,而小尺度渦旋對大尺度渦旋的影響則通過在大尺度渦旋運動方程中引入附加應力項來體現,該應力項被稱為亞格子尺度應力[22]。LES模型的控制方程組為

式中ui和uj為張量形式的時均速度(i和j的取值范圍為1、2、3),m/s;xi和xj為張量表示的指標符號;p為壓強,Pa;τij為亞格子尺度應力,帶有上劃線的量為濾波后的場變量。

1.3DES模型

分離渦(detached eddy simulation,DES)模型是將LES和雷諾平均N-S方程(RANS方程)的優點相結合的一種混合模型[23],其主要思想是在近壁面附近求解RANS方程,構建Spalart-Allmaras 湍流模型(SA方程),在其他區域采用大渦模擬計算大尺度渦旋。DES模型克服了高雷諾數下LES模型對網格要求太高的缺點。其中SA渦黏性方程如下

式中v~為渦黏系數;uj為時均速度,m/s;Gv為由流體流動渦黏性引起產生項,J;Yv為由流體流動渦黏性引起的耗散項,J;Cb2,vσ~為模型常數,具體取值Cb2=0.622,vσ~=2/3。

2 流場仿真分析

2.1模型建立

建立循環圓直徑為230 mm的液力偶合器三維模型,其中泵輪葉片數為13,渦輪葉片數為11。提取全流道流動計算域,通過ICEM軟件對全流道模型網格劃分,采用六面體網格,總體網格數為470 944,節點數為521 887,其中泵輪網格為275 392,渦輪網格數為195 552,流道模型及網格模型如圖1所示。

圖1 流道模型及網格模型Fig.1 Flow channel model and mesh model

2.2流場計算

忽略溫度變化和泄漏影響,并作流動周期對稱假設,在制動工況(i=0)下,采用標準k-ε模型、DES模型和LES模型計算滿充液狀態下液力偶合器流場。流動介質為蒸餾水,假設其密度和黏度都是常數,取ρ=998.2 kg/m3和μ=0.001003 Pa·s。泵輪輸入轉速為200 r/min。為了詳細對比分析液力偶合器典型流動區域上3種湍流模型計算結果,截取渦輪流道1/2處徑向切面結果作為分析對象,圖2為不同湍流模型下的流速場,圖3為不同湍流模型下的渦量場。

圖2 不同湍流模型下流速場Fig.2 Velocity field of different turbulent models

圖3 不同湍流模型下渦量場Fig.3 Vorticity field of different turbulent models

3 PIV試驗

3.1試驗測量系統

PIV試驗測量系統主要由機械部分、激光片光系統和圖像采集部分構成,如圖4所示。機械部分主要由天津市林普機電有限公司生產的YS7124 型號三相異步變頻調速電機、上海摩億公司生產的EMT260型號激光轉速測量儀、長春通用機械廠生產的CLZ型號聯軸器以及2CY型號齒輪泵負載裝置組成。激光片光系統由中國西安遠訊光電科技有限公司制造,激光光源型號FIBER-21,可提供最大輸出功率為1.5 W的激光片光,片光厚度約1~2 mm。圖像采集部分主要由中國大恒集團有限公司生產的BM/BB-141GE數字相機及配套采集軟件組成,相機幀頻為30 fps。透明型液力偶合器樣機由大連市騰達機械設備技術公司制造,循環圓直徑為230 mm,泵輪葉片數為13,渦輪葉片數為11。數值模擬計算模型與試驗測量模型在幾何機構上保證一致。

圖4 粒子圖像測速試驗系統Fig.4 Particle image velocimetry test system

3.2圖像采集及試驗結果

以蒸餾水作為液力偶合器內部流動介質,選擇鋁粉作為示蹤粒子均勻投入待測流場,粒子直徑約為10~20 μm。制動工況下在泵輪輸入轉速為200 r/min時采集渦輪徑向流場圖像。由于原始圖像采集試驗是在黑暗的環境下開展的,為了提高原始采集圖像中粒子流動圖像特征參數識別質量,需要經過圖像亮度增強、中值濾波、圖像降噪完成圖像預處理,使得流場中粒子形態及運動軌跡更加易于識別,有利于獲得更好的流動圖譜。經過圖像預處理后的連續2幀粒子圖像如圖5所示。

圖5 連續2幀粒子圖像Fig.5 Two successive frames of particle image

從圖5中可以清晰地看到繞漩渦中心的環流運動,此時渦輪受到來自泵輪流道內高速液流的沖擊,在渦輪的主流區域形成明顯的順時針方向旋轉的大尺度湍流漩渦,大尺度漩渦流動承載著渦輪內流動能量交換的主循環。

實測液力偶合器試驗樣機葉片實際長度為75 mm,基于圖像處理技術提取圖像上葉片的首、末點坐標,單位為像素(pix),如圖6所示,首點坐標為(137.6,106.5),末點坐標為(1111.8,265.9),根據兩點之間距離公式計算圖像上葉片長度S為987.09 pix。將葉片實測長度與圖像測量長度相除,獲得圖像放大率,經圖像標定后1 pix約為0.08 mm。

圖6 圖像標定Fig.6 Image calibration

基于灰度圖像互相關算法識別并提取流場矢量圖[24-25],獲得流速場和渦量場流動圖譜,如圖7所示。從整體上看,流動趨勢呈現為繞主流區域循環流動渦旋中心的大環流。強旋流沖擊葉片和外壁面,導致葉片附近和外壁面處出現脫離主循環流動趨勢的區域循環流動,如圖7a中的高流速區域和低流速區域的流場結構變化。這些區域內的循環流動由多尺度渦旋所構成,如圖7b中的大、小尺度渦旋所示。這些多尺度渦旋在自身旋轉運動的同時,隨著主渦旋運動趨勢向主流區域渦旋中心運動,較大尺度渦旋在旋轉運動過程中逐漸轉變為小尺度渦旋,多尺度渦旋的運動能量最終以熱能形式漸漸耗散,并在渦心處歸于0。

圖7 PIV試驗結果分析Fig.7 Results analysis of particle image velocimetry experiment

4 結果與討論

4.1流速場

為了清晰地體現流場計算結果的差異性,截取液力偶合器單獨流道內二維流場仿真結果,如圖8所示,其中左側圖像為流速場,右側圖像為渦量場。為了保證仿真結果與試驗測量結果對比有效,截取的仿真流場切面與粒子圖像測速試驗中的激光切面位置保持一致。

從定性分析流速場結構分布的角度來看,采用標準k-ε模型和DES模型仿真液力偶合器單獨流道內主流區域流速場結構分布幾乎保持一致,而采用LES模型流速場仿真結果趨于復雜,如圖8所示,但是采用LES模型可以模擬出多尺度渦旋結構,這與圖7a中的PIV試驗流速場測量結果相一致。因此,對于主流區域內多尺度漩渦流場結構仿真LES模型更加趨于真實。采用標準k-ε模型和DES模型都可以仿真出液力偶合器近壁面區域的高梯度流場結構分布,但是采用標準k-ε模型模擬近壁面高流速區域覆蓋的面積更大,流速場結構層次感不夠明顯,這與圖7a中的PIV試驗流速場測量結果不一致,出現局部模擬結果失真,而采用DES模型模擬近壁面高流速區域流場結構分布更加接近于PIV試驗結果,更能夠體現出流速場的高梯度演化規律。由于液力偶合器近壁面區域湍流流動發展并不充分,因此采用LES模型仿真近壁面區域流速場嚴重失真。

圖8 不同湍流模型下單獨流道流速場及渦量場Fig.8 Velocity field and vorticity field of single flow channel by different turbulent models

從定量分析流速場中流速矢量大小的角度來看,對于液力偶合器主流核心區域,采用標準k-ε模型仿真流速值的范圍為0~0.46 m/s,采用DES模型仿真流速值的范圍為0~0.566 m/s,采用LES模型仿真流速值的范圍為0~0.693 m/s;對于近壁面高流速區域,采用標準k-ε模型仿真最大流速值為1.31 m/s,采用DES模型仿真最大流速值為1.62 m/s,采用LES模型仿真最大流速值為1.98 m/s,如圖8所示。根據圖7a中PIV試驗測量結果可知,液力偶合器主流區域PIV試驗測量流速值的范圍約為0~0.7 m/s,PIV試驗測量近壁面高流速區域最大流速值范圍為1.60~1.65 m/s。通過仿真結果與PIV試驗測量結果對比可知,采用DES模型仿真近壁面高流速區域流速大小與PIV試驗結果接近,而采用標準k-ε模型和LES模型仿真結果誤差較大;采用LES模型仿真主流區域流速值范圍趨近于PIV試驗結果,采用DES模型仿真結果誤差較小,而采用標準k-ε模型誤差較大。

4.2渦量場

從定性分析渦量場結構分布的角度來看,采用LES模型仿真主流區域多尺度渦旋結構與PIV試驗結果更加接近,LES模型仿真結果能夠體現出真實而復雜的湍流演化過程,能夠闡明主流區域上多尺度渦旋運動規律和能量耗散機理,如圖8所示。采用DES模型和LES模型可以模擬液力偶合器角渦區域的多尺度渦旋,但是采用DES模型模擬漩渦流場結構更加精細,渦旋結構分布層次感更強,更能夠體現角渦處多梯度下的渦量場分布,這與圖7b中的PIV試驗渦量場測量結果保持一致。對于標準k-ε模型,由于它假定湍流動力黏度為各向同性的標量,因此對于湍流為各向異性的角渦區域強旋流的模擬會出現失真。

從定量分析渦量場中渦量大小的角度來看,對于液力偶合器角渦流動區域,采用標準k-ε模型仿真最大渦量值為243 s-1,采用DES模型仿真最大渦量值為654 s-1,采用LES模型仿真最大渦量值為892 s-1。根據圖7b中PIV試驗測量結果可知,液力偶合器角渦區域PIV試驗測量渦量值的范圍為800~900 s-1。通過仿真結果與PIV試驗測量結果對比可知,采用LES模型對于角渦區域渦量值仿真更加趨于真實,而采用標準k-ε模型和DES模型模擬結果誤差較大。

5 結 論

采用標準k-ε模型、分離渦(detached eddy simulation,DES)模型和大渦模擬(large eddy simulation,LES)模型分別仿真制動工況下方形腔液力偶合器流場,將流速場和渦量場仿真結果與粒子圖像測速(particle image velocimetry,PIV)試驗結果進行對比后發現。

1)采用標準k-ε模型仿真結果失真,流速場和渦量場仿真結果與PIV試驗結果誤差較大。

2)采用LES模型仿真液力偶合器主流區域上多尺度漩渦流場結構更加真實,通過分析流速場和渦量場的結構分布能夠闡明主流區域上多尺度渦旋運動規律和能量耗散機理,但是采用LES模型仿真近壁面流動區域結果失真,對于角渦區域流場仿真結果不夠理想。

3)采用DES模型仿真液力偶合器近壁面和角渦區域高流速流場結構更加真實,采用DES模型能夠準確體現角渦區域高梯度流場結構,但是采用DES模型對于主流區域的仿真結果不夠理想。

[參考文獻]

[1] 初長祥,馬文星. 工程機械液壓與液力傳動系統(液力卷)[M]. 北京:化學工業出版社,2015.

[2] 楊貴華. 液力傳動節能裝置:液力偶合器、液黏調速離合器[M]. 北京:化學工業出版社,2010.

[3] 劉應誠. 液力偶合器實用手冊[M]. 北京:化學工業出版社,2008.

[4] Bai L, Fiebig M, Mitra N K. Numerical analysis of turbulent flow in fluid couplings[J]. Journal of Fluids Engineering, 1997, 119: 569-576.

[5] 張德勝,趙繼云,劉立寶,等. 基于CFD的桃形腔偶合器流場分析及結構優化[J]. 中國礦業大學學報,2010,39(5):687-692. Zhang Desheng, Zhao Jiyun, Liu Libao, et al. Flow field analysis and structure optimization of peach shaped chamber hydrodynamic coupling based on CFD[J] . Journal of China University of Mining & Technology, 2010, 39(5): 687-692. (in Chinese with English abstract)

[6] 柴博森,劉春寶. 基于粒子圖像測速技術的液力偶合器漩渦流動特性研究[J]. 農業工程學報,2013,29(23):86-92. Chai Bosen, Liu Chunbao. Study on vortex flow characteristics of hydrodynamic coupling based on particle image velocimetry technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 86-92. (in Chinese with English abstract)

[7] 吳賢芳,劉厚林,楊洪鑌,等. 基于粒子圖像測速的離心泵葉輪內流動分離測試與分析[J]. 農業工程學報,2014,30(20):51-57. Wu Xianfang, Liu Houlin, Yang Hongbin, et al. Test and analysis on flow separation in centrifugal pump impeller based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 51-57. (in Chinese with English abstract)

[8] 馬文星,何延東,劉春寶. 液力傳動研究現狀分析與展望[J].農業機械學報,2008,39(7):51-55. Ma Wenxing, He Yandong, Liu Chunbao. Situation and prospects of research on hydrodynamic transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 51-55. (in Chinese with English abstract)

[9] 劉春寶,馬文星,朱喜林. 液力變矩器三維瞬態流場計算[J].機械工程學報,2010,46(14):161-166. Liu Chunbao, Ma Wenxing, Zhu Xilin. 3D transient calculation of internal flow field for hydrodynamic torque converter[J]. Chinese Journal of Mechanical Engineering, 2010, 46(14): 161-166. (in Chinese with English abstract)

[10] Westerweel J, Elsinga G E, Adrian R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 409-436.

[11] Adrian R J. Particle Image Velocimetry[M]. Cambridgeshire: Cambridge University Press, 2010.

[12] Adrian R J. Particle imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261-304.

[13] 唐洪武. 現代流動測試技術及應用[M]. 北京:科學出版社,2009.

[14] Huitenga H, Mitra N K. Improving startup behavior of fluid couplings through modification of runner geometry: Part I-fluid flow analysis and proposed improvement[J]. Journal of Fluids Engineering, 2000(4): 683-688.

[15] Huitenga H, Mitra N K. Improving startup behavior of fluid couplings through modification of runner geometry: Part II-modification of runner geometry and its effects on the operation characteristics[J]. Journal of Fluids Engineering, 2000(4): 689-693.

[16] Magagnato F, Pritz B, Gabi M. Calculation of the VKI turbine blade with LES and DES[J]. Journal of Thermal Science, 2007, 16(4): 321-327.

[17] 褚亞旭,劉春寶,馬文星. 液力耦合器三維瞬態流場大渦模擬與特性預測[J]. 農業機械學報,2008,39(10):169-173. Chu Yaxu, Liu Chunbao, Ma Wenxing. Large eddy simulation of the 3D transient flow field in hydrodynamic coupling and characteristics prediction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 169-173. (in Chinese with English abstract)

[18] 柴博森. 液力偶合器內部流動可視化與流速識別方法研究[D]. 長春:吉林大學,2012. Chai Bosen. Study on Visualization of Internal Flow in Hydrodynamic Coupling and Recognition Method of Flow Velocity[D]. Changchun: Jilin University, 2012. (in Chinese with English abstract)

[19] 柴博森,馬文星,盧秀泉,等. 基于粒子跟蹤測速技術的液力偶合器內部流速測定方法[J]. 農業工程學報,2011,27(7):140-145. Chai Bosen, Ma Wenxing, Lu Xiuquan, et al. Internal flow velocimetry of hydrodynamic coupling based on particle tracking velocimetry technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 140-145. (in Chinese with English abstract)

[20] 范麗丹,馬文星,柴博森,等. 液力偶合器氣液兩相流動的數值模擬與粒子圖像測速[J]. 農業工程學報,2011,27(11):66-70. Fan Lidan, Ma Wenxing, Chai Bosen, et al. Numerical simulation and particle image velocimetry for gas-liquid two-phase flow in hydraulic couplings [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 66-70. (in Chinese with English abstract)

[21] 雷林,王智祥,孫鵬,等. 計算流體力學k-ε二方程湍流模型應用研究[J]. 船舶工程,2010,32(3):5-8. Lei Lin, Wang Zhixiang, Sun Peng, et al. Application study on the turbulence models of k-ε quadratic equation on CFD calculation[J]. Ship Engineering, 2010, 32(3): 5-8. (in Chinese with English abstract)

[22] 余國保,周云波. 基于大渦模擬法的液力緩速器內流場仿真分析[J]. 機械工程與自動化,2014,2014(1):52-54. Yu Guobao, Zhou Yunbo. Internal flow field analysis based on large eddy simulation for hydrodynamic retarder[J]. Mechanical Engineering & Automation, 2014, 2014(1): 52-54. (in Chinese with English abstract)

[23] 顧春偉,陳美蘭,李雪松,等. DES模型在壓氣機葉柵中的應用研究[J]. 工程熱物理學報,2008,29(12):2007-2010. Gu Chunwei, Chen Meilan, Li Xuesong, et al. Application of DES model in the compressor cascade flow[J]. Journal of Engineering Thermophysics, 2008, 29(12): 2007-2010. (in Chinese with English abstract)

[24] 柴博森,王玉建,劉春寶,等. 基于粒子圖像測速技術的液力變矩器渦輪內流場測試與分析[J]. 農業工程學報,2015,31(12):92-97. Chai Bosen, Wang Yujian, Liu Chunbao, et al. Test and analysis of internal flow field in turbine of hydrodynamic torque converter based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 92-97. (in Chinese with English abstract)

[25] 柴博森,馬文星,劉春寶. 基于互相關算法的液力偶合器內部流場分析[J]. 農業機械學報,2011,42(12):38-42. Chai Bosen, Ma Wenxing, Liu Chunbao. Analysis of internal flow field in hydrodynamic coupling based on cross-correlation algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 38-42. (in Chinese with English abstract)

Analysis and experimental verification of turbulence models in flow simulation for hydrodynamic coupling under braking condition

Chai Bosen1, Xiang Yue2, Ma Wenxing1※, Yu Chao1, Kou Zunquan1
(1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China; 2. Jilin Province Product Quality Supervision Test Institute, Changchun 130103, China)

Abstract:Hydrodynamic coupling is used for power transmission in heavy duty drives, such as power stations, ship propulsion, band conveyers, mills, and larger transport vehicles. Their hydrodynamic principle enables a low-wear torque to convert from a drive to a load. The flow in a hydrodynamic coupling is one of the most complex problems encountered in engineering fluid mechanics. The external performance of hydrodynamic coupling is determined by its internal distribution of flow field. It is very important to make a deep research on the internal distribution of flow field for the performance improvement and structural optimization in the design of hydrodynamic coupling. Numerical simulation is a main way to study the internal flow field of hydrodynamic coupling. The results of numerical simulation that are calculated by different turbulence models are quite different. In order to obtain accurate and reliable results of numerical simulation, it is a key to choose a reasonable turbulence model. The integrated computer engineering and manufacturing (ICEM) software was used to mesh the whole flow channel model of hydrodynamic coupling by hexahedral grids, and the total mesh number was 470 944 and the number of nodes was 521 887. Numerical simulation of three-dimensional unsteady turbulent flows in hydrodynamic coupling was carried out by numerically solving the Navier-Stokes equations in a rotating coordinate system. In order to analyze the applicability of different turbulence models in the calculation of flow field in hydrodynamic coupling, 3 different turbulence models (standard k-ε model, detached eddy simulation model, large eddy simulation model) were chosen to simulate the internal flow field of square cavity hydrodynamic coupling under braking condition. The quantity and quality of mesh was consistent during the numerical simulation of different turbulence models. The velocity field and vorticity field of radial section in hydrodynamic coupling were simulated and extracted through ANSYS CFX software. In addition, the transparent prototype of hydrodynamic coupling was manufactured and used in the complex flow test experiment, the internal flow field of hydrodynamic coupling under braking condition was tested based on particle image velocimetry (PIV), the characteristics of flow images were extracted by image processing technique, and the velocity field and vorticity field of radial cross-section were calculated by image cross correlation algorithm. Then numerical simulation and PIV experimental results were compared. The PIV test results were used as the evaluation criteria, and the differences of numerical simulation results by 3 kinds of turbulence models were analyzed. Moreover, the applicability of 3 turbulence models was analyzed. The results showed that the simulation results by standard k-ε model were far different from PIV experimental results, the distribution of flow field in main flow region simulated by the large eddy simulation model was much more real than others, the simulation results could be used to explain the law of multi-scale vortex movement and the mechanism of energy dissipation in the main flow region, and the high-gradient flow field distribution of near-wall area and corner area could be captured more accurately by the detached eddy simulation model. The results of analysis will provide a basis for accurate calculation of flow field and performance prediction of hydrodynamic coupling.

Keywords:computer simulation; visualization; models; hydrodynamic coupling; particle image velocimetry; flow velocity field; vorticity field; vortex

通信作者:※馬文星,男(漢族),吉林梨樹人,教授,博士生導師,研究方向為液力傳動與自動變速。長春吉林大學機械科學與工程學院,130022。Email:mawx@jlu.edu.cn

作者簡介:柴博森,男(漢族),吉林長春人,講師,研究方向為液力傳動與自動變速。長春吉林大學機械科學與工程學院,130022。

基金項目:國家自然科學基金資助項目(51405184);吉林大學基本科研業務費青年教師創新項目(450060501267)

收稿日期:2015-08-21

修訂日期:2015-12-10

中圖分類號:TH137.331

文獻標志碼:A

文章編號:1002-6819(2016)-03-0034-07

doi:10.11975/j.issn.1002-6819.2016.03.006

猜你喜歡
偶合器液力渦旋
液力偶合器三維渦識別方法及流場時空演化
基于PM算法的渦旋電磁波引信超分辨測向方法
液力回收透平性能改善的研究
液力扭轉沖擊器配合液力加壓器的鉆井提速技術研究與現場試驗
光渦旋方程解的存在性研究
基于AMEsim 的一種液力偶合器液壓系統仿真軟件
無鍵錐度液壓聯接在大功率高轉速偶合器中的應用
帶式輸送機驅動裝置中不宜使用限矩型液力偶合器
傳動系液力緩速器系統介紹
變截面復雜渦旋型線的加工幾何與力學仿真
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合