?

四元體系LiCl-LiBO2-Li2SO4-H2O在298.15 K時的相平衡

2016-07-04 03:43曹麗娜李瓏張楠郭亞飛鄧天龍天津科技大學化工與材料學院天津市海洋資源與化學重點實驗室天津300457
化工學報 2016年4期
關鍵詞:相平衡化學分析水溶液

曹麗娜,李瓏,張楠,郭亞飛,鄧天龍(天津科技大學化工與材料學院,天津市海洋資源與化學重點實驗室,天津 300457)

?

四元體系LiCl-LiBO2-Li2SO4-H2O在298.15 K時的相平衡

曹麗娜,李瓏,張楠,郭亞飛,鄧天龍
(天津科技大學化工與材料學院,天津市海洋資源與化學重點實驗室,天津 300457)

摘要:采用等溫溶解平衡法開展了四元體系LiCl-LiBO2-Li2SO4-H2O在298.15 K時相平衡實驗研究,測定體系溶解度和平衡溶液的折光率、密度、pH和電導率。根據實驗數據,分別繪制該四元體系的干基圖、水圖以及相對應的物化性質–組成圖。研究結果表明:在該四元體系298.15 K相圖中,有2個無變度共飽點分別為相稱共飽點(Li2SO4·H2O + LiCl·H2O + LiBO2·2H2O)和不相稱共飽點(Li2SO4·H2O + LiBO2·2H2O + LiBO2·8H2O)、5條溶解度曲線和4個單鹽結晶相區(Li2SO4·H2O、LiCl·H2O、LiBO2·8H2O和LiBO2·2H2O),無復鹽和固溶體產生,屬于簡單四元體系水合物Ⅱ型相圖。實驗研究中,發現2種偏硼酸鋰水合礦物存在(LiBO2·8H2O和LiBO2·2H2O),LiCl對Li2SO4的鹽析效應顯著;四元體系平衡溶液物化性質隨著溶液中氯化鋰濃度的變化呈現規律性的變化。

關鍵詞:水鹽體系;相平衡;水溶液;化學分析;硼酸鹽;硫酸鋰;等溫溶解平衡法

2015-07-27 收到初稿,2015-11-11收到修改稿。

聯系人:鄧天龍。第一作者:曹麗娜(1990—),女,碩士研究生。

Received date: 2015-07-27.

Foundation item: supported by the National Natural Science Foundation of China (21276194,41306136,U14076113).

引 言

我國鹽湖資源主要分布在西部四省區,尤其青海和西藏鹽湖富含鋰、硼資源,開發前景廣闊[1-4]。水體中硼主要以硼氧酸鹽形式存在,硼酸鹽的形態隨溶液濃度、pH以及共存離子的不同而不同,如[B(OH)4]?、[B3O3(OH)5]2?、[B3O4(OH)5]2?、[B4O5(OH)4]2?、[B5O6(OH)4]?、[B6O7(OH)6]2?、[B6O9(OH)2]2?、[B4O3(OH)4]2?等硼酸鹽物種[5-7]。水鹽體系相平衡關系作為研究和預測鹽類析出、溶解等相轉化規律的理論,是鹽湖鹵水資源開發的必要工具[8-12]。因此,開展含鋰、硼組成特征的鹵水體系相平衡研究,對于揭示鹽湖鹵水鋰、硼蒸發富集行為與析鹽規律,指導鹽湖鹵水鋰、硼資源開發利用具有重要意義。

宋彭生等[13]和李明等[14]報道了四元體系LiCl-Li2B4O7-Li2SO4-H2O在298.15 K和288.15 K下的相關系,兩體系平衡固相有Li2B4O7·3H2O、Li2SO4·H2O和LiCl·H2O,且LiCl對Li2SO4具有強烈的鹽析作用。本課題組[15-16]研究了Li2SO4-LiBO2-H2O體系在288.15 K時的穩定和介穩相圖,體系平衡固相為Li2SO4·H2O和LiBO2·8H2O,發現在硫酸鋰和偏硼酸鋰共存體系,偏硼酸鋰只有1種水合物存在(LiBO2·8H2O)。在進一步的三元體系LiCl-LiBO2-H2O在288.15、298.15和308.15 K時相平衡研究中[17-18],發現在含氯化鋰三元體系中,偏硼酸鋰有2種水合物共存在(LiBO2·2H2O和LiBO2·8H2O),首次發現LiBO2·2H2O礦物形成。本文進一步深入探究同時含有氯化鋰、硫酸鋰和偏硼酸鋰的四元體系LiCl-LiBO2- Li2SO4-H2O在298.15 K下相平衡,力求揭示氯化鋰、硫酸鋰和偏硼酸鋰共存體系相關系,以期為鹽湖鋰硼資源開發利用提供化工熱力學基礎數據。

1 實 驗

1.1儀器與藥品試劑

主要儀器:HXG-500-12A型恒溫磁力攪拌器(控溫精度±0.1 K,江蘇省金壇市);Orion 3-Star型電導率儀(±0.01 mS·cm-1,美國Thermo Scientific);DMA4500型高精度密度計(±0.01 mg·cm-3,±0.01 K,奧地利Anton Paar);pH7310型精密pH計(±0.001,上海精密科學儀器公司);WYA-2S型數字阿貝折光率儀(±0.0001,上海精密科學儀器公司);K20-cc-NR恒溫循環水?。ā?.1 K,德國Huber);BX51-P研究型偏光顯微鏡(日本Olympus);X射線粉晶衍射儀(MSAL XD-3,北京普析);艾科浦超純水機(AWL-0502-U,重慶)。

主要藥品試劑:Li2SO4·H2O和LiCl(新疆有色金屬研究所)、LiBO2·8H2O(國藥集團化學試劑公司)均為分析純,重結晶備用。實驗過程中藥品重結晶、復體配制及平衡液相分析所用水均為二次去離子水(DDW),去離子水電導率小于1×10-4S·m-1,pH=6.60。

1.2實驗方法

采用等溫溶解平衡法[19]。在一系列的250 cm3的聚四氟乙烯瓶中,從三元子體系共飽點開始加入第三種鹽配制復體[20],如從LiBO2·8H2O和Li2SO4·H2O共飽點開始質量梯度加入LiCl和適量的水,將其置于(298.15±0.1)K的磁力攪拌恒溫水浴槽中攪拌。定期取上層清液進行分析。取樣時需停止攪拌,靜置2 h后,取上層清液進行化學分析,以液相組成不變作為達到平衡的標志。

當達到平衡后,固相用X射線粉晶衍射法和偏光顯微鏡油浸法進行鑒定[19];液相中Cl-和BO-

2測定分別采用汞量法和甘露醇-堿滴定法[21],誤差均≤0.3%;SO42-采用硫酸鋇重量法[21],誤差≤0.05%;液相物化性質測定需在恒溫循環水浴控溫(298.15±0.1)K條件下,采用相應儀器分別進行測定。

2 實驗結果與討論

2.1穩定相平衡研究

該四元體系溶解度數據及干基組成數據見表1。根據表1中干基組成繪制相應的干基圖(圖1)及水圖(圖2)。

圖1 四元體系LiCl-LiBO2-Li2SO4-H2O 298.15 K干基圖Fig. 1 Dry-salt phase diagram of quaternary system(LiCl-LiBO2-Li2SO4-H2O) at 298.15 KLs—Li2SO4·H2O; Lc—LiCl; Lb2—LiBO2·2H2O; Lb8—LiBO2·8H2O

圖2 四元體系298.15 K水圖Fig. 2 Water-phase diagram of quaternary system(LiCl-LiBO2-Li2SO4-H2O) at 298.15 K(2個共飽點C、D,即 LiCl·H2O + LiBO2·8H2O

由圖1可見:①四元體系干基圖上有4個邊界點A、B和C、D,分別就是對應的3個三元子體系LiCl-Li2SO4-H2O(共飽點A,即LiCl·H2O + Li2SO4·H2O)、Li2SO4-LiBO2-H2O(共飽點B,即Li2SO4·H2O + LiBO2·8H2O)和LiCl-LiBO2-H2O(2個共飽點C、D,即 LiCl·H2O + LiBO2·8H2O和LiBO2·8H2O + LiBO2·2H2O);值得一提的是,在三元子體系LiCl-Li2SO4-H2O共飽點A的組成[3次測定結果為:w(LiCl)= 44.54%,w(Li2SO4)= 0.020%],與文獻值[22]吻合;②四元體系有5條單變量溶解度曲線,分別對應為AE、DE、EF、CF、BF;③2個無變度共飽點分別為相稱共飽點E (Li2SO4·H2O + LiCl·H2O + LiBO2·2H2O),其液相組成為w(LiCl)= 44.72%,w(Li2SO4)= 0.04%,w(LiBO2)= 2.68%,不相稱共飽點F(Li2SO4·H2O + LiBO2·2H2O + LiBO2·8H2O),其平衡液相組成為w(LiCl)= 10.49%,w(Li2SO4)=9.84%,w(LiBO2)= 2.10%;④4個單鹽結晶區,分別對應為Li2SO4·H2O、LiCl·H2O、LiBO2·8H2O和LiBO2·2H2O。四元體系由于同時有LiBO2·2H2O、LiBO2·8H2O結晶區,屬簡單四元體系水合物Ⅱ型相圖。由表1和圖1可見,LiCl的溶解度最大,所以LiCl·H2O結晶區面積最??;LiCl對Li2SO4有很強的鹽析作用,導致Li2SO4·H2O相區增大;隨著溶液中LiCl的濃度增大體系出現新固相LiBO2·2H2O。由圖2可見,水含量隨著溶液中Li2SO4干鹽組成含量增加呈現規律性變化。

表2 四元體系LiCl-LiBO2-Li2SO4-H2O 298.15 K物化性質Table 2 Physicochemical properties of system (LiCl-LiBO2-Li2SO4-H2O) at 298.15 K

2.2穩定相平衡物化性質研究

平衡液相的折光率、pH、電導率和密度測定結果見表2。由表2物化性質數據繪制了物化性質–組成圖(圖3)。

由圖3(a)、(b)可見,四元體系中溶液的密度和折光率變化趨勢相近。在4條單變量雙固相共飽和線BF(Li2SO4·H2O+LiBO2·8H2O)、DE(LiCl·H2O+ LiBO2·2H2O)、CF(LiBO2·8H2O + LiBO2·2H2O)和AE(Li2SO4·H2O + LiCl·H2O)上,均呈現隨著溶液中氯化鋰濃度的增加而減小,但在單變量雙固相共飽和線EF(LiBO2·2H2O + Li2SO4·H2O)隨著溶液中氯化鋰濃度的增加先微弱減小再增大。在四元體系2個無變度點F(LiBO2·8H2O + LiBO2·2H2O + Li2SO4·H2O)和E(LiCl·H2O + LiBO2·2H2O + Li2SO4·H2O)時取得極值。由圖3(c)可見,四元體系pH總體上呈現為隨著溶液中氯化鋰濃度增大而減小,在有偏硼酸鋰存在的結晶區域,pH介于9.80~6.18,在與一水氯化鋰共存區域為酸性,pH介于4.56~6.18。由圖3(d)可見,四元體系中溶液的電導率與密度呈現相反的變化趨勢,即隨著溶液中氯化鋰濃度增大,總體上呈現先增大后減小。在四元體系的三元子體系研究中也發現,對于含氯化鋰強電解質溶液,在濃度不大時,電導率隨濃度增大而明顯增大,可能原因是單位體積溶液中導電粒子數增多,但當濃度超過一定濃度時,數據。

(2)四元體系LiCl-LiBO2-Li2SO4-H2O相圖,有2個無變度共飽點、5條單變量溶解度曲線和4個單鹽結晶相區(LiCl·H2O,LiBO2·2H2O,由于離子間相互作用增大,導致導電能力減小大于導電粒子增多而引起的電導率增大,致使電導率隨氯化鋰濃度增大而減小[17-18]。在四元體系的電導率也呈現相近的特點。

圖3 四元體系LiCl-LiBO2-Li2SO4-H2O 298.15 K物化性質與溶液氯化鋰含量Fig. 3 Physicochemical properties versus composition of lithium chloride concentration in quaternary system (LiCl-LiBO2-Li2SO4-H2O) at 298.15 K

3 結 論

(1)采用等溫溶解平衡法對LiCl-LiBO2-Li2SO4-H2O在298.15 K時的穩定相平衡進行了研究,測得了相應的溶解度數據及平衡液相物化性質LiBO2·8H2O和Li2SO4·H2O),屬于水合物Ⅱ型相圖,無復鹽和固溶體生成。

(3)該四元體系的物化性質隨著氯化鋰濃度變化呈現規律性變化。折光率和密度隨著氯化鋰濃度的變化規律一致。電導率和pH隨著氯化鋰濃度在不同的共飽線上呈現不同的變化規律。

References

[1] 鄭綿平. 中國鹽湖資源與生態環境 [J]. 地質學報,2010,84(11): 1613-1621.ZHENG M P. Salt lake resources and eco-environment in China [J]. Acta Geol. Sin.-Engl.,2010,84(11): 1613-1621.

[2] 程芳琴,成懷剛,崔香梅. 中國鹽湖資源的開發歷程及現狀 [J]. 無機鹽工業,2011,43(7): 1-12. DOI: 10.3969/j.issn.1006-4990. 2011.07.001. CHENG F Q,CHENG H G,CUI X M. Development course and status quo of China’s salt lake resources [J]. J. Inorg. Salt Ind.,2011,43(7): 1-12. DOI: 10.3969/j.issn.1006-4990.2011.07.001.

[3] 王偉,王剛,趙元藝. 西藏鹽湖硼礦資源特點與開發利用 [J]. 鹽業化工,2013,42(8): 9-13. WANG W,WANG G,ZHAO Y Y. The characteristics and utilization of boron resource in Tibet salt lake [J]. J. Salt. Chem. Ind.,2013,42(8): 9-13.

[4] DENG T L. Phase equilibrium for the aqueous system containing lithium,sodium,potassium,chloride,and borate ions at 298.15 K [J]. J. Chem. Eng. Data,2004,49(5): 1295-1299. DOI: 10.1021/je049975f.

[5] 張愛蕓,姚燕. 硼酸鹽水溶液中硼物種的存在形式及影響因素 [J].鹽湖研究,2007,15(2): 50-55. DOI: 10.3969/j.issn.1008-858X. 2007.02.011. ZHANG A Y,YAO Y. The existence form and influence factors of boron species in boric acid solution [J]. J. Salt Lake Res.,2007,15(2): 50-55. DOI: 10.3969/j.issn.1008-858X.2007.02.011.

[6] 張林進,葉旭初. 水溶液中硼氧配陰離子的存在形式及影響因素[J]. 無機鹽工業,2008,40(2): 4-9. DOI: 10.3969/j.issn.1006-4990. 2008.02.002. ZHANG L J,YE X C. The existing forms and influencing factors of the poly borate anions in aqueous solution [J]. Norg. Chem. Ind.,2008,40(2): 4-9. DOI: 10.3969/j.issn.1006-4990.2008.02.002.

[7] 周永全,房艷,房春暉. 硼酸鹽水溶液結構及研究方法 [J]. 鹽湖研究,2010,18(2): 65-73. ZHOU Y Q,FANG Y,FANG C H. Boric acid salt solution structure and research methods [J]. J. Salt Lake Res.,2010,18(2): 65-73.

[8] GUO Y F,LIU Y H,WANG Q,et al. Phase equilibria and phase diagrams for the aqueous ternary system (Na2SO4-Li2SO4-H2O) at (288 and 308) K [J]. J. Chem. Eng. Data,2013,58(10): 2763-2767. DOI: 10.1021/je4004146.

[9] DENG T L,WANG S Q,SUN B. Metastable phase equilibrium in the aqueous quaternary system (KCl-K2SO4-K2B4O7-H2O) at 308.15 K [J]. J. Chem. Eng. Data,2007,53(2): 411-414. DOI: 10.1021/je700472p.

[10] DENG T L,LI D C,WANG S Q. Metastable phase equilibrium in the aqueous ternary system (KCl-CaCl2-H2O) at (288.15 and 308.15) K [J]. J. Chem. Eng. Data,2008,53(4): 1007-1011. DOI: 10.1021/je700753g.

[11] DENG T L,LI D. Solid-liquid metastable equilibria in the quaternary system (NaCl-KCl-CaCl2-H2O) at 288.15 K [J]. Fluid Phase Equilib.,2008,269(1): 98-103. DOI: 10.1016/j.fluid.2008.05.005.

[12] WANG S Q,DENG T L. (Solid+ liquid) isothermal evaporation phase equilibria in the aqueous ternary system (Li2SO4-MgSO4-H2O) at T= 308.15 K [J]. J. Chem. Thermodyn.,2008,40(6): 1007-1011. DOI: 10.1016/j.jct.2008.02.008.

[13] 宋彭生,杜憲惠. 四元體系Li2B4O7-Li2SO4-LiCl-H2O 25℃相關系和溶液物化性質的研究 [J]. 科學通報,1986,(3): 209-213. SONG P S,DU X H. Phase relation and solution research of physical and chemical properties of the quaternary system of Li2B4O7-Li2SO4-LiCl-H2O at 298.15 K [J]. Chin. Sci. Bull.,1986,(3): 209-213.

[14] 李明,桑世華,張振雷,等. 四硼酸鋰-硫酸鋰-氯化鋰-水四元體系288 K相平衡研究 [J]. 無機工業,2009,41(5): 21-24. DOI:10.3969/j.issn.1006-4990.2009.05.007. LI M,SANG S H,ZHANG Z L,et al. Study on phase equilibrium of the quaternary system Li2B4O7-Li2SO4-LiCl-H2O at 288.15 K [J]. Norg. Chem. Ind.,2009,41(5): 21-24. DOI:10.3969/j.issn.1006-4990. 2009.05.007.

[15] GAO D L,WANG S Q,GUO Y F,et al. Solid-liquid phase equilibria in the aqueous ternary system Li2SO4-LiBO2-H2O at T = 288.15 and 298.15 K [J]. Fluid Phase Equilib.,2014,371: 121-124. DOI:10.1016/j.fluid.2014.03.019.

[16] 趙美玲,王士強,韓徐年,等. 三元體系Li2SO4-LiBO2-H2O 在288.15 K時介穩相平衡 [J]. 化學工程,2015,43(3): 37-45. DOI: 10.3969/j.issn.1005-9954.2015.03.010. ZHAO M L,WANG S Q,HQN X N,et al. Metastable equilibria of the ternary system Li2SO4-LiBO2-H2O at 288.15 K [J]. Chem. Eng.,2015,43(3): 37-45. DOI: 10.3969/j.issn.1005-9954.2015.03.010.

[17] GAO D L,GUO Y F,YU X P,et al. Solubilities,densities and refractive indices of the salt-water system (LiCl-LiBO2-H2O) at 288.15 and 298.15 K and 0.1 MPa [J]. J. Chem. Eng. Data,2015,60(9): 2594-2599. DOI: 10.1021/acs.jced.5b00121.

[18] ZHANG N,GUO Y F,LIU Y H,et al. Thermodynamic phase equilibria of the aqueous ternary system (LiCl-LiBO2-H2O) at 308 K: experimental data and predictions using the Pitzer model [J]. J. Chem. Eng. Jpn.,(in press).

[19] 鄧天龍,周桓,陳俠. 水鹽體系相圖及應用[M]. 北京: 化學工業出版社,2013. DENG T L,ZHOU H,CHEN X. Salt-Water System Phase Diagrams and Applications[M]. Beijing: Chemical Industry Press,2013.

[20] MENG L Z,LI D,GUO Y F,et al. Stable phase equilibrium of the aqueous quaternary system (MgCl2-MgSO4-MgB6O10-H2O) at 323.15 K [J]. J. Chem. Eng. Data,2011,56(12): 5060-5065. DOI: 10.1021/je2006852.

[21] 中國科學院青海鹽湖研究所分析室. 鹽湖鹵水分析[M]. 2版. 北京:科學出版社,1988. Qinghai Institute of Salt Lakes of CAS. Analytical Methods of Brines and Salts[M]. 2nd ed. Beijing: Science Press,1988.

[22] SILCOCK H. Solubilities of Inorganic and Organic Compounds [M]. New York: Pergamon Press,1979.

Phase equilibria of quaternary system LiCl-LiBO2-Li2SO4-H2O at 298.15 K

CAO Lina,LI Long,ZHANG Nan,GUO Yafei,DENG Tianlong
(College of Chemical Engineering and Material Sciences,Tianjin University of Science and Technology,Tianjin Key Laboratory of Marine Resources and Chemistry,Tianjin 300457,China)

Abstract:The phase equilibria and phase diagram of the quaternary system (LiCl-LiBO2-Li2SO4-H2O) at 298.15 K,which was not reported in the literature,were studied with the isothermal dissolution equilibrium method. Solubilities and physicochemical properties including refractive index (nD),density (ρ),pH and conductivity (κ) in the quaternary system were determined experimentally. According to the experimental data,the dry-salt diagram,water-phase diagram and the diagram of physicochemical properties versus lithium chloride concentration in the quaternary system were plotted,respectively. The experimental results showed that there were two invariant points named as invariant co-saturated point (Li2SO4·H2O + LiCl·H2O + LiBO2·2H2O) and incommensurate co-saturated point (Li2SO4·H2O + LiBO2·2H2O + LiBO2·8H2O),five univariant curves and four crystalline regions corresponding to Li2SO4·H2O,LiCl·H2O,LiBO2·8H2O and LiBO2·2H2O in the quaternary system at 298.15 K. Neither double salt nor solid solution was formed,and the phase diagram of this system at 298.15 K belonged to hydrate-type Ⅱ. The two kinds of hydrate lithium-containing minerals (LiBO2·2H2O and LiBO2·8H2O) were found for the first time. The salting-out effect of LiCl in the solution was obvious for the composition of Li2SO4. The diagram of physicochemical properties including nD,ρ,pH and κ versus composition shows that the physicochemical properties were changed regularly with increasing lithium chloride concentration in the solution and the singular values were achieved at the invariant points of the quaternary system at 298.15 K.

Key words:salt-water system; phase equilibria; aqueous solution; chemical analysis; borate; lithium sulfate; isothermal dissolution equilibrium method

DOI:10.11949/j.issn.0438-1157.20151204

中圖分類號:O 642.4

文獻標志碼:A

文章編號:0438—1157(2016)04—1117—06

基金項目:國家自然科學基金項目(21276194,41306136,U14076113)。

Corresponding author:Prof. DENG Tianlong,tldeng@tust.edu.cn

猜你喜歡
相平衡化學分析水溶液
天然氣水合物相平衡模型研究
氯化鈉水溶液結構的研究
判斷電解質水溶液酸堿性的簡單模型
SVOC氣相-顆粒相平衡時間研究
思維導圖在相平衡教學過程的應用
DMAC水溶液乙酸吸附分離過程
關于《物理化學》課堂教學的思考
有色金屬中稀土元素的化學分析及應用
有色金屬中稀土元素的化學分析及應用
添加酸對HPP-SO2水溶液熱解吸的影響
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合