?

一個水稻顯性斑點葉突變體的鑒定和基因精細定位

2016-09-18 06:44施勇烽王惠梅張曉波宋莉欣吳建利
作物學報 2016年7期
關鍵詞:葉枯病活性氧突變體

郭 丹 施勇烽 王惠梅 張曉波 宋莉欣 徐 霞 賀 彥 郭 梁 吳建利

中國水稻研究所 / 水稻生物學國家重點實驗室 / 國家水稻改良中心, 浙江杭州310006

一個水稻顯性斑點葉突變體的鑒定和基因精細定位

郭丹施勇烽王惠梅張曉波宋莉欣徐霞賀彥郭梁吳建利*

中國水稻研究所 / 水稻生物學國家重點實驗室 / 國家水稻改良中心, 浙江杭州310006

通過EMS (ethane methyl sulfonate)誘變秈稻品種IR64獲得一個穩定遺傳的顯性斑點葉突變體HM113。在大田環境下, 突變體褐色斑點在播種后3周的葉片上產生, 始穗期擴散至葉鞘。與野生型IR64相比, 突變體HM113的株高、結實率和千粒重等農藝性狀顯著下降, 光合色素含量、凈光合速率和可溶性蛋白含量顯著降低。同時突變體CAT和SOD活性顯著降低, POD活性顯著上升。組織化學分析顯示, 突變體葉片中積累了大量活性氧, 且斑點處細胞壞死。白葉枯病菌接種結果顯示, HM113是一個廣譜抗性增強的突變體。實時定量PCR分析表明HM113中防衛反應基因AOS2、PAL4、PR10和PR1b等的表達大幅上調。遺傳分析表明, 突變體褐斑性狀受單顯性基因(SplHM113)控制, 利用圖位克隆法將該基因定位在第7染色體長臂RM21605和RM418之間, 物理距離約為308 kb。本研究為褐斑基因SplHM113的克隆與功能分析奠定了基礎。

水稻; 斑點葉突變體; 白葉枯病抗性; 活性氧; 基因定位

自然界條件下, 為抵御病原菌的侵害, 植物形成了一系列復雜的信號傳導途徑和抗性機制。其中最有效的是過敏性反應(hypersensitive response, HR),HR是一種程序性細胞死亡(programmed cell death,PCD)[1-2]。在HR過程中, 細胞產生大量活性氧 (reactive oxygen species, ROS), 能引起膜功能紊亂, 致使植物遭受病原菌感染部位細胞死亡以阻止病原菌的進一步侵染。HR通常會激活病程相關蛋白(pathogenesis-related, PR)的表達, 并使植物產生系統獲得性抗性(systemic acquired resistance, SAR)[1,3]。

許多斑點葉突變體在無病原菌侵染條件下產生與HR相似的表型, 并伴隨斑點部位細胞壞死, 因此這類突變體又被稱為類病斑或類病變突變體。許多已經鑒定的斑點葉突變體比其野生型對病原菌的抗性有不同程度的提高, 如玉米突變體LES22對白粉病菌的抗性提高[4], 擬南芥突變體hlm1對毒性丁香假單胞桿菌番茄致病變種的抗性增強[5], 水稻斑點葉突變體HM47[6]、HM143[7]和hm197[8]對水稻白葉枯病具有廣譜抗性, blm對稻瘟病具有較強的抗性[9],spl17和Spl26對白葉枯病和稻瘟病均有較強的抗性[10]。因此可利用斑點葉突變體研究植物的過敏性反應以及針對不同病原菌的抗性機制。

目前, 已對水稻中的80多份斑點葉突變體完成了遺傳鑒定, 斑點性狀主要受單隱性基因控制, 少數受單顯性基因或雙基因控制。已經克隆的19個斑點葉基因, 則分別編碼不同的酶/蛋白質, 參與植物體內不同的代謝途徑, 如基因sl編碼細胞色素P450單加氧酶, 可催化色胺生成5’-羥色胺[11]; OsLSD1編碼鋅指蛋白, 調控植物的程序性細胞死亡和愈傷組織分化[12]; RLIN1[13]和FGL[14]分別編碼糞卟啉原III氧化酶與原葉綠素酸酯氧化還原酶B, 參與四吡咯代謝以及葉綠素的合成; Spl7編碼一個熱激轉錄因子, 在高溫脅迫下誘導產生熱激反應并形成類病斑[15];OsSSI2編碼脂肪酸脫氫酶, 參與合成脂肪酸衍生物[16];SPL28編碼網格受體蛋白的復合亞基μ1, 參與高爾基體上有關物質的運輸[17]; LMR編碼AAA-ATP酶,參與植物的過敏性反應[18]。斑點葉基因編碼的產物種類眾多, 廣泛參與各種生理生化代謝途徑, 預示著斑點形成的機制十分復雜, 加強對斑點突變體的發掘鑒定與功能的深入研究, 有利于闡明斑點葉介導的抗性分子機制, 也有助于探討該類抗性在作物育種中的應用。

我們從EMS誘變秈稻IR64的突變體庫篩選到一個褐色斑點葉突變體HM113。本文針對突變體的農藝性狀、生理生化、白葉枯病抗性、基因定位等進行了研究。明確了HM113是一個廣譜增強的白葉枯病抗性突變體, 該斑點葉性狀受一對新的顯性基因控制。本研究為該基因的克隆、功能分析和白葉枯病抗性機制的闡明奠定了基礎。

1 材料與方法

1.1供試材料

秈稻品種IR64經EMS誘變獲得的斑點葉突變體HM113, 經過連續多代自交, 斑點葉性狀在海南陵水和浙江富陽均能穩定遺傳。2014年, 在成熟期隨機選取突變體和野生型各3株分別考查株高、穗長、有效穗數、每穗實粒數、結實率和千粒重, 取其平均值。

1.2遮光處理

參照Feng等[6]的方法, 在分蘗盛期用寬約1 cm錫箔紙對突變體HM113劍葉的無斑部位和野生型IR64相同部位葉片遮光處理, 跟蹤觀察斑點的發生情況, 同時觀察去除錫箔紙7 d后斑點的變化。

1.3生理指標測定

分蘗盛期, 取突變體和野生型相同部位葉片,參照Arnon[19]和Wellburn[20]的方法測定葉綠素含量和類胡蘿卜素含量; 趙世杰等[21]的方法測定可溶性蛋白含量(soluble protein content, SP)和丙二醛含量(malonaldehyde content, MDA)。在抽穗期, 晴天上午10:00—11:00利用便攜式光合測定儀Li-6400(LI-COR, USA)測定突變體和野生型劍葉光合作用,按Huang等[22]的方法設定光合參數。對每個生理指標重復測定3次, 取平均值。

1.4組織化學分析

取突變體和野生型分蘗盛期劍葉, 采用苔盼藍染色法檢測細胞死亡狀況[23], 利用二氨基聯苯(diamino benzidine, DAB)和氮藍四唑(nitroblue tetrazolium, NBT)染色法[17]分別檢測過氧化氫(H2O2)和超氧陰離子()沉積情況, 將以上脫色后的葉片用70%的甘油封片并照相記錄。

1.5活性氧清除相關酶活性測定

參照趙世杰等[21]的方法分別測定突變體HM113和野生型IR64在分蘗盛期劍葉中的過氧化氫酶(catalase, CAT)、超氧化物歧化酶(superoxide dismutase, SOD)、過氧化物酶(peroxidase, POD)和抗壞血酸氧化酶(ascorbate peroxidase, APX)的活性。重復測定3次, 取平均值。

1.6 白葉枯病抗性鑒定

選取國內外8個水稻白葉枯病菌(Xanthomonas oryzae pv. oryzae)小種的10個代表菌株, 包括菲律賓菌株PXO71 (Race 4)、PXO112 (Race 5)、PXO339(Race 9a)、PXO347 (Race 9c)和PXO349 (Race 9b)以及中國菌株JS97-2 (I)、HB17 (II)、Zhe173 (IV)、GD1358 (V)和OS-225 (VII), 利用WF-P滅菌培養基在28℃培養箱中活化3~4 d, 再轉移至新的培養基中繼續培養3~4 d后, 用滅菌水稀釋配制成OD600約為1.0的懸浮液。在分蘗盛期, 采用剪葉法[24]對感病對照IR24、野生型IR64和突變體HM113的全展葉接種, 以滅菌的手術剪每蘸取一次菌液僅剪去一片葉的約2 cm葉尖, 每個小種接種3個單株, 每株3~4片葉。21 d后測量病斑的長度, 取10片葉病斑長度的平均值。

為明確突變體對白葉枯病的抗性增強是否與斑點相關, 選用突變體和野生型對白葉枯病抗性存在顯著差異的菌株PXO349, 接種HM113/IR64回交F2群體的184個有斑植株和65個無斑單株, 21 d后測量病斑的長度。

1.7抗病相關基因表達分析

分蘗盛期, 參照TRIzol Reagent試劑盒(Aidlab,China)的方法分別提取HM113和IR64的劍葉總RNA, 利用ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo, Japan)試劑盒將RNA反轉錄為cDNA。采用SYBR Premix Ex Taq II (Tli RNaseH Plus)試劑盒(TaKaRa, Japan)和Thermal Cycle Dice Real Time System (TaKaRa, Japan)進行實時定量PCR分析。以水稻Actin1為內參基因, 相關基因的特異性引物序列見表1。

表1 實時定量PCR引物Table 1 Primers used in Real-time PCR

1.8突變體HM113的遺傳分析與基因定位

以HM113為母本, 分別與4個正常葉色品種02428、Moroberekan、Nekken 1和CPSLO17配制雜交組合, 觀察F1表型; 并利用來源于HM113/Mor oberekan、HM113/Nekken 1和HM113/CPSLO17的F2群體進行性狀分離分析。此外, 利用來源于HM113/CPSLO17的2個F3分離株系進行遺傳驗證。

采用簡易法[25]提取親本及定位群體(HM113/ 02428, HM113/Moroberekan, HM113/CPSLO17)中無斑F2單株的DNA。用分布于12條染色體上的1014對SSR引物進行親本間的多態性標記篩選, 將篩選到的多態性標記用于HM113/02428 F2群體的106個無斑單株的基因型鑒定, 初步確定與斑點葉基因連鎖的標記。根據初定位的結果, 進一步利用HM113/Moroberekan和HM113/CPSLO17兩個群體的698個F2無斑單株精細定位。其中SSR引物序列來源于Gramene數據庫(http://www.gramene.org/),引物由上海生工生物工程有限公司合成。參照Shi等[26]的PCR和產物檢測方法。

2 結果與分析

2.1突變體HM113的表型

在杭州大田自然條件下, 播種后約20 d, 突變體老葉上開始出現模糊的褐色斑點, 而后斑點變大顏色變深, 逐漸連接成線狀, 抽穗期擴散至整個葉片(圖1-A, B, C), 始穗期葉鞘處也有褐色斑點產生(圖1-D)。除始穗期比野生型晚約9 d外, 突變體的有效穗數顯著低于野生型, 株高、穗長、每穗實粒數、結實率和千粒重則極顯著低于野生型(表2)。而突變體株高變矮, 是由第五節間顯著縮短所致(圖2)。

圖1 突變體HM113的表型Fig. 1 Phenotype of the mutant HM113A: 苗期葉片; B: 分蘗期葉片; C: 抽穗期葉片; D: 抽穗期葉鞘。A: leaves at seedling stage; B: leaves at tillering stage; C: leaves at heading stage; D: sheaths at heading stage.

圖2 野生型IR64和突變體HM113的節間長度Fig. 2 Length of internode of the wild type IR64 and the mutant HM113*顯著差異(P≤0.05)。*Significantly different at P≤0.05.

圖3 光照對突變體HM113產生斑點的影響Fig. 3 Effect of sun-light on lesion initiation in HM113A: IR64; B: HM113; C: HM113無斑葉遮光處理7 d后; D: HM113遮光部位恢復光照7 d后。黑框內為遮光部位。A: IR64; B: HM113; C: non-spotted leaf of HM113 shaded for seven days; D: HM113 shaded leaf re-lit for seven days. Rectangular box indicates the shaded area.

2.2突變體HM113的褐斑產生受光照誘導

在大田條件下為明確光照對斑點產生的影響,對突變體和野生型葉片遮光處理。7 d后突變體遮光部位沒有產生褐色斑點, 未遮光部位產生褐色斑點(圖3-C); 去除錫箔紙后7 d后, 突變體原來遮光部位開始產生褐色斑點(圖3-D)。表明突變體葉片褐斑的產生受自然光的誘導。

表2 野生型IR64和突變體HM113的主要農藝性狀表現Table 2 Performance of agronomic traits between IR64 and HM113

2.3 突變體HM113的生理指標變化

與野生型IR64相比, 突變體HM113的葉綠素a含量、葉綠素b含量、葉綠素a/b比值和類胡蘿卜素含量均極顯著降低(表3), 說明突變體斑點的產生可能影響了光合色素的代謝。且突變體的凈光合速率(Pn)、氣孔導度(Gs)、胞間CO2濃度(Ci)和蒸騰速率(Tr)極顯著降低(圖4-A, B, C, D), 可能與單位面積內斑點的產生減少了葉片的有效光合面積有關。HM113中SP含量比IR64極顯著降低, MDA含量有所上升但并無顯著差異(圖4-E, F), 表明分蘗盛期斑點的產生并未引起突變體的早衰。

表3 野生型IR64和突變體HM113的光合色素含量Table 3 Photosynthetic pigment contents of IR64 and HM113

2.4突變體HM113的細胞壞死與ROS沉積

為檢測突變體葉片斑點處的細胞是否已經死亡,利用苔盼藍染色法進行鑒定。結果顯示野生型葉片呈均一的藍色(圖5-B), 突變體葉片斑點處呈深藍色(圖5-D), 表明突變體斑點處細胞已經死亡?;钚匝酰≧OS)的大量累積對細胞具有明顯的毒害作用, DAB和NBT能夠分別與植物中的H2O2和反應, 以檢測組織中是否有ROS的累積。DAB染色后, 僅突變體葉片上沉積了大量的紅褐色物質(圖5-H); NBT染色后, 野生型葉片有少數藍色染斑(圖5-J), 而突變體葉片產生了大量藍色染斑(圖5-L), 說明活性氧H2O2和的積累導致了突變體葉片的死亡。

圖4 野生型IR64和突變體HM113的生理指標Fig. 4 Physiological parameters of wild type IR64 and the mutant HM113A: 凈光合速率(Pn); B: 氣孔導度(Gs); C: 胞間CO2濃度(Ci); D: 蒸騰速率(Tr); E: 可溶性蛋白(SP)含量; F: 丙二醛(MDA)含量。**極顯著差異(P≤0.01)。A: net photosynthetic rate (Pn); B: stomatal conductance (Gs); C: intercellular CO2concentration (Ci); D: transpiration rate (Tr); E: soluble protein content (SP); F: malonaldehyde content (MDA).**Significantly different at P≤0.01.

2.5突變體HM113的活性氧清除酶活性變化

正常植物體內活性氧(ROS)的產生與清除處于動態平衡中, 若該平衡遭到破壞, 就會引起ROS的大量累積并對細胞造成氧脅迫, 引起細胞損傷甚至死亡。為探究突變體中積累大量ROS的機制, 測定了分蘗盛期葉片中抗氧化系統重要酶的活性。與野生型相比, 突變體的CAT活性極顯著降低, SOD活性顯著降低, POD活性極顯著上升, 而APX活性沒有顯著變化(圖6), 以上結果表明突變體的活性氧清除系統遭到破壞。

圖5 突變體HM113的組織化學染色Fig. 5 Histochemical analysis of the mutant HM113A: IR64苔盼藍染色前; B: IR64苔盼藍染色后; C: HM113苔盼藍染色前; D: HM113苔盼藍染色后; E: IR64 DAB染色前; F: IR64 DAB染色后; G: HM113 DAB染色前; H: HM113 DAB染色后; I: IR64 NBT染色前; J: IR64 NBT染色后; K: HM113 NBT染色前; L: HM113 NBT染色后。A: IR64 before trypan blue staining; B: IR64 after trypan blue staining; C: HM113 before trypan blue staining; D: HM113 after trypan blue staining; E: IR64 before DAB staining; F: IR64 after DAB staining; G: HM113 before DAB staining; H: HM113 after DAB staining; I: IR64 before NBT staining; J: IR64 after NBT staining; K: HM113 before NBT staining; L: HM113 after NBT staining.

圖6 突變體HM113活性氧清除酶活性變化Fig. 6 Activities of reactive-oxygen-scavenging enzymes in the mutant HM113A: 過氧化氫酶(CAT)活性; B: 超氧化物歧化酶(SOD)活性; C: 過氧化物酶(POD)活性; D: 抗壞血酸氧化酶(APX)活性。*顯著差異(P≤0.05);**極顯著差異(P≤0.01)。A: CAT activity; B: SOD activity; C: POD activity; D: APX activity.*Significantly different at P ≤ 0.05;**Significantly different at P ≤ 0.01.

2.6突變體HM113對白葉枯病菌的抗性增強

與野生型相比, 突變體對菌株HB17、PXO71、JS97-2、PXO112、Zhe173、PXO339、PXO347和PXO349抗性極顯著增強; 對菌株GD1358和OS-225的抗性則無明顯差異(圖7-A)。選用菌株PXO349接種HM113/IR64回交F2群體, 其中184個有斑植株的病斑平均長度為6.96 cm ± 2.04 cm, 極顯著低于65個無斑植株的13.58 cm ± 1.07 cm (圖7-B)。說明突變體對白葉枯病菌的抗性普遍增強, 且抗性增強與褐斑的存在高度相關。

2.7突變體HM113的防衛反應基因表達增強

為了解突變體對白葉枯病的抗性機制, 利用實時定量PCR檢測突變體和野生型中6個防衛反應基因的表達, 這些基因分別編碼丙二烯氧化物合酶2(alleneoxide synthase 2, AOS2)、脂氧合酶(lipoxygenase, LOX)、苯丙氨酸解氨酶(phenylalanin ammonia lyase, PAL4)、病程相關蛋白(pathogenesisrelated protein) PR10和PR1b以及病程相關因子NPR1的同源物(NPR1 homolog, NH1)。結果表明, 突變體中這6個基因的表達水平均比野生型極顯著上升(圖8), 說明褐斑的產生激活了突變體相關防衛反應基因的表達。

2.8突變體HM113的褐斑表型受單顯性基因控制

來源于HM113/02428、HM113/Moroberekan、HM113/Nekken 1和HM113/CPSLO17組合的所有F1植株均呈現褐色斑點表型, 但褐斑的數量較突變體少, 說明突變體的褐斑性狀受顯性基因控制, 但存在劑量效應(也有學者稱為半顯性)。HM113/Morob erekan、HM113/Nekken 1和HM113/CPSLO17的F2群體的有斑單株與無斑單株數均符合3∶1 (χ20.05= 3.84)的分離比(表4), 來源于HM113/CPSLO17的2個F3分離株系的有斑單株數與無斑單株數的分離比也都符合3∶1 (數據未發表)。說明突變體褐斑性狀受單顯性基因控制, 暫將該基因命名為SplHM113。

為定位該顯性基因, 挑選出均勻分布于12條染色體上HM113和02428間的多態性SSR標記139對, 用HM113/02428的F2群體的106個無斑單株初定位, 將斑點葉基因定位在第7染色體RM1135和RM432之間。進一步利用來自HM113/Moroberekan和HM113/CPSLO17 F2群體的698個無斑植株進行精細定位, 將基因SplHM113定位在RM21605和RM418之間, 物理距離約308 kb (圖9)。

圖7 突變體HM113的白葉枯病抗性Fig. 7 Resistance of mutant HM113 to Xanthomonas oryzae pv. oryzae (Xoo)A: IR64和HM113的白葉枯病抗性反應; B: HM113/IR64的F2群體對PXO349的抗性反應。NO-SPL: 無斑單株; SPL: 有斑單株。**極顯著差異(P≤0.01)。A: reaction of IR64 and HM113 to Xoo; B: reaction of F2individuals derived from IR64/HM113 to PXO349. NO-SPL: no-spotted plant;SPL: spotted-plant.**Significantly different at P ≤ 0.01.

圖8 突變體HM113中防衛反應基因的表達分析Fig. 8 Expression level of defense-related genes in HM113**極顯著差異(P ≤ 0.01)。**Significantly different at P ≤ 0.01.

圖9 斑點葉基因SplHM113的定位Fig. 9 Physical location of SplHM113on chromosome 7

表4 斑點葉突變體HM113的遺傳分析Table 4 Genetic analysis of HM113

3 討論

自第一個水稻斑點葉突變體被報道以來, 越來越多的水稻斑點葉突變體得到鑒定。斑點葉突變體在無明顯逆境或病原菌侵染條件下, 在葉片上自發產生斑點, 并伴隨農藝性狀的改變, 如spl31[27]、spl21[28]和lmm6[29]。本研究的突變體HM113播種后20 d左右, 老葉上出現褐色斑點, 抽穗期擴散至整個葉片, 同時葉鞘處也有褐色斑點產生。與IR64相比, HM113的植株變矮, 穗變短, 有效穗數和每穗實粒數減少, 結實率和千粒重下降。壞死性斑點的產生降低了葉片中單位面積的光合色素含量、氣孔導度和胞間CO2濃度, 導致突變體凈光合速率降低,進而影響突變體的農藝性狀。

ROS是植物細胞內部氧化還原反應的產物。正常情況下, 植物內部多余的ROS能夠被抗氧化劑及時清除; 在脅迫環境下, 當植物細胞內的H2O2濃度瞬時達到1 mol L–1時, 活性氧清除系統就會遭到破壞[30]?;钚匝跚宄到y包括CAT、SOD和POD等。與CAT和SOD的清除活性氧的功能不同, POD是一種多功能酶, 既能協助清除葉綠體中H2O2[31], 又能直接或間接催化形成H2O2和, 研究報道細胞壁上的POD參與了植物體內ROS迸發[32-34]。本研究中, 突變體HM113葉片中活性氧的瞬時大量產生,以及CAT和SOD活性顯著降低, POD活性顯著上升可能是導致葉片產生大量ROS的主要原因。

許多水稻斑點葉突變體對白葉枯病或稻瘟病具有較強的抗性。加強對斑點葉突變體的研究有利于揭示植物的抗性機制。如spl28對白葉枯病和稻瘟病的抗性增強可能與防衛反應基因PR1、PR2的激活以及胼胝質、酚類物質和植物抗毒素的累積有關[17];類病變突變體spl5對白葉枯病抗性增強與接種后的保護酶POD和PAL活性提高、OsPR1和OsPR8基因表達水平提高具有緊密的聯系[35]。研究報道ROS大量累積會影響植物的水楊酸(SA)或茉莉酸(JA)抗性途徑, 增強對病原菌的抗性; 此外, 引起的氧化脅迫對細胞具有毒害作用, 引起細胞死亡, 并使植物產生獲得性免疫抗性[36-37]。本研究中, 突變體HM113對8個水稻白葉枯病菌小種的抗性均明顯增強, 該抗性與褐斑的產生高度相關。推測褐斑發生過程中, 葉片中積累了大量的H2O2和, 引起褐斑部位及其周圍細胞壞死, 阻止了病原菌的進一步侵染; 同時激活防衛反應基因AOS2、PAL4、PR10和PR1b等的表達, 提高了突變體的抗病性。

迄今為止, 水稻中已經鑒定了10個顯性斑點葉突變體, 其中僅NH1[38]、OsAT1[39]和Spl32(t)[40]3個顯性斑點葉基因被鑒定, 分別位于第1、第10和第11染色體。NH1是與擬南芥NPR1同源的病程相關因子, 能拮抗調控SA和JA響應基因, NH1的過表達能提高植株對白葉枯病的抗性[41-42]; OsAT1編碼一個?;D移酶, 其突變體中PR基因表達上調, 植保素(稻殼酮和櫻花素)含量升高, 對稻瘟病的抗性增強[39]。目前在第7染色體上鑒定了3個斑點葉基因, 其中lems1[43]位于長臂RM1364和RM420之間,spl5[44]位于短臂SSR7和RM7121之間, splNF4050-8[45]位于短臂NBARC1和RM8262之間, 可能與spl5等位或緊密連鎖, 這些斑點性狀均由單隱性基因控制。本研究的斑點葉基因SplHM113被定位于第7染色體長臂RM21605和RM418之間, 該區間內未有顯性斑點葉基因的報道, 因此SplHM113是一個新的斑點葉基因。

4 結論

斑點葉突變體HM113褐色斑點的產生受光照的誘導并影響光合色素含量、光合作用以及主要農藝性狀。突變體的ROS清除系統的失衡包括CAT和SOD活性顯著降低及POD活性顯著上升, 可能是引起ROS沉積與細胞壞死的主要原因。此外, 突變體HM113對白葉枯病抗性的顯著增強可能與ROS的累積及防衛反應基因的激活表達有關。新型顯性斑點葉基因SplHM113的鑒定, 為該基因的克隆與功能研究奠定了基礎, 有利于進一步解析類病斑介導的植物抗性機制和探討該類型抗性在作物育種中的應用前景。

References

[1] Heath M C. Hypersensitive response-related death. Plant Mol Biol, 2000, 44: 321–334

[2] 夏啟中, 吳家和, 張獻龍. 與植物超敏反應(HR)相關的細胞編程性死亡. 華中農業大學學報, 2005, 24: 97–103 Xia Q Z, Wu J H, Zhang X L. Review on hypersensitive response-related PCD in plant. J Huazhong Agric Univ, 2005, 24: 97–103 (in Chinese with English abstract)

[3] Durrant W E, Dong X. Systemic acquired resistance. Annu Rev Phytopathol, 2004, 42: 185–209

[4] Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105

[5] Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C,Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365–379

[6] Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N,Xu X, Lv X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol,2013, 55: 473–483

[7] Shen H C, Shi Y F, Feng B H, Wang H M, Xu X, Huang Q N, Lv X G, Wu J L. Identification and genetic analysis of a novel rice spotted-leaf mutant with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Agric, 2014, 13: 713–721

[8] 李小紅, 施勇烽, 張曉波, 奉保華, 宋莉欣, 王惠梅, 徐霞, 黃奇娜, 郭丹, 吳建利. 水稻斑點葉突變體hm197的鑒定及其基因定位. 中國水稻科學, 2015, 29: 447–456 Li X H, Shi Y F, Zhang X B, Feng B H, Song L X, Wang H M,Xu X, Huang Q N, Guo D, Wu J L. Identification and gene mapping of a spotted leaf mutant hm197 in rice. Chin J Rice Sci, 2015,29: 447–456 (in Chinese with English abstract)

[9] Jung Y H, Lee J H, Agrawal G K, Rakwal R, Kim J A, Shim J K,Lee S K, Jeon J S, Koh H J, Lee Y H, Iwahashi H, Jwa N S. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defenseassociated signaling pathways. Plant Physiol Biochem, 2005, 43: 397–406

[10] Wu C, Bordeos A, Madamba M R, Baraoidan M, Ramos M,Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 279: 605–619

[11] Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L,Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313

[12] Wang L, Pei Z, Tian Y, He C. OsLSD1, a rice zinc finger protein,regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384

[13] Sun C, Liu L, Tang J, Lin A, Zhang F, Fang J, Zhang G, Chu C. RLIN1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29–37

[14] Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C,Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133

[15] Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535

[16] Jiang C J, Shimono M, Maeda S, Inoue H, Mori M, Hasegawa M,Sugano S, Takatsuji H. Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Mol Plant Microbe Interact, 2009, 22: 820–829

[17] Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O,Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274

[18] Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E,Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING,which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2015, 290: 611–622

[19] Arnon D I. Copper enzymes in isolated chloroplasts poly-phenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15

[20] Wellburn A R. The spectral determination of chlorophyll a and b,as well as total carotenoids, using various solvents with spectro-photometers of different resolution. Plant Physiol, 2015, 144: 307–313

[21] 趙世杰, 史國安, 董新純. 植物生理學實驗指導. 北京: 中國農業科學技術出版社, 2002. pp 134–143 Zhao S J, Shi G A, Dong X C. Plant Physiology Experiment Instruction. Beijing: China Agricultural Science and Technology Press, 2002. pp 134–143 (in Chinese)

[22] Huang Q N, Shi Y F, Zhang X B, Song L X, Feng B H, Wang H M, Xu X, Li X H, Guo D, Wu J L. Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol, 2016, 58: 12–28

[23] Yin Z, Chen J, Zeng L, Goh M, Leung H, Khush G S, Wang G L. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol Plant Microbe Interact, 2000, 13: 869–876

[24] Kauffman H E, Reddy A P D, Ksiek S P V, Marca S D. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep, 1973, 57: 537–541

[25] 盧揚江, 鄭康樂. 提取水稻DNA的一種簡易方法. 中國水稻科學, 1992, 6: 47–48 Lu Y J, Zheng K L. A simple method for isolation of rice DNA. Chin J Rice Sci, 1992, 6: 47–48 (in Chinese with English abstract)

[26] Shi Y F, Chen J, Liu W Q, Huang Q N, Shen B, Leung H, Wu J L. Genetic analysis and gene mapping of a new rolled-leaf mutant in rice (Oryza sativa L.). Sci China Ser C: Life Sci, 2009, 52: 885–890

[27] 代高猛, 朱小燕, 李云峰, 凌英華, 趙芳明, 楊正林, 何光華.水稻類病斑突變體spl31的遺傳分析與基因定位. 作物學報,2013, 39: 1223–1230 Dai G M, Zhu X Y, Li Y F, Ling Y H, Zhao F M, Yang Z L, He G H. Genetic analysis and fine mapping of a lesion mimic mutant spl31 in rice. Acta Agron Sin, 2013, 39: 1223–1230 (in Chinese with English abstract)

[28] 宋莉欣, 黃奇娜, 奉保華, 施勇烽, 張曉波, 徐霞, 王惠梅, 李小紅, 趙寶華, 吳建利. 水稻斑點葉突變體spl21的鑒定與基因定位. 作物學報, 2015, 41: 1519–1528 Song L X, Huang Q N, Feng B H, Shi Y F, Zhang X B, Xu X,Wang H M, Li X H, Zhao B H, Wu J L. Characterization and gene mapping of a spotted-leaf mutant spl21 in rice (Oryza sativa L.). Acta Agron Sin, 2015, 41: 1519–1528 (in Chinese with English abstract)

[29] Xiao G Q, Zhang H W, Lu X Y, Huang R F. Characterization and mapping of a novel light-dependent lesion mimic mutant lmm6 in rice (Oryza sativa L.). J Integr Agric, 2015, 14: 1687–1696

[30] Jacks Thomas J, Davidonis Gayle H. Superoxide, hydrogen peroxide, and the respiratory burst of fungally infected plant cells. Mol Cellular Biochem, 1996, 158: 77–79

[31] Asada K. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant, 1992, 85: 235–241

[32] Minibayeva F, Beckett R P, Kranner I. Roles of apoplastic peroxidases in plant response to wounding. Phytochemistry, 2015, 112: 122–129

[33] Kawano T. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep, 2003, 21: 829–837

[34] Whitaker C, Beckett R P, Minibayevab F V, Kranner I. Production of reactive oxygen species in excised, desiccated and cryopreserved explants of Trichilia dregeana Sond. S Afr J Bot, 2010,76: 112–118

[35] 金楊. 水稻類病變突變體spl5細胞壞死機制及其抗病性的研究. 浙江師范大學碩士學位論文, 浙江金華, 2009 Jin Y. Mechanisms of Cell Death and Its Resistance in Rice Lesion Mimic Mutant spl5. MS Thesis of Zhejiang Normal University, Jinhua, China, 2009 (in Chinese with English abstract)

[36] Kaurilind E, Xu E, Brosche M. A genetic framework for H2O2induced cell death in Arabidopsis thaliana. BMC Genomics, 2015,16: 837–853

[37] Kariola T, Brader G, Li J, Palva E T. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. Plant Cell, 2005, 17: 282–294

[38] Chern M, Fitzgerald H A, Canlas P E, Navarre D A, Ronald P C. Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant Microbe Interact, 2005, 18: 511–520

[39] Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860

[40] 鐘振泉, 羅文龍, 劉永柱, 王慧, 陳志強, 郭濤. 一份新的水稻斑點葉突變體spl32的鑒定和基因定位. 作物學報, 2015, 41: 861–871 Zhong Z Q, Luo W L, Liu Y Z, Wang H, Chen Z Q, Guo T. Characterization of a novel spotted leaf mutant spl32 and mapping of Spl32(t) gene in rice (Oryza sativa). Acta Agron Sin, 2015,41: 861–871 (in Chinese with English abstract)

[41] Hwang S H, Hwang D J. Isolation and characterization of the rice NPR1 promoter. Plant Biotechnol Rep, 2010, 4: 29–35

[42] Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y G, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313–324

[43] Li Z, Zhang Y X, Liu L, Liu Q E, Bi Z Z, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1(lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307

[44] Chen X F, Pan J W, Cheng J, Jiang G H, Jin Y, Gu Z M, Qian Q,Zhai W X, Ma B J. Fine genetic mapping and physical delimitation of the lesion mimic gene spotted leaf 5 (spl5) in rice (Oryza sativa L.). Mol Breed, 2009, 24: 387–395

[45] Babu R, Jiang C J, Xu X, Kottapalli K R, Takatsuji H, Miyao A,Hirochika H, Kawasaki S. Isolation, fine mapping and expression profiling of a lesion mimic genotype, spl(NF4050-8)that confers blast resistance in rice. Theor Appl Genet, 2011, 122: 831–854

Characterization and Gene Fine Mapping of a Rice Dominant Spotted-leaf Mutant

GUO Dan, SHI Yong-Feng, WANG Hui-Mei, ZHANG Xiao-Bo, SONG Li-Xin, XU Xia, HE Yan, GUO Liang, and WU Jian-Li*
State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement / China National Rice Research Institute, Hangzhou 310006,China

A stable inherited rice spotted-leaf mutant HM113 was isolated from an EMS-induced IR64 mutant bank. Under natural conditions, brown lesions were observed on the leaves in three weeks after sowing and spread to the sheaths at the initial heading stage. Agronomic traits including the plant height, panicle length, number of panicles, number of filled grain/panicle, seed-setting rate and 1000-grain weight were decreased significantly in HM113. In addition, the photosynthetic pigment contents, net photosynthetic rate and soluble protein content in the mutant were significantly lower than those in the wild type IR64, while the MDA content was similar to that in the wild-type. Activities of CAT and SOD were significantly lower and activity of POD was significantly higher in the mutant than in IR64. Histochemical analysis showed that cell death and ROS accumulation were occurred in and around the lesions in HM113. Furthermore, disease resistance to bacterial blight pathogens was significantly enhanced in the mutant in contrast to that in the wild type IR64. Expression of defense-related genes including AOS2, PAL4, PR10, and PR1b was apparently up-regulated in the mutant. Genetic analysis indicated that the mutant trait was controlled by a novel single dominant nuclear gene, tentatively termed as SplHM113, which was detected to be located in a region around 308 kb flanked by RM21605 and RM418 on the long arm of chromosome 7. The data and populations obtained in the present study would facilitate the isolation and functional analysis of SplHM113.

Rice; Spotted-leaf mutant; Bacterial blight resistance; Reactive oxygen species; Gene mapping

10.3724/SP.J.1006.2016.00966

本研究由浙江省自然科學基金項目(LQ15C130005)和國家高技術研究發展計劃(863計劃)項目(2014AA10A603-15)資助。

This study was supported by the Natural Science Foundation of Zhejiang Province (LQ15C130005) and the National High-tech R&D Program of China (2014AA10A603-15).

(Corresponding author): 吳建利, E-mail: beishangd@163.com

聯系方式: E-mail: 1409882837@qq.com

Received(): 2015-12-29; Accepted(接受日期): 2016-05-09; Published online(網絡出版日期): 2016-05-11.

URL: http://www.cnki.net/kcms/detail/11.1809.S.20160511.1551.008.html

猜你喜歡
葉枯病活性氧突變體
尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
Fluorescent Probes for Mitochondrial Reactive Oxygen Species in Biological Systems
一個粳稻早熟突變體的遺傳分析及育種應用潛力的初步評價
CLIC1及其點突變體與Sedlin蛋白的共定位研究
解脲支原體感染對男性不育者精漿活性氧與細胞因子的影響
SHP2不同突變體對乳腺癌細胞遷移和侵襲能力的影響
水稻白葉枯病菌Ⅲ型效應物基因hpaF與毒力相關
蘋果炭疽葉枯病在芮城縣的發生特點及防治
益心解毒方對大鼠心肌細胞內活性氧水平及信號轉導通路的影響
硅酸鈉處理對杏果實活性氧和苯丙烷代謝的影響
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合