?

有害甲藻孢囊的分類鑒定研究進展

2016-12-07 02:56高養春董燕紅李海濤戰愛斌
生物安全學報 2016年4期
關鍵詞:孢囊甲藻種間

高養春, 董燕紅, 李海濤, 戰愛斌*

1中國科學院生態環境研究中心,北京 100085;2國家海洋局南海環境監測中心,廣東 廣州 510300

?

有害甲藻孢囊的分類鑒定研究進展

高養春1, 董燕紅2, 李海濤2, 戰愛斌1*

1中國科學院生態環境研究中心,北京 100085;2國家海洋局南海環境監測中心,廣東 廣州 510300

有害甲藻孢囊主要是指能產生毒素和(或)能引起有害藻華發生并對水生態系統產生各種危害效應的甲藻孢囊。我國沿海共記錄了10屬18種,占全球有害甲藻孢囊的3/4。這些有害甲藻孢囊廣泛分布于我國沿海,會對水產養殖業造成嚴重的經濟損失,甚至會威脅人類的身體健康。因此,有害甲藻孢囊的多樣性及分布越來越受到人們的關注。對有害甲藻孢囊的準確判斷不僅對研究其多樣性及分布至關重要,而且有助于水產品的安全檢驗和有害藻華的早期預警。對有害甲藻孢囊的分類主要存在鑒定困難、鑒定不準確等問題。本文綜述了有害甲藻孢囊的危害、中國沿海有害甲藻孢囊的種類和分布,以及有害甲藻孢囊的鑒定等3個方面的研究進展,并提出利用孢囊及營養細胞的形態學特征、分子生物學、毒理學等多學科研究手段準確鑒定有害甲藻孢囊的建議。

有害甲藻孢囊; 形態學特征; 分子鑒定

甲藻孢囊是指甲藻為度過不良環境而產生的一種無鞭毛且無游動能力的細胞,是甲藻生活史的一個重要階段(王朝暉,2007)。其中,能產生毒素和(或)引起有害藻華(harmful algal bloom)的甲藻孢囊被稱為有害甲藻孢囊。有害甲藻孢囊可分為含毒素和不含毒素2類。含毒素種類不僅在低濃度時就會引起水產品染毒甚至死亡,而且會導致有害藻華的暴發(Burkholderetal.,1992);不含毒素的種類雖然不會引起水產品的毒化,但大量萌發后能引起有害藻華的發生。有害藻華的發生會對人類健康、生態系統及水產養殖業構成巨大威脅(Andersonetal.,2012b)。隨著沿海海域污染、外來種引入、全球變暖等影響的加劇,有害藻華發生的頻率不斷增大(Andersonetal.,2012a; Nakanishietal.,1996)。因分布于海底沉積物中的有害甲藻孢囊很有可能成為有害藻華發生的種源,有害甲藻孢囊的地理分布及多樣性和生態特性也越來越受到關注(Kohlietal.,2014; Zonneveld & Dale,1994)。

甲藻孢囊形體普遍微小(20~120 μm),部分種間差異較小及同種存在形態可塑性等特點(Fuentes-Grünewaldetal.,2009、2012; Geider & Roche,2002; Taylor & Gaines,1989),導致對其鑒定困難及鑒定不準確等問題。雖然顧海峰等(2011)、黃海燕和陸斗定(2009)已對甲藻孢囊的研究進行了綜述,但均缺乏針對有害甲藻孢囊種類及分子鑒定方面的論述。本文擬綜述有害甲藻孢囊的危害、中國沿海有害甲藻孢囊的種類及分布、有害甲藻孢囊的形態學和分子生物學鑒定等3個方面的研究進展,以期為有害甲藻孢囊的監測和控制提供參考。

1 有害甲藻孢囊的危害

筆者統計了全球范圍內有害甲藻孢囊的種類,主要有22種(表1)。其中,19種含有甲藻毒素,3種不含毒素但能引起有害藻華的發生,而既含有毒素又能引起有害藻華發生的有13種。這些甲藻毒素是底棲生物體內毒素積累的重要來源之一(Schwinghameretal.,1994)。其被濾食性的魚、蝦、貝類濾食后,在這些海產品體內積累并導致海產品染毒,染毒的海產品通過食物鏈的傳遞最終導致人的中毒(丁德文等,2005; Yasumoto & Murata,1993)。根據食用者中毒的癥狀,這些甲藻(產孢囊)毒素被分為3類:腹瀉性貝類毒素(diarrhetic shellfish poisoning,DSP)、麻痹性貝類毒素(paralytic shellfish poisoning,PSP)、神經性貝類毒素(neurotoxic shellfish poisoning,NSP)。除此之外,還有一些對人類危害尚不清楚的毒素,如扇貝毒素(yessotoxin,YTX)(Auneetal.,2002)。這些毒素(DSP、PSP、NSP、YTX)主要由甲藻門中的膝溝藻類產生,少數由裸甲藻類、多溝藻類產生(表1)。有些甲藻(產孢囊)毒素(如屬于PSP的石房蛤毒素)的毒性是眼鏡蛇毒性的80倍,產毒甲藻的營養細胞具有毒素,其孢囊也具有毒素(Andersonetal.,1990; Bravo,1998),并且其毒性比營養細胞更高(Dale,1983; Oshimaetal.,1992)。僅在1969年至1994年,我國因食用染毒的魚、貝類而中毒的人數就有1800多人,其中至少30人死亡(周名江等,2001; Zhouetal.,1999)。這些毒素還能引起魚、貝類大面積死亡,給水產養殖業造成重大經濟損失(龍華等,2008; Lim,2012)。此外,有害甲藻孢囊能幫助甲藻度過不良環境,通過洋流或船舶等媒介擴散到其他海域,極易使其成為入侵物種而對當地水域的其他生物及生態環境產生重大的危害,如自從亞歷山大藻孢囊入侵美國緬因州西部海域引起赤潮后,此海域幾乎每年都會暴發產PSP毒素的赤潮(Anderson & Wall,1978)。

2 中國沿海有害甲藻孢囊的種類及分布

目前,我國發現的有害甲藻孢囊共記錄了10屬18種,占全球總有害甲藻孢囊種類的3/4(表1),其在我國沿海的分布見圖1。其中,原甲藻屬Prorocentrum1種,亞歷山大藻屬Alexandrium共6種,膝溝藻屬Gonyaulax共2種,梨甲藻屬Pyrodinium1種,舌甲藻屬Lingulodinium1種,原角管藻屬Protoceratium1種,斯氏藻屬Scrippsiella1種,裸甲藻屬Gymnodinium1種,多溝藻屬Polykrikos共2種,褐多溝藻屬Pheopolykrikos1種,旋溝藻屬Cochlodinium1種。廣泛分布于我國沿海的有塔瑪亞歷山大藻Alexandriumtamarense、鏈狀亞歷山大藻A.pacificum、具刺膝溝藻Gonyaulaxspinifera以及錐狀斯氏藻Scrippsiellatrochoidea。

3 有害甲藻孢囊的分類鑒定

3.1 形態學鑒定

由于大多數甲藻孢囊微小,需要借助于光學或電子顯微鏡才能對其進行分類鑒定。傳統的形態學鑒定方法主要根據孢囊的形態、大小、顏色、孢囊內含物及孢囊壁的結構和表面修飾物等特征對孢囊進行鑒定(王朝暉,2007; 王朝暉等,2011; 魏洪祥等,2011; Liuetal.,2014; Matsuoka & Fukuyo,2000; Mertensetal.,2015)。表1列出的有害甲藻孢囊中,有些具有易于分辨的形態學特征,如多邊舌甲藻Lingulodiniumpolyedrum具有舌狀凸起(圖2A),網狀原角管藻Protoceratiumreticulatum具有T形凸起(圖2B)(Joyceetal.,2005),科夫多溝藻Polykrikoskofoidii具有網紋狀凸起(圖2C),無紋多溝藻Polykrikosschwartzii的外部形態與科夫多溝藻類似,但凸起的頂端相互獨立而未連接在一起(圖2D)等,可根據此特有的形態學特征對這些孢囊進行相對準確的鑒定。

表1 主要有害甲藻孢囊種類及其危害

*為中國沿海發現的有害甲藻孢囊種。

*indicate dinoflagellate cyst found in China.

但對于有些有害甲藻孢囊,如亞歷山大藻屬中的塔瑪亞歷山大藻復合體(圖2E)、微小亞歷山大藻A.minutum與相似亞歷山大藻A.affine(圖2F)等各個種的形態差異較小(黃海燕等,2009; 王朝暉等,2004; 魏洪祥等,2011; Bravoetal.,2006),僅僅根據光學顯微鏡下孢囊的形態學特征難以將這些孢囊鑒定到種的水平,一般在光鏡或電鏡下觀察孢囊萌發時營養細胞的形態特征可間接鑒定孢囊(顧海峰等,2003; Gu,2011; Guetal.,2013a)。對于營養細胞形態差異較小的種類,此方法也不能將其準確鑒定,如根據塔瑪亞歷山大藻復合體的形態學特征僅能將其鑒定為由塔瑪亞歷山大藻、鏈狀亞歷山大藻及A.fundyense3種藻類組成(Balech,1995);但后來的研究發現其存在許多中間形態的個體以及不同種之間存在形態特征重疊的現象,使得學者們對塔瑪亞歷山大藻復合體分為3個種的觀點產生了較大的質疑(Gayoso & Fulco,2006; Kimetal.,2002; Orlovaetal.,2007)?;谛螒B學特征對A.ostenfeldii與A.peruvianum(Gu,2011; Krempetal.,2014)、Pyrodiniumbahamensevar.compressum與Pyrodiniumbahamensevar.bahamense(Balech,1985; Mertensetal.,2015; Steidingeretal.,1980)的研究也發現了類似的現象;再如,塔瑪亞歷山大藻復合體group Ⅰ(含有毒素)中的個體均存在側腹孔,而group Ⅳ(未能檢測到毒素)的個體中有些存在側腹孔而有些不存在,因此,僅根據側腹孔的有無并不能將塔瑪亞歷山大藻復合體中的group Ⅰ和group Ⅳ區分開(Guetal.,2013a)。

此外,該方法不能鑒定不具有萌發能力以及現有試驗條件下尚不能萌發的孢囊。雖然孢囊萌發培養技術在不斷改善,但孢囊的萌發率仍不能達到100%(Andersonetal.,2005; Guetal.,2013b),因此,仍有部分尚未萌發的孢囊不能通過孢囊萌發試驗得到鑒定。雖然孢囊的萌發孔及副殼板結構也可用于不同種孢囊的鑒定(Yamaguchietal.,1995),尤其用于原多甲藻中Brigantedinium的鑒定,但只能鑒定已經萌發的孢囊,而對于未萌發的Brigantedinium僅根據孢囊形態學特征仍不能將其鑒定到種的水平。有些孢囊如具刺膝溝藻孢囊具有較強的形態可塑性(圖2G、H),據報道,產毒的具刺膝溝藻至少有19種不同類型的孢囊(Taylor & Gaines,1989),僅僅根據孢囊形態學特征難以將具有不同形態學特征的同種孢囊劃分到同一個種。因此,許多基于孢囊形態學的研究只能鑒定到屬或屬以上的水平(王朝暉,2007; 王朝暉等,2011; 魏洪祥等,2011)。

圖2 部分有害甲藻孢囊

除以上孢囊所固有的生物特性外,環境因素也可能間接影響孢囊鑒定的準確率。一些孢囊在不同的環境中以及不同的生長階段具有不同的外部形態特征,如多邊舌甲藻(Mertens,2013; Mertensetal.,2009)、網狀原角管藻(Mertensetal.,2011)、巴哈馬梨甲藻Pyrodiniumbahamense(Mertensetal.,2015)等孢囊刺的長度及大小與孢囊所處海域的鹽度與溫度相關;多邊舌甲藻、巴哈馬梨甲藻等孢囊的大小還與水體的營養成分及水流等相關(Mertens,2013; Mertensetal.,2015)。這些環境因素對孢囊形態所產生的影響會降低孢囊鑒定的準確率(Fuentes-Grünewaldetal.,2009、2012)。

常規形態學鑒定具有費時費力的缺點,對鑒定人員的要求也較高(Godheetal.,2001),且分辨率較低。因此,需要尋找一種省時省力又準確的孢囊鑒定方法。分子生物學方法在解決這個問題方面展現出了巨大的優勢:(1)試驗所需的時間較短;(2)沒有形態學鑒定基礎的實驗者也可進行操作;(3)在種或屬水平上的鑒定具有特異性。

3.2 分子生物學鑒定

一般情況下,不同物種之間的差異主要取決于相應遺傳物質基因組中堿基序列的差異。因此,理論上認為直接對基因組堿基序列測序是最準確且可靠的物種鑒定方法。但由于基因組較大,不易于測序且代價較高而限制了其實際應用。DNA條形碼(DNA barcode)是生物體內能夠代表該物種且與其他物種區分的DNA片段,其一般較短且易測序,根據DNA條形碼的序列特征即可鑒定物種。此技術已廣泛應用于動物(Shokralla,2011; Zhanetal.,2013; Zhan & MacIsaac,2015)、植物(Cowan & Michael,2012)、微生物(Adeduntan,2009)等物種的鑒定,在形態鑒定存在困難的物種上的應用更加廣泛。如Lillyetal.(2007)根據當時的分子生物學數據將塔瑪亞歷山大藻復合體劃分為5個類群(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ),但未劃分到具體的種。近年,相關學者才根據核酸序列并輔以毒理學、繁殖生物學等特征將這5個形態相似的類群劃分為5個不同的種(類群Ⅰ被命名為A.fundyense,類群Ⅱ被命名為A.mediterraneum,類群Ⅲ被命名為A.tamarense,類群Ⅳ被命名為A.pacificum,類群Ⅴ被命名為A.australiense)(Johnetal.,2014a、2014b; Wang Letal.,2014);同樣,根據rDNA的特征,A.ostenfeldii和A.peruvianum被建議歸為一個種(A.ostenfeldii), 取消A.peruvianum的命名(Gu,2011; Krempetal.,2014)。但此方法在孢囊鑒定時仍面臨一些困難與挑戰,如分子標記的選擇、孢囊核酸的提取等。

3.2.1 分子標記的選擇 理想的DNA條形碼片段既要易于擴增及測序,也要具有種間區別力(種間具有較高的變異而種內具有較低的變異)。因此,相對應的引物既要有一定的通用性(包含盡可能多的目的種),也要具有一定的特異性(非目的種盡可能少)(Zhan & MacIsaac,2015)。常見的DNA條形碼有核糖體RNA基因(rDNA)序列,包括小亞基rRNA基因(SSU或18S rDNA)、大亞基rRNA基因(LSU或28S rDNA)、內轉錄間隔區(ITS1、ITS2)及外轉錄間隔區(NTS),葉綠體上的rbcl、psb基因以及線粒體上的Cob、Cox等基因(陳月琴等,1997、1999; Scholinetal.,1994、1996; Wilcox,1998)。

數據庫(如NCBI)中可參考物種條形碼序列的有無及種內、種間的遺傳距離對有害甲藻孢囊的分子鑒定起著決定性作用。在藻類的分子鑒定上應用最多的是核基因序列,在有害甲藻條形碼序列數據庫(如NCBI)中,與其他分子標記相比較,18S的物種序列最完備(表2),且有害甲藻孢囊(除膝溝藻屬)種內的變異相對較小,易于設計其通用引物,這些優點使得18S成為甲藻物種鑒定中應用廣泛的分子標記(Granéli & Turner,2006);但其種間的變異較小且種內及種間的遺傳距離有重疊(表2),因此,18S并非最理想的分子標記。與18S相比,28S數據庫中可參考的有害甲藻的物種序列也較為完備(表2),且種間遺傳距離較大并具有較高的種間分辨率,有害甲藻孢囊的通用引物也易于設計,但種內遺傳距離較大且種內及種間的遺傳距離有重疊,所以28S作為有害甲藻的分子標記也具有一定的缺陷。核基因上ITS序列由于不編碼基因、不存在進化上的選擇壓力而具有較快的進化速率,對物種的分辨率最高,但其同種序列因存在插入缺失等現象而具有較大的變異,即具有較大的種內變異(表2),這很可能誤將同種生物的不同個體劃分為2個種;同時,不同種間的遺傳距離差別較大,這使得為有害甲藻孢囊的分子鑒定劃定一個種間界定標準變得困難,而只能針對不同的屬或更高分類單元劃定特定的種間界定標準。如陳月琴和屈良鵠(1999)通過分析GenBank上亞歷山大藻的ITS序列得出,此屬的種間ITS序列差異值大于0.20,而種內ITS序列非常相似(僅0.01差異),這為亞歷山大藻屬的分子鑒定提供了一個種間界定的標準。理論上,其他屬也可以利用此方法找到一個種間界定的標準,但數據庫中存在一些錯誤的序列而又難以辨別并刪除,所以難以獲得有害甲藻種間及種內遺傳距離的真實值,只能從大量的序列比對中得出一個接近于真實值的值。

甲藻的營養類型較多,包括自養型甲藻、異養型甲藻以及混合營養型甲藻等(Gómez,2012)。自養型甲藻細胞內存在可用作條形碼的葉綠體基因,如rbcl、pbs等,而異養型甲藻不存在此基因,這限制了葉綠體基因在甲藻分子鑒定中的廣泛應用。雖然線粒體上的基因如Cob和Cox等的種內及種間遺傳距離具有較高的物種分辨率(表2),但因相關數據庫不完善(表2)而限制了其應用。目前,尚無單個DNA條形碼能將所有的甲藻鑒定到種的水平,筆者認為應根據不同的種、屬選擇不同的分子標記,進而實現孢囊的鑒定或甲藻類群的特殊檢測。

3.2.2 孢囊核酸的提取 孢囊核酸的提取對孢囊的分析鑒定至關重要。孢囊外壁主要由孢粉質類似物或鈣質組成,如亞歷山大藻屬的孢囊外壁是由孢粉質類似物組成,具有抗高溫、抗酸堿腐蝕的能力,且比較堅硬(Bibby & Dodge,1972);斯氏藻屬的孢囊外壁主要是由硬度較高的鈣質組成,這些難以破碎的孢囊外壁雖能協助甲藻度過不良環境并擴散到鄰近海域外,但增加了孢囊核酸提取的難度。因此,破碎孢囊外壁成為孢囊基因組提取的關鍵步驟。破碎孢囊壁的常用方法有物理破碎法和化學破碎法:物理方法主要包括磁珠破碎法(Erdneretal.,2010; Pennaetal.,2010) 和液氮研磨破碎法(Godheetal.,2002);化學方法主要為CTAB法(Coyne & Cary,2005; Kamikawaetal.,2007)。此外,通過培養甲藻孢囊讓其萌發,然后采用常規植物基因組提取的方法也可達到間接提取孢囊基因組的目的(Bravoetal.,2006)。以上孢囊基因組提取方法在孢囊種的鑒定、有害藻類的定性及定量檢測等方面得到了廣泛應用;但這些方法只適用于提取數量較多的孢囊種類。在自然條件下,某些種類的孢囊數量較少,有些種類在當前實驗室條件下難以萌發,給這些稀有孢囊基因組的提取造成了困難,從而無法從分子水平準確鑒定這些孢囊的種類。

在過去的數十年間,單細胞PCR方法得到了較快的發展,此方法的優點是不需要基因組的提取,可直接將單細胞破碎液用作PCR模板,進而在短時間內實現分子鑒定。此方法雖然在孢囊的分子鑒定(尤其是樣品中低豐度孢囊或未能萌發孢囊的鑒定)上得到了一定的應用,但仍存在一些問題,如單個孢囊破碎方法的選取、單個孢囊中較低的DNA含量不易于PCR擴增以及缺乏高分辨率且通用的甲藻引物(圖3)。常用的單孢囊破碎方法包括反復凍融法(Bolch,2001; Gribble & Anderson,2006)、微細玻璃針破碎法(Takano & Horiguchi,2004; Yamaguchi & Horiguchi,2005)以及蓋玻片按壓破碎法(Liuetal.,2014)等。孢囊壁的組成成分復雜且具有較高的韌性,使得反復凍融法在孢囊破碎時往往不能取得理想的效果;由于孢囊比較小且具有較堅硬的外壁,利用微細玻璃針破碎時易造成孢囊的丟失;蓋玻片按壓破碎法能克服以上2種方法的缺點而成為一種比較理想的孢囊破碎方法。較少的DNA含量使得PCR體系中模板量較低,易使PCR擴增失敗(無擴增片段或由于孢囊表面其他生物的污染引起的非特異性擴增)。而巢式PCR能解決孢囊模板量低的問題,常規的做法:利用真核通用引物(外引物)增加目的基因或DNA片段的拷貝數進行第1次PCR擴增,然后以第1次PCR產物為模板再利用甲藻特異性引物(內引物)進行第2次PCR擴增(Pennaetal.,2010)。但由于真核通用引物在PCR擴增時對某些類群或模板含量高的類群具有一定的偏嗜性,而難以擴增出模板含量低的類群,如甲藻(Kohlietal.,2014; Potvin & Lovejoy,2009)等。因此,如果在巢式PCR第1輪擴增時選用甲藻特異性引物,第2輪擴增時采取種或屬以上分類單元的通用引物擴增,理論上會得到較為理想的擴增效果。PCR引物是決定孢囊PCR擴增成敗的關鍵。甲藻特異性引物已有較多報道(Linetal.,2006、2009),其中的一對甲藻特異性引物(dinocob4f、dinocob6r)已成功用于高通量測序,結果顯示,98.46%的序列屬于甲藻,但由于cob的可參考數據庫不健全,大部分序列仍不能鑒定到種的水平(Kohlietal.,2014)。因此,有害甲藻孢囊cob條形碼數據庫有待進一步完善。

圖3 單孢囊分子鑒定過程中存在的問題或爭議及可能的解決方法與思路

4 結語

有害甲藻孢囊不僅會對生態環境造成一定的危害,而且會對水產養殖業造成重大的經濟損失,甚至威脅人類的生命。全球3/4有害甲藻孢囊種類分布在我國沿海地區,因此,我國是受甲藻孢囊威脅最為嚴重的國家之一。有害甲藻孢囊的分類鑒定對于其多樣性及分布的研究至關重要,現有的分類方法(形態學鑒定、分子鑒定等)各有優缺點。有些有害甲藻孢囊種具有易于區分的形態學或分子生物學特征,如網狀原角管藻、多邊舌甲藻等,只要利用其中一種方法就可以將其準確鑒定;而一些有害甲藻孢囊的形態學或分子生物學特征不易被區分,如亞歷山大藻屬等,我們應將孢囊及萌發后營養細胞形態學、分子生物學、毒理學及繁殖生物學等鑒定方法結合起來。今后應加強甲藻孢囊的相關研究,尤其是有害甲藻孢囊條形碼數據庫的構建,以提高有害甲藻孢囊分子鑒定的準確率。

常虹, 王博, 姚蜜蜜, 蔡中華, 2014. 深圳大鵬灣海域錐狀斯氏藻赤潮期間細菌群落結構變化研究. 現代生物醫學進展, 14(10): 1801-1807.

陳月琴, 屈良鵠, 1999. 海洋亞歷山大藻屬種間界定的分子標準. 中山大學學報(自然科學版), 38(1): 7-11.

陳月琴, 屈良鵠, 邱小忠, 曾隴梅, 齊雨藻, 1997. 甲藻單個細胞DNA的制備及在赤潮藻類分子鑒定中的應用. 中山大學學報(自然科學版), 36(4): 66-69.

陳月琴, 屈良鵠, 曾隴梅, 齊雨藻, 鄭磊, 1999. 南海赤潮有毒甲藻鏈狀-塔馬亞歷山大藻的分子鑒定. 海洋學報(中文版), 21(3): 106-112.

丁德文, 劉勝浩, 劉晨臨, 林學政, 邊際, 黃曉航, 2005. 孢囊及其與赤潮爆發關系的研究進展. 海洋科學進展, 23(1): 1-10.

顧海峰, 藍東兆, 方琦, 王宗靈, 蔡鋒, 2003. 我國東南沿海亞歷山大藻休眠孢囊的分布和萌發研究. 應用生態學報, 14(7): 1147-1150.

顧海峰, 劉婷婷, 藍東兆, 2011. 中國沿海甲藻包囊研究進展. 生物多樣性, 19(6): 779-786.

黃長江, 董巧香, 2000. 1998年春季珠江口海域大規模赤潮原因生物的形態分類和生物學特征I. 海洋與湖沼, 31(2): 197-204.

黃海燕, 陸斗定, 2009. 甲藻孢囊研究進展. 海洋學研究, 27(3): 85-92.

黃海燕, 陸斗定, 夏平, 王紅霞, 2009. 2006年冬季長江口海域表層沉積物中甲藻孢囊的分類學研究. 生態學報, 29(11): 5902-5911.

林永水, 周近明, 1993. 鹽田水域多紋膝溝藻赤潮發生過程的生態學研究. 熱帶海洋學報, 12(1): 46-50.

龍華, 周燕, 余駿, 胡益峰, 傅國君, 2008. 2001~2007年浙江海域赤潮分析. 海洋環境科學, 27(S1): 1-4.

邵魁雙, 鞏寧, 楊青, 李柯, 2011. 甲藻孢囊在長山群島海域表層沉積物中的分布. 生態學報, 31(10): 2854-2862.

唐祥海, 于仁成, 陳洋, 張清春, 王云峰, 顏天, 周名江, 2008. 可用于相關亞歷山大藻(Alexandriumaffine)檢測的一個寡核苷酸探針. 海洋與湖沼, 39(6): 650-654.

王紅霞, 陸斗定, 何飄霞, 戴鑫烽, 夏平, 李冬融, 2014. 東海多環旋溝藻的形態特征和系統進化分析. 海洋與湖沼, 45(4): 757-763.

王朝暉, 2007. 中國沿海甲藻孢囊與赤潮研究. 北京: 海洋出版社.

王朝暉, 曹宇, 張玉娟, 2011. 2005-2006年大亞灣大鵬澳養殖區甲藻孢囊通量的沉積捕捉器研究. 熱帶海洋學報, 30(1): 113-118.

王朝暉, 齊雨藻, 2003. 甲藻孢囊在長江口海域表層沉積物中的分布. 應用生態學報, 14(7): 1039-1043.王朝暉, 齊雨藻, 江天久, 許忠能, 2004. 大亞灣近代沉積物中甲藻孢囊的垂直分布. 水生生物學報, 28(5): 504-510.王朝暉, 康偉, 2014. 柘林灣表層沉積物中甲藻孢囊的分布與浮游植物休眠體萌發研究. 環境科學學報, 34(8): 2043-2050.魏洪祥, 趙文, 梁玉波, 2011. 大窯灣養殖區赤潮甲藻孢囊種類組成及分布的研究. 水生生物學報, 35(3): 489-497.肖詠之, 齊雨藻, 王朝暉, 呂頌輝, 2001. 大亞灣海域錐狀斯氏藻赤潮及其與孢囊的關系. 海洋科學, 25(9): 50-54.曾玲, 龍超, 林紅軍, 2013. 利瑪原甲藻形態特征及生活史的研究. 湖北農業科學, 52(11): 2607-2611.

周名江, 朱明遠, 張經, 2001. 中國赤潮的發生趨勢和研究進展. 生命科學, 13(2): 54-59.

Adeduntan S A, 2009. Diversity and abundance of soil mesofauna and microbial population in South-Western Nigeria.AfricanJournalofPlantScience, 3(9): 210-216.

Anderson D M and Wall D, 1978. Potential importance of benthic cysts ofGonyaulaxtamarensisandG.excavatain initiating toxic dinoflagellate blooms.JournalofPhycology, 14(2): 224-234.

Anderson D M, Kulis D M, Sullivan J J and Hall S, 1990. Toxin composition variations in one isolate of the dinoflagellateAlexandriumfundyense.Toxicon, 28(8): 885-893.

Anderson D M, Kulis D M, Qi Y Z, Zheng L, Lu S H and Lin Y T, 1996. Paralytic shellfish poisoning in Southern China.Toxicon, 34(5): 579-590.

Anderson D M, Stock C A, Keafer B A, Bronzino N A, Thompson B, Mcgillicuddy D J, Keller M, Matrai P A and Martin J, 2005.Alexandriumfundyensecyst dynamics in the Gulf of Maine.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 52: 2522-2542.Anderson D M, Cembella A D and Hallegraeff G M, 2012a. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management.AnnualReviewofMarineScience, 4(1): 143-176.Anderson D M, Alpermann T J, Cembella A D, Collos Y, Masseret E and Montresor M, 2012b. The globally distributed genusAlexandrium: multifaceted roles in marine ecosystems and impacts on human health.HarmfulAlgae, 14: 10-35.Anderson J T, Stoecher D K and Hood R R, 2003. Formation of two types of cysts by a mixotrophic dinoflagellate,Pfiesteriapiscicida.MarineEcologyProgressSeries, 246: 95-104.Aune T, S?rby R, Yasumoto T, Ramstad H and Landsverk T, 2002. Comparison of oral and intraperitoneal toxicity of yessotoxin towards mice.Toxicon, 40(1): 77-82.Azanza R, 1997. Contributions to the understanding of the bloom dynamics ofPyrodiniumbahamensevar.compressum: a toxic red tide causative organism.ScienceDiliman, 9(1/2): 1-6.lvarez G, Uribe E, Díaz R, Braun M, Mario C and Blanco J, 2011. Bloom of the yessotoxin producing dinoflagellateProtoceratiumreticulatum(Dinophyceae) in Northern Chile.JournalofSeaResearch, 65(4): 427-434.

Balech E, 1985. A revision ofPyrodiniumbahamenseplate (Dinoflagellata).ReviewofPalaeobotanyandPalynology, 45(1/2): 17-34.

Balech E, 1995.TheGenusAlexandriumHalim(Dinoflagellate). Sherkin Island, Co. Cork, Ireland: Sherkin Island Marine Station Publicaiton. Bauder A G, Cembella A D, Bricelj V M and Quilliam M A, 2001. Uptake and fate of diarrhetic shellfish poisoning toxins from the dinoflagellateProrocentrumlimain the bay scallopArgopectenirradians.MarineEcologyProgress, 213: 39-52.Bibby B T and Dodge J D, 1972. The encystment of a freshwater dinoflagellate: a light and electron-microscopical study.BritishPhycologicalJournal, 7(1): 85-100.

Bolch C J S, 2001. PCR protocols for genetic identification of dinoflagellates directly from single cysts and plankton cells.Phycologia, 40(2): 162-167.

Bowers H A, Tengs T, Glasgow H B, Burkholder J M, Rublee P A and Oldach D W, 2000. Development of Real-Time PCR assays for rapid detection ofPfiesteriapiscicidaand related dinoflagellates.Applied&EnvironmentalMicrobiology, 66(11): 4641-4648.

Bravo I, Ramilo M L, Fernndez I and Martínez A, 2001. Toxin composition of the toxic dinoflagellateProrocentrumlimaisolated from different locations along the Galician coast (NW Spain).Toxicon, 39(10): 1537-1545.

Bravo I, Garcés E, Diogène J, Fraga S, Sampedro N and Figueroa R I, 2006. Resting cysts of the toxigenic dinoflagellate genusAlexandriumin recent sediments from the Western Mediterranean coast, including the first description of cysts ofA.kutneraeandA.peruvianum.EuropeanJournalofPhycology, 41(3): 293-302.

Bravo L, 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance.NutritionReviews, 56(11): 317-333.

Burkholder J M, Noga E J, Hobbs C H and Glasgow H B, Jr, 1992. New ‘phantom’ dinoflagellate is the causative agent of major estuarine fish kills.Nature, 358: 407-410.Chang F H, Anderson D M, Kulis D M and Till D G, 1997. Toxin production ofAlexandriumminutum(Dinophyceae) from the Bay of Plenty, New Zealand.Toxicon, 35(3): 393-409.Cowan R S and Michael F F, 2012. Challenges in the DNA barcoding of plant material∥Sucher N J, Hennell J R and Carles M C.PlantDNAFingerprintingandBarcoding. New York: Humana Press: 23-33.

Coyne K J and Cary S C, 2005. Molecular approaches to the investigation of viable dinoflagellate cysts in natural sediments from estuarine environments.TheJournalofEukaryoticMicrobiology, 52(2): 90-94.

Coyne K J, Hare C E, Popels L C, Hutchins D A and Cary S C, 2006. Distribution ofPfiesteriapiscicidacyst populations in sediments of the Delaware Inland Bays, USA.HarmfulAlgae, 5(4): 363-373.

Dale B, 1983. Dinoflagellate resting cysts: "benthic plankton"∥Fryxell G A.SurvivalStrategiesoftheAlgae. Cambridge: Cambridge University Press: 69-144.

Erdner D L, Percy L, Keafer B, Lewis J and Anderson D M, 2010. A quantitative real-time PCR assay for the identification and enumeration ofAlexandriumcysts in marine sediments.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 57(3/4): 279-287.

Fuentes-Grünewald C, Garcés E, Alacid E, Sampedro N, Rossi S and Camp J, 2012. Improvement of lipid production in the marine strainsAlexandriumminutumandHeterosigmaakashiwoby utilizing abiotic parameters.JournalofIndustrialMicrobiology&Biotechnology, 39(1): 207-216.

Fuentes-Grünewald C, Garcés E, Rossi S and Camp J, 2009. Use of the dinoflagellateKarlodiniumveneficumas a sustainable source of biodiesel production.JournalofIndustrialMicrobiology&Biotechnology, 36(9): 1215-1224.

Gárate-Lizárraga I, López-Cortes D J, Bustillos-Guzmán J J and Hernández-Sandoval F, 2004. Blooms ofCochlodiniumpolykrikoides(Gymnodiniaceae) in the Gulf of California, Mexico.RevistadeBiologicaTropical, 52(S1): 51-58.

Gárate-Lizárraga I, Muetón-Gómez M S, Pérez-Cruz B and Díaz-Ortíz J A, 2014. Bloom ofGonyaulaxspinifera(Dinophyceae Gonyaulacales) in ensenada de la pazlagoon, gulf of California.CICIMAROceánides, 29(1): 11-18.

Gacutan R Q, Tabbu M Y, Aujero E J and Icatlo F, Jr, 1985. Paralytic shellfish poisoning due toPyrodiniumbahamensevar.compressain Mati, Davao Oriental, Philippines.MarineBiology, 87(3): 223-227.

Gao Y, Yu R C, Chen J H, Zhang Q C, Kong F Z and Zhou M J, 2015. Distribution ofAlexandriumfundyenseandA.pacificum(Dinophyceae) in the Yellow Sea and Bohai Sea.MarinePollutionBulletin, 96(1/2): 210-219.

Gayoso A M and Fulco V K, 2006. Occurrence patterns ofAlexandriumtamarense(Lebour) Balech populations in the Golfo Nuevo (Patagonia, Argentina), with observations on ventral pore occurrence in natural and cultured cells.HarmfulAlgae, 5(3): 233-241.

Geider R and Roche J L, 2002. Redfield revisited: variability of C∶N∶P in marine microalgae and its biochemical basis.EuropeanJournalofPhycology, 37(1): 1-17.

Godhe A, Otta S K, Rehnstam-Holm A S, Karunasagar I and Karunasagar I, 2001. Polymerase chain reaction in detection ofGymnodiniummikimotoiandAlexandriumminutumin field samples from southwest India.MarineBiotechnology, 3(2): 152-162.

Godhe A, Rehnstam-Holm A F, Karunasagar I and Karunasagar I, 2002. PCR detection of dinoflagellate cysts in field sediment samples from tropic and temperate environments.HarmfulAlgae, 1(4): 361-373.

Gómez F, 2012. A quantitative review of the lifestyle, habitat and trophic diversity of dinoflagellates (Dinoflagellata, Alveolata).Systematics&Biodiversity, 10(3): 267-275.

Granéli E and Turner J T, 2006.EcologyofHarmfulAlgae:EcolgogicalStudies. Berlin: Springer.

Gribble K E and Anderson D M, 2006. Molecular phylogeny of the heterotrophic dinoflagellates,Protoperidinium,DiplopsalisandPreperidinium(Dinophyceae), inferred from large subunit rDNA.JournalofPhycology, 42(5): 1081-1095.

Gu H F, 2011. Morphology, phylogenetic position, and ecophysiology ofAlexandriumostenfeldii(Dinophyceae) from the Bohai Sea, China.JournalofSystematicsandEvolution, 49(6): 606-616.

Gu H F, Zeng N, Liu T T, Yang W D, Müller A and Krock B, 2013a. Morphology, toxicity, and phylogeny ofAlexandrium(Dinophyceae) species along the coast of China.HarmfulAlgae, 27: 68-81.

Gu H F, Zeng N, Xie Z X, Wang D Z, Wang W G and Yang W D, 2013b. Morphology, phylogeny, and toxicity ofAtamacomplex (Dinophyceae) from the Chukchi Sea.PolarBiology, 36(3): 427-436.

Gu H F, Liu T T, Vale P and Luo Z H, 2013c. Morphology, phylogeny and toxin profiles ofGymnodiniuminusitatumsp. nov.,GymnodiniumcatenatumandGymnodiniummicroreticulatum(Dinophyceae) from the Yellow Sea, China.HarmfulAlgae, 28: 97-107.

Hallegraeff G M, Mccausland M A and Brown R K, 1995. Early warning of toxic dinoflagellate blooms ofGymnodiniumcatenatumin southern Tasmanian waters.JournalofPlanktonResearch, 17(6): 1163-1176.

Hansen G, Daugbjerg N and Franco J M, 2003. Morphology, toxin composition and LSU rDNA phylogeny ofAlexandriumminutum(Dinophyceae) from Denmark, with some morphological observations on other European strains.HarmfulAlgae, 2(4): 317-335.

Harding J M, Mann R, Moeller P and Hsia M S, 2009. Mortality of the veined rapa whelk,Rapanavenosa, in relation to a bloom ofAlexandriummonilatumin the York River, United States.JournalofShellfishResearch, 28(2): 363-367.

John U, Litaker R W, Montresor M, Murray S, Brosnahan M L and Anderson D M, 2014a. Formal revision of theAlexandriumtamarensespecies complex (Dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification.Protist, 165(6): 779-804.

John U, Litaker R W, Montresor M, Murray S, Brosnahan M L and Anderson D M, 2014b. Proposal to reject the nameGonyaulaxcatenella(Alexandriumcatenella) (Dinophyceae).Taxon, 63(4): 932-933.

Joyce L B, Pitcher G C, du Randt A and Monteiro P M S, 2005. Dinoflagellate cysts from surface sediments of Saldanha Bay, South Africa: an indication of the potential risk of harmful algal blooms.HarmfulAlgae, 4(2): 309-318.

Juhl A R, 2005. Growth rates and elemental composition ofAlexandriummonilatum, a red-tide dinoflagellate.HarmfulAlgae, 4(2): 287-295.

Kamikawa R, Nagai S, Hosoi-Tanabe S, Itakura S, Yamaguchi M, Uchida Y, Baba T and Sako Y, 2007. Application of real-time PCR assay for detection and quantification ofAlexandriumtamarenseandAlexandriumcatenellacysts from marine sediments.HarmfulAlgae, 6(3): 413-420.

Kim D, Oda T, Muramatsu T, Kim D, Matsuyama Y and Honjo T, 2002. Possible factors responsible for the toxicity ofCochlodiniumpolykrikoides, a red tide phytoplankton.ComparativeBiochemistryandPhysiologyPartC:Toxicology&Pharmacology, 132(4): 415-423.

Kohli G S, Neilan B A, Brown M V, Hoppenrath M and Murray S A, 2014. Cob gene pyrosequencing enables characterization of benthic dinoflagellate diversity and biogeography.EnvironmentalMicrobiology, 16(2): 467-485.Kremp A, Lindholm T, Dreβler N, Erler K, Gerdts G, Eirtovaara S and Leskinen E, 2009. Bloom formingAlexandriumOstenfeldii(dinophyceae) in shallow waters of the ?land Archipelago, Northern Baltic Sea.HarmfulAlgae, 8(2): 318-328.Kremp A, Tahvanainen P, Litaker W, Krock B, Suikkanen S, Leaw C P and Tomas C, 2014. Phylogenetic relationships, morphological variation, and toxin patterns in theAlexandriumostenfeldii(Dinophyceae) complex: implications for species boundaries and identities.JournalofPhycology, 50(1): 81-100.

Krock B, Seguel C G and Cembella A D, 2007. Toxin profile ofAlexandriumcatenellafrom the Chilean coast as determined by liquid chromatography with fluorescence detection and liquid chromatography coupled with tandem mass spectrometry.HarmfulAlgae, 6(5): 734-744.Lage S and Costa P R, 2013. Paralytic shellfish toxins in the Atlantic horse mackerel (Trachurustrachurus) over a bloom ofGymnodiniumcatenatum: the prevalence of decarbamoylsaxitoxin in the marine food web.ScientiaMarina, 77(1): 13-17.Lan D Z, Li C, Fang Q and Gu H F, 2003. Preliminary study on taxonomy of dinoflagellate cysts from major estuary and bays of Fujian Province, China.ActaOceanologicaSinica, 22(3): 395-406.

Lilly E L, Kulis D M, Gentien P and Anderson D M, 2002. Paralytic shellfish poisoning toxins in France linked to a human-introduced strain ofAlexandriumcatenellafrom the western Pacific: evidence from DNA and toxin analysis.JournalofPlanktonResearch, 24(5): 443-452.

Lilly E L, Halanych K M and Anderson D M, 2007. Species boundaries and global biogeography of theAlexandriumtamarensecomplex (Dinophyceae).JournalofPhycology, 43(6): 1329-1338.Lim P T, Usup G and Leaw C P, 2012. Harmful algal blooms in Malaysian waters.SainsMalaysiana, 41(12): 1509-1515.Lim P T, Usup G, Leaw C P and Ogata T, 2005. First report ofAlexandriumtayloriandAlexandriumperuvianum(Dinophyceae) in Malaysia waters.HarmfulAlgae, 4(2): 391-400.Lin S J, Zhang H, Hou Y B, Miranda L and Bhattacharya D, 2006. Development of a dinoflagellate-oriented PCR primer set leads to detection of picoplanktonic dinoflagellates from Long Island Sound.Applied&EnvironmentalMicrobiology, 72(8): 5626-5630.

Lin S J, Zhang H, Hou Y, Zhuang Y B and Miranda L, 2009. High-level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial cox1 and cob genes for dinoflagellate DNA barcoding.Applied&EnvironmentalMicrobiology, 75(5): 1279-1290.

Liu T T, Gu H F, Mertens K N and Lan D Z, 2014. New dinoflagellate speciesProtoperidiniumhaizhouensesp. nov. (Peridiniales, Dinophyceae), its cyst-theca relationship and phylogenetic position within the Monovela group.PhycologicalResearch, 62(2): 109-124.MacIntyre J G, Cullen J J and Cembella A D, 1997. Vertical migration, nutrition and toxicity in the dinoflagellateAlexandriumtamarense.MarineEcologyProgressSeries, 148: 201-216.Mackenzie L, White D, Oshima Y and Kapa J, 1996. The resting cyst and toxicity ofAlexandriumostenfeldii(Dinophyceae) in New Zealand.Phycologia, 35(2): 148-155.

Marr J C, Jackson A E and McLachlan J L, 1992. Occurrence ofProrocentrumlima, a DSP toxin-producing species from the Atlantic coast of Canada.JournalofAppliedPhycology, 4(1): 17-24.

Martins C A, Kulis D, Franca S and Anderson D M, 2004. The loss of PSP toxin production in a formerly toxicAlexandriumlusitanicumclone.Toxicon, 43(2): 195-205.

Matsuoka K and Fukuyo Y, 2000.TechnicalGuideforModernDinoflagellateCystStudy. Tokio, Japan: WESTPAC-HAB Japanese Society for the Promotion of Science.Mertens K, 2013. Morphological variation in dinoflagellate cysts: current status and future challenges∥AASP-CAP-NAMS-CIMP-DINO10JointMeeting. San Francisco: Universiteit Gent: 137.Mertens K N, Ribeiro S, Bouimetarhan I, Caner H, Nebout N C, Dale B, de Vernal A, Ellegaard M, Filipova M, Godhe A, Goubert E, Gr?sfjeld K, Holzwarth U, Kotthoff U, Leroy S A G, Londeix L, Marret F, Matsuoka K, Mudie P J, Naudts L, Pea-Manjarrez J L, Persson A, Popescu S M, Pospelova V, Sangiorgi F and van der Meer M T J, 2009. Process length variation in cysts of a dinoflagellate,Lingulodiniummachaerophorum, in surface sediments: investigating its potential as salinity proxy.MarineMicropaleontology, 70(1/2): 54-69.

Mertens K N, Dale B, Ellegaard M, Jansson I, Godhe A, Kremp A and Louwye S, 2011. Process length variation in cysts of the dinoflagellateProtoceratiumreticulatum, from surface sediments of the Baltic-Kattegat-Skagerrak estuarine system: a regional salinity proxy.Boreas, 40(2): 242-255.

Mertens K N, Wolny J, Carbonell-Moore C, Bogus K, Ellegaard M, Limoges A, de Vernal A, Gurdebeke P, Omura K, Al-Muftah A and Matsuoka K, 2015. Taxonomic re-examination of the toxic armored dinoflagellatePyrodiniumbahamenseplate 1906: can morphology or LSU sequencing separateP.bahamensevar.compressumfrom var.bahamense.HarmfulAlgae, 41: 1-24.Morales-Ramírez A, Víquez R, Rodríguez K and Vargas M, 2001. Red tide bloom produced byLingulodiniumpolyedrum(Peridiniales, Dinophyceae) in Bahía Culebra, Papagayo Gulf, Costa Rica.RevistaDeBiologiaTropical, 49(S2): 19-23.Morquecho L, Alonso-Rodríguez R and Martínez-Tecuapacho G A, 2014. Cyst morphology, germination characteristics, and potential toxicity ofPyrodiniumbahamensein the Gulf of California.BotanicaMarina, 57(4): 303-314.

Morton S L and Villareal T A, 1998. Bloom ofGonyaulaxpolygrammaStein (Dinophyceae) in a coral reef Mangrove Lagoon, Douglas Cay, Belize.BulletinofMarineScience, 63(3): 639-642.

Nakanishi K, Masao A, Sako Y, Ishida Y, Muguruma H and Karube I, 1996. Detection of the red tide-causing planktonAlexandriumaffineby a piezoelectric immunosensor using a novel method of immobilizing antibodies.AnalyticalLetters, 29(8): 1247-1258.

Nguyen-Ngoc L, 2004. An autecological study of the potentially toxic dinoflagellateAlexandriumaffineisolated from Vietnamese waters.HarmfulAlgae, 3(2): 117-129.

Ogata T, Pholpunthin P, Fukuyo Y and Kodama M, 1990. Occurrence ofAlexandriumcohorticulain Japanese coastal water.JournalofAppliedPhycology, 2(4): 351-356.

Orlova T Y, Selina M S, Lilly E L, Kulis D M and Anderson D M, 2007. Morphogenetic and toxin composition variability ofAlexandriumtamarense(dinophyceae) from the east coast of russia.Phycologia, 46(5): 534-548.

Oshima Y, Blackburn S I and Hallegraeff G M, 1993. Comparative study on paralytic shellfish toxin profiles of the dinoflagellateGymnodiniumcatenatumfrom three different countries.MarineBiology, 116(3): 471-476.

Oshima Y, Bolch C J and Hallegraeff G M, 1992. Toxin composition of resting cysts ofAlexandriumtamarense(Dinophyceae).Toxicon, 30(12): 1539-1544.

Pan X F, Zhang Y and Liu J T, 2007. Dynamic and correlative analysis of theGonyaulaxpolygrammared tide in Haizhou Gulf.MarineEnvironmentalScience, 26(6): 523-526.

Pan Y, Cembella A D and Quilliam M A, 1999. Cell cycle and toxin production in the benthic dinoflagellateProrocentrumlima.MarineBiology, 134(3): 541-549.

Paz B, Riobó P, Fernndez M L, Fraga S and Franco J M, 2004. Production and release of yessotoxins by the dinoflagellatesProtoceratiumreticulatumandLingulodiniumpolyedrumin culture.Toxicon, 44(3): 251-258.

Penna A, Battocchi C, Garcés E, Anglès S, Cucchiari E, Totti C, Kremp A, Satta C, Giacobbe M G, Bravo I and Bastianini M, 2010. Detection of microalgal resting cysts in European coastal sediments using a PCR-based assay.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 57(3/4): 288-300.

Potvin M and Lovejoy C, 2009. PCR-based diversity estimates of artificial and environmental 18S rRNA gene libraries.TheJournalofEukaryoticMicrobiology, 56(2): 174-181.

Rhodes L, Mcnabb P, de Salas M, Briggs L, Beuzenberg V and Gladstone M, 2006. Yessotoxin production byGonyaulaxspinifera.HarmfulAlgae, 5(2): 148-155.

Sako Y, Kim C H and Ishida Y, 1992. Mendelian inheritance of paralytic shellfish poisoning toxin in the marine dinoflagellateAlexandriumcatenella.Bioscience,Biotechnology, &Biochemistry, 56(4): 692-694.

Satake M, Mackenzie L and Yasumoto T, 1998. Identification ofProtoceratiumreticulatumas the biogenetic origin of yessotoxin.NaturalToxins, 5(4): 164-167.Scholin C A, Buck K R, Britschgi T, Cangelosi G and Chavez F P, 1996. Identification ofPseudo-nitzschiaaustralis(Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats.Phycologia, 35(3): 190-197.Scholin C A, Herzog M, Sogin M and Anderson D M, 1994. Identification of group- and strain-specific genetic markers for globally distributedAlexandrium(Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene.JournalofPhycology, 30(6): 999-1011.

Schwinghamer P, Hawryluk M, Powell C and MacKenzie C H, 1994. Resuspended hypnozygotes ofAlexandriumfundyenseassociated with winter occurrence of PSP in inshore Newfoundland waters.Aquaculture, 122(2): 171-179.

Shokralla S, Zhou X, Janzen D H, Hallwachs W, Landry J F, Jacobus L M and Hajibabaei M, 2011. Pyrosequencing for mini-barcoding of fresh and old museum specimens.PLoSONE, 6(7): e21252.Steidinger K A, Tester L S and Taylor F J R, 1980. A redescription ofPyrodiniumbahamensevar.compressa(B?hm) stat. nov. from Pacific red tides.Phycologia, 19(4): 329-334.Stock C A, McGillicuddy D J, Jr, Solow A R and Anderson D M, 2005. Evaluating hypotheses for the initiation and development ofAlexandriumfundyenseblooms in the western gulf of maine using a coupled physical-biological model.Deep-SeaResearchPartII:TopicalStudiesinOceanography, 52: 2715-2744.Takano Y and Horiguchi T, 2004. Surface ultrastructure and molecular phylogenetics of four unarmored heterotrophic dinoflagellates, including the type species of the genusGyrodinium(Dinophyceae).PhycologicalResearch, 52(2): 107-116.Tang Y Z, Harke M J and Gobler C J, 2013. Morphology, phylogeny, dynamics, and ichthyotoxicity ofPheopolykrikoshartmannii(Dinophyceae) isolates and blooms from New York, USA.JournalofPhycology, 49(6): 1084-1094.

Taylor F J R and Gaines G, 1989. Dinoflagellate cyst morphology: an analysis based on laboratory observations of encystment∥Okaichi T, Anderson D M and Nemto T.RedTides:Biology,EnvironmentalScience,andToxicology. Amsterdam: Elservier: 295-296.

Tomas C R and Smayda T J, 2008. Red tide blooms ofCochlodiniumpolykrikoidesin a coastal cove.HarmfulAlgae, 7(3): 308-317.

Vila M, Giacobbe M G, Masó M, Gangemi E, Penna A, Sampedro N, Azzaro F, Camp J and Galluzzi L, 2005. A comparative study on recurrent blooms ofAlexandriumminutumin two Mediterranean coastal areas.HarmfulAlgae, 4(4): 673-695.

Wang L, Zhuang Y Y, Zhang H, Lin X and Lin S J, 2014. DNA barcoding species inAlexandriumtamarensecomplex using ITS and proposing designation of five species.HarmfulAlgae, 31: 100-113.

Wang Z F, Yu Z M, Song X X, Cao X H and Zhang Y, 2014. Effects of ammonium and nitrate on encystment and growth ofScrippsiellatrochoidea.ChineseScienceBulletin, 59(33): 4491-4497.

Wilcox D C, 1998.TurbulenceModelingforCFD. 2nd ed. CA, Canada: DCW Industries.

Wisessang S, Ogata T, Kodama M, Fukuyo Y, Ishimaru T, Saitanu K, Yongvanich T and Piyakarnchana T, 1991. Accumulation of paralytic shellfish toxins by green musselPernaviridisby feeding on cultured cells ofAlexandriumcohorticulaisolated from the Gulf of Thailand.NipponSuisanGakkaishi, 57(1): 127-131.

Yamaguchi A and Horiguchi T, 2005. Molecular phylogenetic study of the heterotrophic dinoflagellate genusProtoperidinium(Dinophyceae) inferred from small subunit rRNA gene sequences.PhycologicalResearch, 53(1): 30-42.

Yamaguchi M, Itakura S, Imai I and Ishida Y, 1995. A rapid and precise technique for enumeration of resting cysts ofAlexandriumspp.(Dinophyceae) in natural sediments.Phycologia, 34(3): 207-214.

Yasumoto T and Murata M, 1993. Marine toxins.ChemicalReviews, 93(5): 1897-1909.

Zhan A B, Hulak M, Sylvester F, Huang X T, Adebayo A A, Abbott C L, Adamowicz S J, Heath D D, Cristescu M E and MacIsaac H J, 2013. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities.MethodsinEcologyandEvolution, 4(6): 558-565.

Zhan A B and MacIsaac H J, 2015. Rare biosphere exploration using high-throughput sequencing: research progress and perspectives.ConservationGenetics, 16(3): 513-522.

Zhou M J, Li J, Luckas B, Yu R C, Yan T, Hummert C and Kastrup S, 1999. A recent shellfish toxin investigation in China.MarinePollutionBulletin, 39: 331-334.

Zonneveld K A F and Dale B, 1994. The cyst-motile stage relationships ofProtoperidiniummonospinum(Paulsen) zonneveld et dale comb. nov. andGonyaulaxverior(Dinophyta, Dinophyceae) from the Oslo Fjord (Norway).Phycologia, 33(5): 359-368.

(責任編輯:楊郁霞)

Research progress on identification of harmful dinoflagellate cysts:A review

Yang-chun GAO1, Yan-hong DONG2, Hai-tao LI2, Ai-bin ZHAN1*

1ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China;2SouthChinaSeaEnvironmentalMonitoringCenter,StateOceanicAdministration,Guangzhou,Guangdong510300,China

Harmful dinoflagellate cysts refer to cysts derived from dinoflagellates that can produce toxins and (or) cause harmful dinoflagellate blooms. So far, 18 species in 10 genera have been recorded along coasts of China seas, accounting for three quarters of the total number of harmful dinoflagellate cysts globally. These harmful dinoflagellate cysts are widely distributed along Chinese coasts. Harmful dinoflagellate cysts largely threaten marine ecosystems, aquaculture industries and even human health. Consequently, the study of diversity and distributions of harmful dinoflagellate cysts has become a hotspot in marine biology and ecology. The identification of harmful dinoflagellate cysts is crucial for sea food safety inspection and prediction of harmful dinoflagellate blooms. However, accurate identification represents a big challenge, mainly owing to limited available morphological features of harmful dinoflagellate cysts. Here we review research progress on harmful dinoflagellate cysts on Chinese coasts, including their negative impacts, diversity and geographical distributions, and species identification of harmful dinofagellate cysts. In addition, we suggest that it is nececarry to ultilize multiple methods including those based on morphology and molecular biology, as well as methods based on toxicology and reproductive biology, to accurately identify harmful dinoflagellate cysts.

harmful dinoflagellate cyst; morphological characteristics; molecular identification

2015-12-04 接受日期(Accepted): 2015-12-27

中國科學院“百人計劃”項目; 南海區海洋環境質量綜合評估方法[DOMEP(MEA)-01-03]

高養春, 男, 博士研究生。 研究方向: 分子生態學與入侵生物學。 E-mail: gaoyc0412@163.com

*通訊作者(Author for correspondence), E-mail: azhan@rcees.ac.cn, zhanaibin@hotmail.com

10. 3969/j.issn.2095-1787.2016.04.002

猜你喜歡
孢囊甲藻種間
福建福寧灣表層沉積物中甲藻孢囊分布與多樣性研究*
三峽庫區支流花溪河浮游植物種間關聯及影響因子分析
浙江象山港表層沉積物中甲藻孢囊多樣性與分布研究
養只恐龍當寵物
疑似甲藻水華監測及應急管理探究
印度南瓜與中國南瓜種間雜交試驗
朝鮮孢囊線蟲——浙江省孢囊線蟲新記錄種
基于羥基自由基高級氧化快速殺滅錐狀斯氏藻孢囊的研究
江蘇省宜興市茶園秋季雜草種間生態關系及群落分類
寇氏隱甲藻突變株發酵條件的響應面優化
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合