?

廣西潿洲島底棲蠣甲藻(Ostreopsis sp.)的產毒特性研究

2017-06-15 15:28鄭季平李群呂頌輝岑競儀李愛峰邱江兵
生態環境學報 2017年4期
關鍵詞:甲藻粗提物株系

鄭季平,李群,呂頌輝*,岑競儀*,李愛峰,邱江兵

1. 暨南大學赤潮與海洋生物學研究中心,廣東 廣州 510632;2. 中國海洋大學環境科學與工程學院,山東 青島 266100

廣西潿洲島底棲蠣甲藻(Ostreopsis sp.)的產毒特性研究

鄭季平1,李群1,呂頌輝1*,岑競儀1*,李愛峰2,邱江兵2

1. 暨南大學赤潮與海洋生物學研究中心,廣東 廣州 510632;2. 中國海洋大學環境科學與工程學院,山東 青島 266100

蠣甲藻屬(Ostreopsis Schmidt)部分種類可以產生劇毒的??舅兀≒alytoxins,PLTXs),對海洋生態環境和人類健康構成嚴重威脅,而國內迄今尚無關于蠣甲藻毒性的研究報道,因此對采自廣西潿洲島同一種蠣甲藻的兩個株系(WZD110、WZD111)進行了產毒特性研究。在小鼠生物毒性實驗中,腹腔注射兩株藻的毒素粗提取物后,小鼠均出現后腰凹陷、運動減少和抽搐等癥狀,并于短時間內死亡,呈現明顯的PLTXs中毒特征。兔血細胞溶血活性實驗結果表明,毒素粗提取物具有延遲溶血的效果,且在加入PLTXs特異抑制劑烏本苷后,延遲溶血活性被抑制。液相色譜-質譜聯用毒素定性定量分析結果顯示,WZD110株單位細胞PLTXs質量為0.348 pg·cell-1,WZD111株單位細胞PLTXs質量為0.081 pg·cell-1,兩株系均含有較高濃度的OVTX-c和OVTX-d/e,以及少量的OVTX-g和OVTX-f。文章關于蠣甲藻胞內毒素的報道在中國海域的此類研究尚屬首次,可為正確認識和評價蠣甲藻赤潮產生的危害提供參考依據。

蠣甲藻;??舅?;液相色譜-串聯質譜;潿洲島

蠣甲藻屬(Ostreopsis Schmidt)是海洋底棲甲藻的重要門類,廣泛分布于熱帶、亞熱帶和溫帶海域,常附著于海底大型藻類、珊瑚、沙子、石頭和無脊椎動物等表面,大量繁殖時會在附著基質上形成一層紅棕色薄膜,緊緊黏附在附著基質的體表,且聚集的細胞可隨波浪、潮汐等向上方水體擴散,形成肉眼可見的藻華(Vila et al.,2001;Aligizaki et al.,2006;Shears et al.,2009)。蠣甲藻在地中海和新西蘭海域暴發赤潮,造成無脊椎動物大量死亡(Totti et al.,2010;Shears et al.,2009)。因此,蠣甲藻對海洋底棲生態系統和浮游生態系統都能產生負面效應,且影響范圍較大。

目前確認的蠣甲藻屬種類共11種,其中,卵圓蠣甲藻(O. cf. ovata)、暹羅蠣甲藻(O. cf. siamensis)、馬斯克林蠣甲藻(O. mascarenensis)和法托魯索蠣甲藻(O. fattorussoi)被確認可以產生??舅兀≒alytoxins,PLTXs)(Ciminiello et al.,2008;Ukena et al.,2001;Lenoir et al.,2004;Accoroni et al.,2016;Tartaglione et al.,2016),而菱鏡蠣甲藻(O. lenticularis)、七角蠣甲藻(O. heptagona)和羅茲蠣甲藻(O. rhodesae)雖具有毒性,但毒素結構未知(Tindall et al.,1990;Norris et al.,1985;Verma et al.,2016)。此外,Sato et al.(2011)及Tawong et al.(2014)采用分子生物學方法確立的產自日本、泰國的另外7個獨立株系都具有毒性。

PLTXs最早分離自夏威夷島分布的一種毒沙群??≒alythoa toxica)(Moore et al.,1971),是已知毒性最強的非蛋白類藻毒素之一,被列為最大的非聚合天然產物之一(Ciminiello et al.,2011)。目前分離確定的PLTXs成分包括卵圓蠣甲藻毒素(ovatoxins,OVTXs)、馬斯克林蠣甲藻毒素(mascarenotoxins,McTXs)和蠣甲藻素(ostreocins)等(Tartaglione et al.,2016;Lenoir et al.,2004;Usami et al.,1995;Ukena et al.,2001)。PLTXs以氣溶膠的形式被吸入或者通過皮膚直接接觸進入人體,引起呼吸困難、發熱和眼部不適等癥狀(Gallitelli et al.,2005;Ciminiello et al.,2014)。2005年,意大利地中海沿岸200余人因吸入含PLTXs氣溶膠而身體不適就醫(Durando et al.,2007)。Thakur et al.(2017)報道了一例由于吸入PLTXs中毒造成急性呼吸衰竭的臨床病例。此外,PLTXs還可以通過食物網富集在一些生物體內,包括甲殼類、貝類、魚類和棘皮動物等,進而導致人體中毒(Rhodes et al.,2002;Taniyama et al.,2002;Aligizaki et al.,2011;Amzil et al.,2012)。2014年,中國臺灣報道了一起因食用染PLTXs毒素的金斑鯡魚(Goldspot herring)而中毒事件,其中一人死亡(Wu et al.,2014)。

蠣甲藻嚴重危害生態系統安全及人類健康,成為世界性研究熱點(Berdalet et al.,2012)。在中國海域,陳國蔚(1989)報道西沙群島存在O. siamensis。然而,迄今國內尚無對蠣甲藻相關毒素的研究報道。本文綜合運用小鼠生物法、溶血分析法和液相色譜-質譜聯用法(LC-MS)對采集自廣西潿洲島的兩株蠣甲藻的產毒特性進行了系統研究,試圖揭示該海域蠣甲藻毒素的毒性特征、毒素組成及其含量,以期為有毒底棲甲藻的研究奠定基礎。

1 材料與方法

1.1 藻種采集和培養

實驗用蠣甲藻為同種兩個株系WZD110和WZD111(形態、分子特征一致,數據待發表),采集于廣西潿洲島,活體藻株保存于暨南大學赤潮與海洋生物學研究中心藻種庫。實驗用藻采用L1培養基(Guillard et al.,1993)培養,培養溫度為(25±1)℃,鹽度為(30±1),光暗周期比為12∶12,光照150 μmol·m-2·s-1。隔天固定時間取樣,于顯微鏡下用100 μL浮游植物計數框進行藻細胞計數,繪制生長曲線,確定其生長周期。

1.2 毒素粗提取

取處于穩定期中后期的藻液,以過濾方式收集藻細胞,用體積比為1∶1的甲醇-水混合液重懸,藻液經超聲破碎儀冰浴破碎3 min,強度20%,間隔0.2 s,再將藻液置于離心管中以11000 r·min-1離心3 min,取上清液即為毒素粗提物,保存于-20 ℃冰箱備用。

1.3 生物毒性測試方法

1.3.1 小鼠生物毒性實驗

實驗選擇同一批次的健康昆明系小鼠(KM小鼠),雄性,清潔級(SPF級),每只(22±2)g,購于廣東省醫學實驗動物中心。飼養于暨南大學實驗動物管理中心,光暗周期比為12∶12,溫度為(25±2)℃。實驗期間為其供應標準的嚙齒類動物食物和純水。

將毒素粗提物旋轉蒸發,干燥后溶解于含1% Tween-60的生理鹽水中,將動物隨機分為3組,每組3只,包括1個對照組,2個實驗組(A和B),對照組每只小鼠腹腔注射1 mL含有1% Tween-60的生理鹽水,實驗組A每只小鼠腹腔注射經上述處理后的WZD110毒素粗提物1 mL,實驗組B每只小鼠腹腔注射經上述處理后的WZD111毒素粗提物1 mL。注射后1 h內不間斷觀察,詳細記錄小鼠癥狀及出現時間,之后每30分鐘觀察1次。

1.3.2 兔血紅細胞溶血實驗

實驗參考前人方法(Bignami,1993;Riobo et al.,2008a;Aligizaki et al.,2008),并進行優化。

新鮮兔血取自暨南大學實驗動物管理中心新西蘭實驗兔,先離心將血紅細胞從血漿中分離,用檸檬酸等滲緩沖液清洗3次,然后用檸檬酸等滲緩沖液將兔血稀釋為體積分數(V/V)為0.4%的血紅細胞溶液,4 ℃下保存,并在7 d內完成實驗。

將WZD111毒素粗提物旋轉蒸發,干燥后溶解于檸檬酸等滲緩沖液中,實驗組為100 μL經上述處理的毒素+500 μL血紅細胞溶液+400 μL檸檬酸等滲緩沖液,對照組為100 μL經上述處理的毒素+500 μL含有1 mmol·L-1烏本苷的血紅細胞溶液+400 μL檸檬酸等滲緩沖液。實驗組和對照組均設置21個平行樣,于37 ℃下水浴,分別于0、15、30、60、120、180、240 min時,各取3個平行樣,1500 rpm離心30 s,取上清液用酶標儀在414 nm波長處測量吸光值。以時間為橫坐標,以吸光度增加值為縱坐標繪制曲線圖。

1.4 毒素的定性和定量分析

1.4.1 液相色譜-高分辨質譜聯用(LC-HRMS)分析

將毒素粗提物旋轉蒸發,干燥后溶解于5 mL體積比為1∶1的甲醇-水混合液中,再轉移至10 kDa超濾離心管中過濾,再過0.22 μm濾膜,收集濾液用于LC-HRMS及LC-MS/MS分析。

液相色譜條件:采用賽默飛高效液相色譜儀UltiMate3000,Luna C18色譜柱(50×2.1 mm,3 μm),柱溫35 ℃,采用兩相洗脫液,流動相A為超純水,流動相B為95%乙腈,兩者都含有50 m mol·L-1甲酸和2 m mol·L-1甲酸銨,流速為0.2 mL·min-1,進樣體積5 μL。洗脫方式:0~7 min,25%~100% B,7~10 min,100% B,10~10.5 min,100%~25% B,10.5~16 min,25% B。

質譜條件:Bruker maXis質譜儀,ESI離子源,采用正離子模式在質荷比m/z 300~2900范圍內進行全掃描檢測。毛細管電壓4.0 kV,干燥器溫度180 ℃,干燥器流速6.0 L·min-1。

1.4.2 液相色譜-串聯質譜(LC-MS/MS)分析

液相色譜條件:Agilent 1100(美國)高效液相色譜儀,選用Phenomenex Gemini C18柱(150 mm×2.00 mm,3 μm),流動相A為超純水,流動相B為100%乙腈。洗脫方式:0~2 min,20%~100% A;2~8 min,100% A;8~8.1 min,100%~20% A;8.1~18 min,20% A。流速:0.2 mL·min-1,柱溫20 ℃,進樣體積20 μL。

質譜條件:API4000 QTRAP質譜儀(AB Sciex,美國),采用電噴霧電離(ESI)離子源,檢測方式為多反應監測(Multiple reaction monitoring,MRM),霧化氣、干燥氣均為氮氣(N2)。定量變遷離子對選取1332.1/327.1,定性變遷離子對選取1341.1/327.1,1352.1/327.1作為參照。經進樣優化后,質譜各參數詳見表1。

表1 質譜參數值Table 1 The parameters of mass spectrometry

PLTXs標準曲線建立:PLTXs標準品(putative palytoxin,pPLTX)購自于日本Wako公司。用體積比為1∶1的甲醇-水混合液將PLTXs標準品稀釋至10 mg·L-1,再配制質量濃度梯度為0.05、0.1、0.5、1、2、4、8和10 mg·L-1的PLTXs標準溶液,采用上述LC-MS/MS分析方法測定。以PLTXs質量濃度(mg·L-1)為橫坐標,以所測得的峰面積為縱坐標,繪制標準曲線。

2 結果

2.1 PLTXs的生物毒性

2.1.1 小鼠急性毒性

小鼠生物毒性實驗結果見表2。與對照組相比,實驗組A(WZD110)和實驗組B(WZD111)小鼠均表現出后腰凹陷、運動減少、抽搐和短時間內死亡等中毒癥狀,而對照組小鼠均無明顯癥狀。表明兩株蠣甲藻粗提物具有明顯的生物毒性。

2.1.2 PLTXs對兔血紅細胞的溶血效果

兔血細胞溶血實驗結果顯示,實驗組與對照組相比,WZD111株粗提物延遲溶血效果顯著,且烏本苷對其抑制效果明顯(圖1)。該藻株提取液溶血效果在不同反應時間存在明顯差異,在60~120min內,溶血效果顯著提升,說明藻株WZD111的毒素具有顯著的延遲溶血效應。

圖1 WZD111不同時間吸光度增加值(E:兔血紅細胞)Fig. 1 Absorbance value-added over time with WZD111 strain (E: erythrocyte)

表2 小鼠實驗癥狀Table 2 The symptoms of mouse bioassay

2.2 PLTXs定性定量檢測結果

2.2.1 定性檢測結果

PLTXs標準品經高分辨質譜分析,其多種碎片離子的測量值與理論精確質量數之間的偏差均在-5×10-6~5×10-6范圍內(見表3)。

毒素粗提取物的高分辨質譜分析結果顯示,WZD110樣品中含有相對高濃度的OVTX-c(m/z 1345.7319),提取離子的強度約為2500;其次是OVTX-d/e(m/z 1323.7461),提取離子的強度約為1000;還可能含有少量的OVTX-g(m/z 1307.7552)和OVTX-f(m/z 1329.7094)。WZD111樣品中含有相對高濃度的OVTX-c,提取離子的強度在2500~3000之間;其次是OVTX-d/e,提取離子的強度約為1300;還可能含有少量的OVTX-g和OVTX-f。

2.2.2 PLTXs標曲的線性關系與檢出限

梯度質量濃度的PLTXs標準品經LC-MS/MS檢測后得到標準曲線,其回歸方程及可決系數分別為Y=24144X-8308.7,r2=0.9908,其中,Y表示峰面積,X表示標準樣品質量濃度(單位:mg·L-1)。其峰面積和質量濃度有較好的線性關系,信噪比S/N為13.7,PLTXs定量限為0.05 mg·L-1。

2.2.3 定量檢測結果

PLTXs標準品的出峰時間在6.89 min左右(圖2A),藻株WZD110及WZD111通過LC-MS/MS檢測后,在保留時間內都出現了樣品峰(圖2B、圖2C),可證明這兩個株系中都存在PLTXs。計算得到WZD110毒素含量為0.348 pg·cell-1(收藻體積為5 L,總細胞數為5790000個),WZD111毒素含量為0.081 pg·cell-1(收藻體積為3 L,總細胞數為26775000個)。

3 討論與分析

3.1 蠣甲藻毒性及差異

小鼠生物實驗常被用來初步檢測蠣甲藻毒性,如Ostreopsis sp.(Aligizaki et al.,2008),Ostreopsis sp.和O. cf. ovata(Tawong et al.,2014),O. cf. ovata和O. cf. siamensis(Botana et al.,2013)。Riobo et al.(2008b)在蠣甲藻毒素粗提物小鼠生物研究中,總結了小鼠不同于其他海洋生物毒素的中毒癥狀,如運動減少、后肢拉伸、后腰凹陷、運動失調和抽搐等。這些中毒癥狀在不同地理株系的蠣甲藻小鼠實驗中都存在,如地中海東南部的O. ovata株系(Abdennadher et al.,2017),新西蘭的O. siamensis株系(Rhodes et al.,2002),西南印度洋的O. mascarenensis株系(Lenoir et al.,2004)。本研究中的兩株蠣甲藻粗提物均表現出較強的小鼠毒性,小鼠腹腔注射蠣甲藻粗提物后均出現后腰凹陷、后肢拉伸和抽搐等特征癥狀(表2)。小鼠腹腔注射1 min內均出現明顯反應,表明小鼠生物法檢測蠣甲藻毒素的靈敏性較高。注射等量WZD110毒素粗提取物的3只小鼠10 min之內全部死亡,死亡時間差別不大,但注射等量WZD111毒素粗提取物的小鼠中,1只在1 min內死亡,另外2只死亡時間分別為14 min和43 min,差別較大,可能是因為不同小鼠對PLTXs的耐受性差異較大。注射相同蠣甲藻毒素粗提取物的小鼠(平行樣之間)癥狀有差異,在其他文獻中已有報道(Sato et al.,2011;Tawong et al.,2014)。

PLTXs的溶血實驗是一個簡單、快速、靈敏的檢測方法(Riobo et al.,2008a),即使采用不同的血細胞也具有很高的再現性(Pezzolesi et al.,2012)。PLTXs主要作用位點為鈉鉀泵(Na+/K+-ATPase),造成細胞膜上離子通道的改變,具有延遲溶血的特性(Hilgemann,2003;Artigas et al.,2003)。烏本苷是PLTXs的特異性抑制劑,與PLTXs和鈉泵的結合位點一致(Habermann et al.,1982)。因此,這一特征被廣泛用于PLTXs的檢測(Pezzolesi et al.,2012;Brissard et al.,2014)。由圖1可見,此藻株粗提取毒素具有顯著的延遲溶血效果,并且可被烏本苷抑制,因此可判斷該株藻產生的毒素為PLTXs。

表3 ??舅貥藴势返馁|荷比Table 3 The m/z of palytoxin standard

圖2 ??舅厣V圖Fig. 2 The chromatograms of palytoxins

溶血實驗和小鼠生物實驗之間可以建立等效性,小鼠生物實驗是本研究神經毒素的傳統參考方法。溶血實驗大約比小鼠實驗敏感20倍,兩者各有優勢,小鼠生物實驗可以通過對動物的毒素反應來建立人類最大可接受劑量,溶血實驗可用于PLTXs的快速檢測(Riobo et al.,2008a)。

3.2 蠣甲藻胞內毒素及組成

廣西潿洲島WZD110和WZD111兩個蠣甲藻株系的PLTXs單位細胞毒素質量與古巴株、印度洋株、新西蘭株和地中海希臘株在數量級上基本一致,而與地中海意大利株和法國株差別很大(表4)。意大利株O. cf. ovata與法國株O. cf. ovata分別為44 pg·cell-1和300 pg·cell-1,也存在很大差異,這說明蠣甲藻藻株毒素水平差異可能既與藻種有關,又與地理分布有關。事實上,已經有研究報道藻株的毒性強弱更有賴于不同的地理分布和環境條件(Guerrini et al.,2010;Pistocchi et al.,2011)。

本研究中蠣甲藻的兩個株系雖然形態、分子特征均一致,毒素成分一致,但單位細胞毒素質量差異明顯。類似情況已有報道,如Suzuki et al.(2012)研究發現日本海沿岸不同株系產毒情況不同,即使處于系統發育樹上的同一支系藻株的單位細胞毒素質量都存在明顯差別。Accoroni et al.(2016)報道黎巴嫩海域五株O. fattorussoi株系單位細胞毒素質量情況,其中兩株未檢測到有毒素,另外3株檢出量分別為0.28、0.47、0.94 pg·cell-1,毒素成分一致但水平差異明顯。而采自塞浦路斯島的O. fattorussoi株系不僅毒素水平有差異,還含有上述黎巴嫩株系所沒有的毒素成分(OVTX-i,-j1,-j2,-k)(Tartaglione et al.,2016)。

近年來關于PLTXs類似物的報道越來越多,如Ciminiello et al.(2008;2010;2012)、García-Altares et al.(2015)、Brissard et al.(2015)、Tartaglione et al.(2016)陸續報道地中海蠣甲藻株系產生的PLTXs種類包括OVTX-a、OVTX-b、OVTX-c、OVTX-d、OVTX-e、OVTX-f、OVTX-g、OVTX-h、OVTX-i、OVTX-j1、OVTX-j2、OVTX-k和pPLTX等。Suzuki et al.(2012)對采自日本海域的蠣甲藻株系進行研究,檢測到一系列異于地中海株系PLTXs的同分異構體OVTX-aAC、-b AC、-d AC、-e AC。本研究發現兩個株系中含有較高濃度的OVTX-c和OVTX-d/e,以及少量的OVTX-g和OVTX-f,并未檢測到地中海株系中含量較高的OVTX-a。

表4 世界各地??舅睾亢统煞諸able 4 Palytoxins content and profile of Ostreopsis spp. around the world

4 結論

(1)蠣甲藻WZD110和WZD111株細胞具有明顯的PLTXs生物毒性,小鼠表現出后腰凹陷、抽搐癥狀和短時間內死亡等PLTXs中毒癥狀。

(2)蠣甲藻WZD111株毒素提取物表現出延遲溶血效果,且可被烏本苷抑制,進一步證實了PLTXs的存在。

(3)蠣甲藻WZD110和WZD111株所含毒素經液相色譜-質譜聯用定量分析,測得兩株藻單位細胞PLTXs質量分別為0.348 pg·cell-1和0.081 pg·cell-1。經高分辨質譜定性分析,發現兩株藻細胞內含有較高濃度的OVTX-c和OVTX-d/e,以及少量的OVTX-g和OVTX-f。

ABDENNADHER M, ZOUARI A B, SAHNOUN W F, et al. 2017. Ostreopsis cf. ovata in the Gulf of Gabès (south-eastern Mediterranean Sea): morphological, molecular and ecological characterization [J]. Harmful Algae, 63: 56-67.

ACCORONI S, ROMAGNOLI T, PENNA A, et al. 2016. Ostreopsis fattorussoi sp. nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the eastern Mediterranean Sea [J]. Journal of Phycology, 52(6): 1064-1084.

ALIGIZAKI K, KATIKOU P, MILANDRI A, et al. 2011. Occurrence of palytoxin-group toxins in seafood and future strategies to complement the present state of the art [J]. Toxicon, 57(3): 390-399.

ALIGIZAKI K, KATIKOU P, NIKOLAIDIS G, et al. 2008. First episode of shellfish contamination by palytoxin-like compounds from Ostreopsis species (Aegean Sea, Greece) [J]. Toxicon, 51(3): 418-427.

ALIGIZAKI K, NIKOLAIDIS G. 2006. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea, Greece [J]. Harmful Algae, 5(6): 717-730.

AMZIL Z, SIBAT M, CHOMERAT N, ET AL. 2012. Ovatoxin-a and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean coast [J]. Marine Drugs, 10(2): 477-496.

ARTIGAS P, GADSBY D C. 2003. Na+/K+-pump ligands modulate gating of palytoxin-induced ion channels [J]. Proceedings of the National Academy of Sciences of the United States of America, 100(2): 501-505.

BERDALET E, BRAVO I, EVANS J, et al. 2012. Global ecology and oceanography of harmful algal blooms, GEOHAB Core Research Project: HABs in benthic systems [M]. Paris and Newark: IOC of UNESCO and SCOR: 64.

BIGNAMI G S. 1993. A rapid and sensitive hemolysis neutralization assay for palytoxin [J]. Toxicon, 31(6): 817-820.

BOTANA L, FERNáNDEZ-ARAUJO A, ALFONSO A, et al. 2013. Warm seawater microalgae: Growth and toxic profile of Ostreopsis spp. from European costs [J]. Oceanography, 1(104): 2.

BRISSARD C, HERRENKNECHT C, SECHET V, et al. 2014. Complex toxin profile of French Mediterranean Ostreopsis cf. ovata strains, seafood accumulation and ovatoxins prepurification [J]. Marine Drugs, 12(5): 2851-2876.

BRISSARD C, HERVE F, SIBAT M, et al. 2015. Characterization of ovatoxin-h, a new ovatoxin analog, and evaluation of chromatographic columns for ovatoxin analysis and purification [J]. Journal of Chromatography A, 1388: 87-101.

CIMINIELLO P, DELL’AVERSANO C, IACOVO E D, et al. 2011. LC-MS of palytoxin and its analogues: state of the art and future perspectives [J]. Toxicon, 57(3): 376-389.

CIMINIELLO P, DELL’AVERSANO C, IACOVO E D, et al. 2014. First finding of Ostreopsis cf. ovata toxins in marine aerosols [J]. Environmental Science & Technology, 48(6): 3532-3540.

CIMINIELLO P, DELL'AVERSANO C, FATTORUSSO E, et al. 2008. Putative palytoxin and its new analogue, ovatoxin-a, in Ostreopsis ovata collected along the Ligurian coasts during the 2006 toxic outbreak [J]. Journal of The American Society for Mass Spectrometry, 19(1): 111-120.

CIMINIELLO P, DELL'AVERSANO C, IACOVO E D, et al. 2010 Complex palytoxin-like profile of Ostreopsis ovata. Identification of four new ovatoxins by high-resolution liquid chromatography/mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 24(18): 2735-2744.

CIMINIELLO P, DELL'AVERSANO C, IACOVO E D, et al. 2012. Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MS(n) characterization of ovatoxin-f, a new palytoxin congener [J]. Chemical Research in Toxicology, 25(6): 1243-1252.

DURANDO P, ANSALDI F, ORESTE P, et al. 2007. Ostreopsis ovata and human health: epidemiological and clinical features of respiratory syndrome outbreaks from a two-year syndromic surveillance, 2005-06, in north-west Italy [J]. Euro Surveill, 12(6): E070607.

GALLITELLI M, UNGARO N, ADDANTE L M, et al. 2005. Respiratory illness as a reaction to tropical algal blooms occurring in a temperate climate [J]. Jama, 293(21): 2595-2600.

GARCIA-ALTARES M, TARTAGLIONE L, DELL'AVERSANO C, et al. 2015. The novel ovatoxin-g and isobaric palytoxin (so far referred to as putative palytoxin) from Ostreopsis cf. ovata (NW Mediterranean Sea): structural insights by LC-high resolution MS(n.) [J]. Analytical and Bioanalytical Chemistry, 407(4): 1191-1204.

GIUSSANI V, SBRANA F, ASNAGHI V, et al. 2015. Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata [J]. Harmful Algae, 44: 46-53.

GUERRINI F, PEZZOLESI L, FELLER A, et al. 2010. Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas [J]. Toxicon, 55(2): 211-220.

GUILLARD R R L, HARGRAVES P E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte [J]. Phycologia, 32(3): 234-236.

HABERMANN E, CHHATWAL G. 1982. Ouabain inhibits the increase due to palytoxin of cation permeability of erythrocytes [J]. Naunyn-Schmiedeberg's archives of pharmacology, 319(2): 101-107.

HILGEMANN D W. 2003. From a pump to a pore: how palytoxin opens the gates [J]. Proceedings of the National Academy of Sciences, 100(2): 386-388.

LENOIR S, TEN-HAGE L, TURQUET J, et al. 2004. First Evidence of Palytoxin Analogues from An Ostreopsis mascarenensis (Dinophyceae) Benthic Bloom in Southwestern Indian Ocean [J]. Journal of Phycology, 40(6): 1042-1051.

LENOIR S, TEN-HAGE L, TURQUET J, et al. 2006. Characterisation of new analogues of palytoxin isolated from an Ostreopsis mascarenensis bloom in the south-western Indian Ocean [J]. African Journal of Marine Science, 28(2): 389-391.

MOORE R E, SCHEUER P J. 1971. Palytoxin: a new marine toxin from a coelenterate [J]. Science, 172(3982): 495-498.

MOREIRA A, RODRíGUEZ F, RIOBó P, et al. 2012. Notes on Ostreopsis sp. from southern-central coast of Cuba [J]. Cryptogamie, Algologie, 33(2): 217-224.

NORRIS D, BOMBER J, BALECH E. 1985. Benthic dinoflagellates associated with ciguatera from the Florida Keys. I. Ostreopsis heptagona sp. nov. [C]//ANDERSON D M, WHITE A. W, BADEN D G. Toxic dinoflagellates. Amsterdam: Elsevier: 39-44.

PEZZOLESI L, GUERRINI F, CIMINIELLO P, et al. 2012. Influence of temperature and salinity on Ostreopsis cf. ovata growth and evaluation of toxin content through HR LC-MS and biological assays [J]. Water Research, 46(1): 82-92.

PISTOCCHI R, PEZZOLESI L, GUERRINI F, et al. 2011. A review on the effects of environmental conditions on growth and toxin production of Ostreopsis ovata [J]. Toxicon, 57(3): 421-428.

RHODES L L, SMITH K F, VERMA A, et al. 2017. The dinoflagellate genera Gambierdiscus and Ostreopsis from subtropical Raoul Island and North Meyer Island, Kermadec Islands [J]. New Zealand Journal of Marine and Freshwater Research, DOI: 10.1080/00288330.2016.1270337.

RHODES L, TOWERS N, BRIGGS L, et al. 2002. Uptake of palytoxin-like compounds by shellfish fed Ostreopsis siamensis (Dinophyceae) [J]. New Zealand Journal of Marine and Freshwater Research, 36(3): 631-636.

RIOBO P, PAZ B, FRANCO J M, et al. 2008b. Mouse bioassay for palytoxin. Specific symptoms and dose-response against dose-death time relationships [J]. Food Chem Toxicol, 46(8): 2639-47.

RIOBO P, PAZ B, FRANCO J M, et al. 2008a. Proposal for a simple and sensitive haemolytic assay for palytoxin [J]. Harmful Algae, 7(4): 415-429.

SATO S, NISHIMURA T, UEHARA K, et al. 2011. Phylogeography of Ostreopsis along west Pacific coast, with special reference to a novel clade from Japan [J]. PLoS One, 6(12): e27983.

SHEARS N T, ROSS P M. 2009. Blooms of benthic dinoflagellates of the genus Ostreopsis; an increasing and ecologically important phenomenon on temperate reefs in New Zealand and worldwide [J]. Harmful Algae, 8(6): 916-925.

SUZUKI T, WATANABE R, UCHIDA H, et al. 2012. LC-MS/MS analysis of novel ovatoxin isomers in several Ostreopsis strains collected in Japan [J]. Harmful Algae, 20: 81-91.

TANIYAMA S, MAHMUD Y, TERADA M, et al. 2002. Occurrence of a food poisoning incident by palytoxin from a serranid Epinephelus sp. in Japan [J]. Journal of natural toxins, 11(4): 277-282.

TARTAGLIONE L, MAZZEO A, DELL'AVERSANO C, et al. 2016. Chemical, molecular, and eco-toxicological investigation of Ostreopsis sp. from Cyprus Island: structural insights into four new ovatoxins by LC-HRMS/MS [J]. Anal Bioanal Chem, 408(3): 915-32.

TAWONG W, NISHIMURA T, SAKANARI H, et al. 2014. Distribution and molecular phylogeny of the dinoflagellate genus Ostreopsis in Thailand [J]. Harmful Algae, 37: 160-171.

THAKUR L K, JHA K K. 2017. Palytoxin-induced acute respiratory failure [J]. Respiratory Medicine Case Reports, 20: 4-6.

TINDALL D R, MILLER D M, TINDALL P M. 1990. Toxicity ofOstreopsis lenticularis from the British and United States Virgin Islands [C]//GRANELI E, SUNDSTROM B, EDLER L, et al. Toxic Marine Phytoplankton. New York: Elsevier: 424–429.

TOTTI C, ACCORONI S, CERINO F, et al. 2010. Ostreopsis ovata bloom along the Conero Riviera (northern Adriatic Sea): Relationships with environmental conditions and substrata [J]. Harmful Algae, 9(2): 233-239.

UKENA T, SATAKE M, USAMI M, et al. 2001. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis [J]. Biosci Biotechnol Biochem, 65(11): 2585-2588.

USAMI M, SATAKE M, ISHIDA S, et al. 1995. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis [J]. Journal of the American chemical society, 117(19): 5389-5390.

VERMA A, HOPPENRATH M, DORANTES-ARANDA J J, et al. 2016. Molecular and phylogenetic characterization of Ostreopsis (Dinophyceae) and the description of a new species, Ostreopsis rhodesae sp. nov., from a subtropical Australian lagoon [J]. Harmful Algae, 60: 116-130.

VILA M, GARCéS E, MASóM. 2001. Potentially toxic epiphytic dinoflagellate assemblages on macroalgae in the NW Mediterranean [J]. Aquatic microbial ecology, 26(1): 51-60.

WU M L, YANG C C, DENG J F, et al. 2014. Hyperkalemia, hyperphosphatemia, acute kidney injury, and fatal dysrhythmias after consumption of palytoxin-contaminated goldspot herring [J]. Annals of Emergency Medicine, 64(6): 633-6.

陳國蔚. 1989. 西沙群島甲藻的研究: Ⅲ. 幾種罕見的熱帶大洋性甲藻[J]. 海洋與湖沼, 20(3): 230-237.

Production of palytoxins by two strains of Ostreopsis sp. (Dinophyceae) from Weizhou island, Guangxi, China [J]. Ecology and Environmental Sciences, 26(4): 663-670.

ZHENG Jiping, LI Qun, Lü Songhui, CEN Jingyi, LI Aifeng, QIU Jiangbing. 2017.

Production of Palytoxins by Two Strains of Ostreopsis sp. (Dinophyceae) from Weizhou Island, Guangxi, China

ZHENG Jiping1, LI Qun1, Lü Songhui1*, CEN Jingyi1*, LI Aifeng2, QIU Jiangbing2
1. Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China; 2. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China

Genus Ostreopsis Schmidt is widely distributed in the benthic marine ecosystem. Some of them can produce palytoxin and its analoges (PLTXs), which are highly toxic, causing human poisoning through inhalation of contaminated aerosols or consumption of contaminated seafood. There is still no report about toxin produced by Ostreopsis so far in China. In this study, two strains of Ostreopsis sp., WZD110 and WZD111, were isolated from Weizhou island, China. The toxicity test and toxin analysis were conducted. The results from the mouse bioassay showed the symptoms of severe posterior lumbar depression, decreased locomotion, convulsions and acute death after being injected intraperitoneally with crude algal extracts. The hemolysis neutralization analysis revealed that the hemolysis effects of the crude algal extracts were inhibited effectively by Ouabain, a PLTXs antagonist. The toxins have also been analyzed qualitatively and quantitatively by LC-MS/MS and LC-HRMS. The results indicated that the PLTXs content of strain WZD110 and WZD111 were 0.348 pg·cell-1and 0.081 pg·cell-1, respectively, both containing higher concentrations of OVTX-c and OVTX-d/e, and maybe small amount of OVTX-g and OVTX-f. This is the first report on the toxin study on Ostreopsis from Chinese Sea, providing some scientific references on understanding of the harm done by Ostreopsis bloom.

Ostreopsis; palytoxins; LC-MS/MS; Weizhou island

10.16258/j.cnki.1674-5906.2017.04.017

X17

A

1674-5906(2017)04-0663-08

鄭季平, 李群, 呂頌輝, 岑競儀, 李愛峰, 邱江兵. 2017. 廣西潿洲島底棲蠣甲藻(Ostreopsis sp.)的產毒特性研究[J]. 生態環境學報, 26(4): 663-670.

國家自然科學基金項目(41576162);國家自然科學基金項目(31372535);教育部博士點基金項目(20134401110009);中央高?;究蒲袠I務費專項資金

鄭季平(1991年生),女,碩士研究生,研究方向為海洋生態。E-mail: jipingzheng@hotmail.com

*通信作者,呂頌輝,E-mail: lusonghui1963@163.com。岑競儀,E-mail: jingyicen@gmail.com

2017-03-25

猜你喜歡
甲藻粗提物株系
牛蒡根皮多酚、多糖粗提物對海蘭褐殼蛋雞產蛋性能及血液生化指標的影響
過表達NtMYB4a基因增強煙草抗旱能力
痛風散粗提物鎮痛實驗研究
植物粗提物可作為防治獼猴桃根結線蟲的綠色藥劑
養只恐龍當寵物
嫦娥5號返回式試驗衛星小麥育種材料研究進展情況
番茄粗提物對香蕉枯萎病菌FocTR4的抑制效果
疑似甲藻水華監測及應急管理探究
衢州椪柑變異株系—黃皮椪柑相關特性研究
寇氏隱甲藻突變株發酵條件的響應面優化
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合