?

雞BRD2基因及其剪接體的克隆測序與亞細胞定位分析

2020-11-02 02:41周磊袁超韓一帆高洪波王燕碧趙采芹唐宏段志強
南方農業學報 2020年8期

周磊 袁超 韓一帆 高洪波 王燕碧 趙采芹 唐宏 段志強

摘要:【目的】克隆雞含溴結構域蛋白2(BRD2)基因及其剪接體,并對其進行序列分析和亞細胞定位,為深入研究雞BRD2基因及其剪接體在細胞轉錄調控中的作用機理打下基礎?!痉椒ā客ㄟ^RT-PCR擴增雞BRD2基因及其剪接體的編碼區(CDS)序列,采用BioEdit、ProtParam、SOPMA、SWISS-MODEL、CDART等在線軟件進行生物信息學分析;雞BRD2基因及其剪接體經Xho I和BamH I雙酶切后,分別亞克隆至真核表達載體pEGFP-C1多克隆位點上構建重組真核表達載體,通過轉染HEK-293T細胞進行亞細胞定位分析?!窘Y果】雞BRD2基因CDS序列全長2340 bp,編碼779個氨基酸殘基,分子量為85.66 kD,理論等電點(pI)為8.74,其編碼蛋白二級結構主要由無規則卷曲(60.59%)和α-螺旋(28.50%)組成,含有3個明顯的功能結構域(2個BD結構域和1個ET結構域)。與雞BRD2基因相比,其剪接體BRD2-X1、BRD2-X2和BRD2-X3的CDS序列長分別為2301、2283和1983 bp,編碼766、760和660個氨基酸殘基。以雞BRD2氨基酸序列為參照, BRD2-X1表現為第526~537位氨基酸缺失,BRD2-X2表現為第1~19位氨基酸缺失,BRD2-X3表現為第1~119位氨基酸缺失;與雞BRD2蛋白相比,雞BRD2基因剪接體BRD2-X1和BRD2-X2并未影響雞BRD2蛋白的功能結構域,而剪接體BRD2-X3導致雞BRD2蛋白第一個BD結構域部分缺失。雞BRD2基因融合蛋白EGFP-BRD2及其剪接體融合蛋白EGFP-BRD2-X1、EGFP-BRD2-X2和EGFP-BRD2-X3均定位在細胞核,EGFP-BRD2和EGFP-BRD2-X1在細胞核中呈均勻分布,而EGFP-BRD2-X2和EGFP-BRD2-X3在細胞核中呈不均勻的點狀分布?!窘Y論】雞BRD2蛋白及其剪接體均定位在細胞核,但BD結構域缺失可引起BRD2剪接體BRD2-X3細胞核定位模式的變化。

關鍵詞: 雞;BRD2基因;剪接體;BD結構域;ET結構域;亞細胞定位

中圖分類號: S831.2? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2020)08-1806-10

Cloning, sequence analysis and subcellular localization of chicken BRD2 gene and its splices

ZHOU Lei, YUAN Chao, HAN Yi-fan, GAO Hong-bo, WANG Yan-bi,

ZHAO Cai-qin, TANG Hong, DUAN Zhi-qiang*

(College of Animal Sciences, Guizhou University/Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountains Region, Ministry of Education/Key Laboratory of Animal Genetics, Breeding and

Reproduction in Guizhou, Guiyang? 550025, China)

Abstract:【Objective】This study aimed to clone chicken bromodomain-containing protein 2(BRD2) gene and its splices, and analyze their sequences and subcellular localization ,which laid a foundation for further study of mechanism of chicken BRD2 gene and its splice in cellular transcriptional regulation. 【Method】The coding region(CDS) region sequence of chicken BRD2 gene and its splice were amplified by RT-PCR and then analyzed by online softwares including BioEdit, ProtParam, SOPMA, SWISS-MODEL, CDART, etc. The PCR products of chicken BRD2 gene and its splices were digested by Xho I and BamH I, and subcloned into eukaryotic expression vector pEGFP-C1 multiple cloning site to construct recombinant eukaryotic expression vectors. The subcellular localization of chicken BRD2 gene and its splices were analyzed by transfecting the constructed plasmids into HEK-293T cells. 【Result】The results revealed that the full-length CDS region sequence of chicken BRD2 gene was 2340 bp and encoded 779 amino acids with a molecular weight of 85.66 kDa, and the theoretical pI was 8.74, The secondary structure of chicken BRD2 protein was mainly composed of random coil(60.59%) and α-helix(28.50%), and contained three obvious functional domains(2 BD domains and 1 ET domain). Compared with chicken BRD2 gene, the splices BRD2-X1, BRD2-X2 and BRD2-X3 were 2301, 2283 and 1983 bp in length, and encoded 766, 760 and 660 amino acid residues, respectively. Taking the amino acid sequence of chicken BRD2 as reference, BRD2-X1, BRD2-X2 and BRD2-X3 showed amino acid deletion at positions 526-537, 1-19 and 1-119, respectively. In addition, BRD2-X1 and BRD2-X2 did not affect the functional domain of chicken BRD2 protein, while the splice BRD2-X3 caused partial deletion of the first BD domain of chicken BRD2 protein. Moreover, the fusion protein EGFP-BRD2,and its splices fusion proteins EGFP-BRD2-X1, EGFP-BRD2-X2 and EGFP-BRD2-X3 were mainly located in the nucleus. However, the fusion proteins EGFP-BRD2 and EGFP-BRD2-X1 showed even distribution in the nucleus, but EGFP-BRD2-X2 and EGFP-BRD2-X3 exhibited unevenly spotty pattern distribution in the nucleus. 【Conclusion】The chicken BRD2 protein and its different splices locate in the nucleus, but the deletion of BD domain lead to the nuclear localization pattern changes of BRD2 splice BRD2-X3.

Key words: chicken; BRD2 gene; splice; BD domain; ET domain; subcellular localization

Foundation item: National Natural Science Foundation of China(31960698,31760732); Guizhou Basic Research Project(Science and Technology Fund)(QKHJC〔2020〕1Y134); Guizhou Science and Technology Planning Project(QKHPTRC〔2017〕5788)

0 引言

【研究意義】含溴結構域蛋白2(Bromodomain-containing protein 2,BRD2)又稱RING3,是BET (Bromodomain and extra-terminal domain)蛋白家族的一員。BET蛋白家族成員主要包括BRD2、BRD3、BRD4和睪丸組織特異性表達的BRDT,均具有2個串聯的N-末端溴結構域(Bromodomain,BD)和1個保守的C-末端外結構域(Extra-terminal domain,ET)(Belkina and Denis,2012)。BRD2作為表觀遺傳閱讀器,參與基因轉錄、染色質重塑及細胞周期增殖和凋亡,且BRD2基因異常表達還與炎癥、癲癇和腫瘤等疾病的發生有關(Ferri et al.,2016;Pathak et al.,2018)。因此,開展BRD2基因及其剪接體的亞細胞定位研究,對揭示BRD2在細胞中的生物學功能具有重要意義?!厩叭搜芯窟M展】BD結構域首次發現于果蠅的Brahma蛋白,是一種廣泛分布于多種生物中的高度保守結構域,一般由60~110個氨基酸殘基組成(Dyson et al.,2001);BD結構域能結合核小體組蛋白賴氨酸的ε-氨基乙?;?,特別是乙?;M蛋白H4,通過招募轉錄因子、轉錄輔激活因子及轉錄輔抑制因子而調節基因轉錄(Leroy et al.,2008)。ET結構域是由約80個氨基酸殘基組成的保守區域(Jeanmougin et al.,1997;Dyson et al.,2001;Rahman et al.,2011),其通過招募特定效應蛋白(組蛋白甲基轉移酶)來實現調節基因轉錄功能(Rahman et al.,2011)。BRD2蛋白作為轉錄調節因子,是通過細胞骨架蛋白招募不同的蛋白分子而調控相關細胞周期,如Cyclin A、Cyclin E、Cyclin D及激活轉錄因子E2F-1(Zeng and Zhou,2002;Sinha et al.,2005)。在神經發育方面,BRD2基因在神經系統增殖的前體細胞和分化的神經元中均有表達(Crowley et al.,2004),但過量表達會損害神經元分化,可能是由于BRD2刺激了細胞周期進程(Garcia-Gutierrez et al.,2012)。在疾病研究方面,模仿乙?;嚢彼岬乃幬锿ㄟ^阻斷BRD2蛋白BD結構域而發揮作用,如BRD2抑制劑JQ1能有效抑制人類髓母細胞瘤細胞系增殖,誘導癌細胞凋亡(Venataraman et al.,2014)。近年來的研究發現,在我國26個優質雞種中,BRD2基因具有一定保守性,但不同雞種間相似性較低(吳允等,2017);BRD2蛋白ET結構域能與豬內源性逆轉錄病毒A/C整合酶相互作用,介導病毒基因組整合到宿主基因組中(Gallay et al.,2019);雞BRD2蛋白ET結構域還能與新城疫病毒M蛋白相互作用,可能與M蛋白抑制細胞基因轉錄有關(Duan et al.,2018);BRD2蛋白在逆轉錄病毒與宿主相互作用中同樣發揮重要作用(Sharma et al.,2013)?;蜻M行轉錄時首先形成包含所有內含子和外顯子的前體mRNA(pre-mRNA),而pre-mRNA經酶切內含子和連接外顯子方式被加工成含有同一基因不同序列的成熟mRNA的過程稱為基因選擇性剪接(Alternative splicing,AS)(Modrek and Lee,2002)。即單個基因可經過AS獲得更多的轉錄異構體,從而產生多種發揮不同功能的蛋白(Kelemen et al.,2013)?!颈狙芯壳腥朦c】目前,有關BRD2基因的功能研究主要集中在人類和小鼠上,可作為腎臟疾病新的表觀遺傳學靶點(Morgado-Pascual et al.,2019)及角質形成細胞炎癥反應的細胞因子(Slivka et al.,2019),或通過ERK/HSL信號通路促進小鼠白色脂肪組織的脂解(Zong et al.,2019);但針對雞BRD2基因及其剪接體克隆、序列特征及亞細胞定位等情況尚不明確?!緮M解決的關鍵問題】根據GenBank已公布的雞BRD2基因及其3個剪接體進行克隆和生物信息學分析,進一步構建雞BRD2基因及其剪接體的重組真核表達載體,轉染細胞后進行亞細胞定位分析,以期為深入研究雞BRD2基因及其剪接體在細胞轉錄調控中的作用機理打下基礎。

1 材料與方法

1. 1 試驗材料

真核表達載體pEGFP-C1、大腸桿菌DH5α感受態細胞、雞胚成纖維細胞系(DF-1細胞)和人胚胎腎細胞(HEK-293T細胞)均由高原山地動物遺傳育種與繁殖教育部重點實驗室保存提供。TRIzol Rea-gent、pCR? 2.1載體購自美國Invitrogen公司;Revert-Aid First Strand cDNA Synthesis Kit、T4 DNA連接酶、DNA Maker、Pfu Taq DNA高保真聚合酶、限制性內切酶Xho I和BamH I購自Thermo Fisher公司;DNA凝膠回收試劑盒和質粒小量提取試劑盒購自AxyGen公司;4%多聚甲醛和Trition X-100購自碧云天生物技術研究所;FuGENE? HD Transfection Reagent購自Promega公司;胎牛血清和DMEM基礎培養基購自Gibco公司;其他試劑均為國產分析純。

1. 2 引物設計與合成

根據GenBank已公布的雞BRD2基因序列,利用Primer Premier 5.0設計擴增雞BRD2基因開放閱讀框(ORF)及其3個不同剪接體的特異性引物(表1),并在上、下游引物中分別插入Xho I和BamH I酶切位點(下劃線部分),所有引物委托昆泰銳(武漢)生物技術有限責任公司合成。

1. 3 雞BRD2基因及其剪接體克隆與測序分析

使用TRIzol法從DF-1細胞中提取總RNA并進行反轉錄,以特異性引物BRD2、BRD2-X1、BRD2-X2和BRD2-X3分別擴增雞BRD2基因及其剪接體的編碼區(CDS)序列。PCR擴增程序:94 ℃預變性5 min;94 ℃ 40 s,62 ℃ 50 s,72 ℃ 90 s,進行30個循環;72 ℃延伸10 min,4 ℃保存。PCR擴增產物經1.0%瓊脂糖凝膠電泳檢測及回收純化后連接至pCR?2.1載體,并轉化DH5α感受態細胞,挑取單菌落擴大培養后進行菌液PCR鑒定,將陽性菌液送至英濰捷基(上海)貿易有限公司測序。

雞BRD2基因及其剪接體的測序結果用BioEdit進行序列拼接,并與GenBank已公布的雞BRD2基因序列進行BLAST比對分析。利用ProtParam(http://expasy.org/tools/protparam.html)、SOPMA(http://np-sapbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_so-pma.html)和SWISS-MODEL(http://swissmodel.expasy.org/)分別對雞BRD2基因及其剪接體編碼蛋白進行理化性質及其二、三級結構預測;使用NCBI服務器上的CDART工具預測雞BRD2蛋白功能結構域。另外,從GenBank搜索下載不同物種的BRD2基因,采用MegAlign進行核苷酸序列相似性分析,并以MEGA 5.0中的鄰接法(Neighbor-joining,NJ)構建系統發育進化樹。

1. 4 雞BRD2基因及其剪接體重組真核表達載體構建

使用Xho I和BamH I限制性內切酶分別對真核表達載體pEGFP-C1和雞BRD2基因及其剪接體克隆質粒進行雙酶切,經1.0%瓊脂糖凝膠電泳檢測后進行切膠純化,然后將目的基因片段與pEGFP-C1進行連接并轉化DH5α感受態細胞。以含卡那霉素的LB培養基進行抗性篩選,將菌液PCR鑒定和雙酶切鑒定均呈陽性的重組質粒送至英濰捷基(上海)貿易有限公司測序。

1. 5 細胞培養與轉染

HEK-293T細胞使用含10%胎牛血清、100 U/mL青霉素和100 μg/mL鏈霉素的DMEM培養基進行培養,在37 ℃、5% CO2的細胞培養箱中培養。轉染前,將處理好的HEK-293T細胞平鋪在35 mm細胞培養皿中培養過夜,待細胞完全貼壁生長至80%左右,更換培養基,然后將提純后的雞BRD2基因及其剪接體重組真核表達載體和脂質體按3 μg∶10 μL的比例加入到100 μL無抗無血清DMEM基礎培養基中,輕輕吹打混勻后室溫靜置20 min,再分別加入細胞培養皿中,置于37 ℃、5% CO2的細胞培養箱中繼續培養24 h。

1. 6 雞BRD2基因及其剪接體融合蛋白熒光觀察

在雞BRD2基因及其剪接體重組真核表達載體轉染HEK-293T細胞24 h后,PBS洗滌細胞2次,加入預冷的4%多聚甲醛,室溫固定20 min;棄液體,PBS洗滌細胞2次;加入0.25% TritonX-100室溫作用5 min;PBS洗滌細胞2次,加入DAPI染細胞核10 min;再以PBS洗滌細胞2次,置于倒置熒光顯微鏡下觀察。獲得的融合蛋白熒光圖片與對應的細胞核熒光圖片用Photoshop CS3進行Merge處理,通過熒光共定位判斷融合蛋白的亞細胞定位。

2 結果與分析

2. 1 雞BRD2基因及其剪接體的克隆和重組真核表達載體構建

以DF-1細胞總RNA反轉錄合成的cDNA為模板,使用特異性引物擴增雞BRD2基因及其不同剪接體,結果獲得BRD2(2340 bp)、BRD2-X2(2283 bp)和BRD2-X3(1983 bp)3條目的條帶(圖1-A),經重疊PCR擴增獲得BRD2-X1(2301 bp)目的條帶(圖1-B),片段大小均與預期結果相符。獲得的目的片段經克隆測序后分別亞克隆至真核表達載體pEGFP-C1多克隆位點上,構建雞BRD2基因及其剪接體重組真核表達載體pEGFP-BRD2、pEGFP-BRD2-X1、pEGFP-BRD2-X2和pEGFP-BRD2-X3。使用Xho I和BamH I進行雙酶切鑒定,結果均獲得真核表達載體片段及相應的目的基因片段(圖2)。測序結果顯示,雞BRD2基因及其剪接體已按正確的位置插入到真核表達載體pEGFP-C1上,且未發生核苷酸突變和ORF移碼,說明雞BRD2基因及其剪接體重組真核表達載體構建成功。

2. 2 雞BRD2基因及其剪接體的生物信息學分析結果

2. 2. 1 雞BRD2基因及其剪接體編碼蛋白理化性質和功能結構域預測分析結果 運用BioEdit對雞BRD2基因及其剪接體進行推導氨基酸序列比對分析,以雞BRD2氨基酸序列為參照,結果發現BRD2-X1表現為第526~537位氨基酸缺失,BRD2-X2表現為第1~19位氨基酸缺失,BRD2-X3表現為第1~119位氨基酸缺失(圖3-A)。雞BRD2基因編碼779個氨基酸殘基,分子量為85.66 kD,理論等電點(pI)為8.74;BRD2-X1編碼766個氨基酸殘基,分子量為84.23 kD,pI為8.8;BRD2-X2編碼760個氨基酸殘基,分子量為83.69 kD,pI為8.8;BRD2-X3編碼660個氨基酸殘基,分子量為72.45 kD,pI為7.62。蛋白功能結構域預測分析結果(圖3-B)表明,雞BRD2蛋白主要含有2個BD結構域和1個ET結構域。與雞BRD2蛋白相比,BRD2基因剪接體BRD2-X1和BRD2-X2并未影響雞BRD2蛋白的功能結構域,而剪接體BRD2-X3導致雞BRD2蛋白第一個BD結構域部分缺失。

2. 2. 2 雞BRD2蛋白結構預測和功能結構域保守性分析結果 使用SOPMA和SWISS-MODEL分別對雞BRD2蛋白進行二、三級結構預測,結果顯示,雞BRD2蛋白含有豐富的二級結構,其中無規則卷曲占60.59%、α-螺旋占28.50%、延伸鏈占7.45%、β-轉角占3.47%;雞BRD2蛋白三級結構(圖4)與其二級結構相符,主要結構為α-螺旋和無規則卷曲。雞BRD2蛋白含有3個明顯的功能結構域(2個BD結構域和1個ET結構域),其中,2個BD結構域分別位于第90~162和361~433位氨基酸,ET結構域位于第610~692位氨基酸(圖5)。對雞、豬、小鼠和人類的BRD2蛋白功能結構域進行保守性分析,結果發現豬、小鼠和人類的BRD2蛋白功能結構域氨基酸位點一致,而雞BRD2蛋白BD結構域氨基酸變異位點主要位于G137A、A139S、E385D、I396V和H406R,ET結構域氨基酸變異位點主要位于K618R、T621S和S649A。說明哺乳動物的BRD2蛋白功能結構域高度保守,而雞BRD2蛋白功能結構域氨基酸位點的變異可能會導致其功能改變。

2. 2. 3 雞BRD2蛋白的互作蛋白預測結果 運用STRING對雞BRD2蛋白的互作蛋白進行預測,發現可能存在的互作蛋白有BRD3、TAP1、TCLEC2D、BLB2、CCND1、KRAS、CBFB、EP300、RNUNX3和HDAC4(圖6)。其中,BRD2和BRD3同屬于BET蛋白家族,參與基因轉錄及調節細胞生長;TAP1和BLB2位于組織相容復合體中,TAP1作為一種轉運蛋白,具有肽段轉運和抗原加工功能(Cresswell et al.,1999);CCND1調節細胞周期的不同階段,并通過與周期素依賴性蛋白激酶4(CDK4)或周期素依賴性蛋白激酶6(CDK6)結合形成復合體的方式,促進細胞從G1期進入S期(Chen et al.,2012;Lin et al.,2015);KRAS參與細胞內的信號傳遞,控制細胞正常生長,發生異常時會導致細胞持續增殖而引發癌變(Fernández-Medarde and Santos,2011;Simanshu et al.,2017);EP300作為轉錄輔激活物,參與控制基因組穩定性、發育、記憶形成、神經元可塑性和細胞生長(Dancy and Cole,2016);RUNX3在T細胞發育過程中發揮重要作用,尤其是在初始雙陽性T細胞分化為CD4+或CD8+單陽性細胞的階段(Grueter et al.,2005)。

2. 2. 4 雞BRD2基因核苷酸序列相似性和遺傳進化分析結果 采用MegAlign對雞與火雞、日本鵪鶉、孟加拉雀等禽類的BRD2基因核苷酸序列進行相似性分析,結果(圖7)顯示,禽類BRD2基因核苷酸序列相似性在70.8%~95.7%,其中,雞與火雞的相似性最高(95.7%),而與長尾金雀的相似性最低(70.8%)。雞與牛、馬、豬、家鼠及人類等非禽類的BRD2基因核苷酸序列相似性分析結果表明,雞與綿羊的相似性最高(72.7%),而與斑馬魚的相似性最低(64.9%)?;贐RD2基因核苷酸序列相似性構建的系統發育進化樹(圖8)也顯示,雞和火雞聚類在同一分支,其遺傳距離最近,與斑馬魚的遺傳距離最遠。

2. 3 雞BRD2蛋白及其剪接體亞細胞定位分析結果

運用PSORT Ⅱ對雞BRD2蛋白進行亞細胞定位預測,結果表明細胞核定位占69.60%、細胞質定位占26.10%、分泌系統囊泡定位占4.30%,即主要定位在細胞核,且雞BRD2蛋白可能存在的細胞核定位信號位于500KKKKKKSEKHK510。以構建的雞BRD2基因及其剪接體重組真核表達載體分別轉染HEK-239T細胞24 h后,觀察融合蛋白的細胞熒光,發現雞BRD2基因融合蛋白(EGFP-BRD2)主要定位在細胞核,與預測結果一致;雞BRD2基因剪接體融合蛋白EGFP- BRD2-X1、EGFP-BRD2-X2和EGFP-BRD2-X3同樣定位在細胞核(圖9)。雖然雞BRD2蛋白及其剪接體均定位在細胞核,但EGFP-BRD2和EGFP-BRD2-X1在細胞核中呈均勻分布,而EGFP-BRD2-X2和EGFP-BRD2-X3在細胞核中呈不均勻的點狀分布。

3 討論

BRD2作為一種轉錄激活因子,參與基因轉錄、染色質重塑、抗原呈遞加工、調控免疫應答、誘導免疫反應及抑制細胞活性等免疫調節(Taniguchi,2016;Pathak et al.,2018)。在真核細胞中,組蛋白賴氨酸乙?;瘜е氯旧|的轉錄活性變為開放狀態,從而促進基因轉錄(Dhalluin et al.,1999)。BD結構域是BRD2蛋白通過與染色質內核小體相互作用,而對基因轉錄進行表觀遺傳調控的主要功能結構域(Kanno et al.,2004;Jang et al.,2005)。已有大量研究表明,BRD2基因在哺乳動物體內各組織均有表達,且在B細胞和T細胞中高表達,暗示BRD2基因可能參與機體免疫功能調節(Wilhelm et al.,2014;Kim et al.,2014;Fujisawa and Filippakopoulos,2017)。BRD2蛋白ET結構域能與卡波西肉瘤皰疹病毒的主要潛伏相關核抗原1(LANA-1)相互作用,介導LANA-1與其他蛋白或核酸的相互作用(Ottinger et al.,2006)。Choi等(2015)研究發現,在脂多糖(LPS)誘導的小鼠原代星形膠質細胞免疫應答中,BRD2基因及其編碼蛋白水平升高;敲除BRD2基因后,能抑制LPS誘導小鼠原代星形膠質細胞纖溶酶原激活物抑制物-1(PAI-1)的表達和分泌,表明BRD2參與細胞免疫應答。

AS在細胞內普遍存在,且大多數AS涉及蛋白結構和功能的改變(章國衛等,2004)。周揚(2017)研究發現,牛脂肪沉積相關基因TUSC5的2種剪接體在細胞質中的主要分布位置存在明顯差異,進而導致其組織表達譜、在牛原代脂肪細胞分化過程中的表達規律及在293T細胞內的時序表達均存在差異。此外,小鼠BRD2基因能表達出不同的組織特異性轉錄本,且這些轉錄本啟動子5'非翻譯區(5'-UTR)的長度明顯不同(Shang et al.,2011)。本研究成功克隆獲得雞BRD2基因的選擇性剪接體BRD2-X1(第526~537位氨基酸缺失)、BRD2-X2(第1~19位氨基酸缺失)和BRD2-X3(第1~119位氨基酸缺失),提示雞BRD2基因剪接體也可能存在組織表達特異性。BRD2蛋白功能結構域氨基酸位點變異分析結果表明,豬、小鼠和人類的BRD2蛋白功能結構域氨基酸位點一致,但在雞BRD2蛋白中存在多個氨基酸位點變異,說明BRD2蛋白功能結構域在哺乳動物中具有高度保守性,而氨基酸位點變異可能會導致雞BRD2蛋白在細胞中的轉錄調控機制不同。此外,BRD2作為一種重要的轉錄調節因子,可直接激活或作為輔激活因子調節基因轉錄。本研究對BRD2蛋白的互作蛋白預測結果顯示,可能存在的互作蛋白有BRD3、TAP1、TCLEC2D、BLB2、CCND1、KRAS、CBFB、EP300、RNUNX3和HDAC4,分別涉及轉錄激活、控制細胞周期和調節神經系統發育等功能,但具體作用機理還需進一步探究。

本研究通過構建雞BRD2基因及其剪接體重組真核表達載體并轉染HEK-239T細胞,證實雞BRD2基因及其剪接體融合蛋白均定位在細胞核,但EGFP-BRD2和EGFP-BRD2-X1在細胞核中呈均勻分布,而EGFP-BRD2-X2和EGFP-BRD2-X3在細胞核中呈不均勻的點狀分布。何佳謹(2007)也曾研究發現,含有2個BD結構域的小鼠BRD2蛋白N端(第1~435位氨基酸)和含有ET結構域的小鼠BRD2蛋白C端(第428~798位氨基酸)均定位在細胞核,且2個BD結構域間存在1個非典型的核定位信號序列。由此推測,BRD2蛋白BD結構域缺失并不會影響其細胞核定位。BRD2蛋白同家族成員BRD4蛋白的BD結構域缺失突變后,其在細胞核內的分布模式明顯改變(Dey et al.,2003),說明BD結構域在BRD4蛋白的細胞核內分布模式中發揮關鍵作用。本研究中,剪接體BRD2-X3導致雞BRD2蛋白第一個BD結構域部分缺失,雖然其亞細胞定位仍位于細胞核,但定位模式由均勻分布變為不均勻的點狀分布,與Dey等(2003)的研究結果一致。值得注意的是,未缺失BD結構域的剪接體BRD2-X2在細胞核中也呈不均勻的點狀分布,因此雞BRD2基因及其剪接體的細胞核定位差異還有待進一步研究。

4 結論

雞BRD2蛋白及其剪接體均定位在細胞核,但BD結構域缺失可導致BRD2剪接體BRD2-X3在細胞核中呈不均勻的點狀分布,即引起細胞核定位模式的變化。

參考文獻:

何佳瑾. 2007. BRD2核定位信號的核定位功能和細胞凋亡始動功能的初步研究[D]. 長沙:中南大學. [He J J. 2007. Primary studies on fuctions of BRD2 nuclear localization signal and initiation fuction of cellular apoptosis of BRD2[D]. Changsha:Central South University.]

吳允,畢榆林,張揚,郭曉敏,李志騰,萬方,朱鵬飛,徐璐,常國斌,徐琪,陳國宏. 2017. 部分雞種Brd2基因SNP和INDEL分析[J]. 安徽農業大學學報,44(2):203-207. [Wu Y,Bi Y L,Zhang Y,Guo X M,Li Z T,Wan F,Zhu P F,Xu L,Chang G B,Xu Q,Chen G H. 2017. SNP and INDEL analysis of Brd2 gene in indigenous chicken breeds[J]. Journal of Anhui Agricultural University,44(2):203-207.]

章國衛,宋懷東,陳竺. 2004. mRNA選擇性剪接的分子機制[J]. 遺傳學報,31(1):102-107. [Zhang G W,Song H D,Chen Z. 2004. Molecular mechanism of mRNA alternative splicing[J]. Acta Genetica Sinica,31(1):102-107.]

周揚. 2017. 秦川牛脂肪沉積相關基因篩選及可變剪接對基因表達和細胞定位的影響研究[D]. 楊凌:西北農林科技大學. [Zhou Y. 2017. Identifying genes related to adipogenesis in Qinchuan cattle and studying the effects of alternative splicing on gene expression and cellular loca-lization[D]. Yangling:Northwest A & F University.]

Belkina A C,Denis G V. 2012. BET domain co-regulators in obesity,inflammation and cancer[J]. Nature Reviews. Cancer,12(12):465-477.

Chen X M,Zhao T S,Li L,Xu C H,Zhang X L,Tse V,Zhang T,Liu X Q,Lu F M. 2012. CCND1 G870A polymorphism with altered cyclin D1 transcripts expression is associated with the risk of glioma in a Chinese population[J]. DNA and Cell Biology,31(6):1107-1113.

Choi C S,Hong S H,Sim S,Cho K S,Kim J W,Yang S M,Jeon S J,You J S,Shin C Y. 2015. The epigenetic reader BRD2 as a specific modulator of PAI-1 expression in lipopolysaccharide-stimulated mouse primary astrocytes[J]. Neurochemical Research,40(11):2211-2219.

Cresswell P,Bangia N,Dick T,Diedrich G. 1999. The nature of the MHC class I peptide loading complex[J]. Immunological Reviews,172(1):21-28.

Crowley T E,Brunori M,Rhee K,Wang X Y,Wolgemuth D J. 2004. Change in nuclear-cytoplasmic localization of a double-bromodomain protein during proliferation and di-fferentiation of mouse spinal cord and dorsal root ganglia[J]. Developmental Brain Research,149(2):93-101.

Dancy B M,Cole P A. 2016. Protein lysine acetylation by p300/CBP[J]. Chemical Reviews,115(6):2419-2452.

Dey A,Chitsaz F,Abbasi A,Misteli T,Ozato K. 2003. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis[J]. Proceedings of the National Academy of Sciences of the United States of America,100(15):8758-8763.

Dhalluin C,Carlson J E,Zeng L,He C,Aggarwal A K,Zhou M M. 1999. Structure and ligand of a histone acetyltransferase bromodomain[J]. Nature,399(6735):491-496.

Duan Z Q,Xu H X,Ji X Q,Zhao J F,Xu H Q,Hu Y,Deng S S,Hu S L,Liu X F. 2018. Importin α5 negatively regulates importin β1-mediated nuclear import of Newcastle disease virus matrix protein and viral replication and pathogenicity in chicken fibroblasts[J]. Virulence,9(1):783-803.

Dyson M H,Rose S,Mahadevan L C. 2001. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin[J]. Frontiers in Bioscience,6:D853-D865.

Fernández-Medarde A,Santos E. 2011. Ras in cancer and developmental diseases[J]. Genes & Cancer,2(3):344-358.

Ferri E,Petosa C,Mckenna C E. 2016. Bromodomains:Structure,function and pharmacology of inhibition[J]. Bioche-mical Pharmacology,106:1-18

Fujisawa T,Filippakopoulos P. 2017. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer[J]. Nature Reviews. Molecular Cell Biology,18(4):246-262.

Gallay K,Blotd G,Chahpazoffe M,Yajjou-Hamalian H,Confort M P,de Boisséson C,Leroux A,Luengo C,Fiorini F,Lavigne M,Chebloune Y,Gouet P,Moreau K,Blanchard Y,Ronfor C. 2019. In vitro,in cellulo and structural characterizations of the interaction between the integrase of Porcine Endogenous Retrovirus A/C and proteins of the BET family[J]. Virology,532:69-81.

Garcia-Gutierrez P,Mundi M,Garcia-Dominguez M. 2012. Association of bromodomain BET proteins with chromatin requires dimerization through the conserved motif B[J]. Journal of Cell Science,125(15):3671-3680.

Grueter B,Petter M,Egawa T,Laule-Kilian K,Aldrian C J,Wuerch A,Ludwig Y,Fukuyama H,Wardemann H,Waldschuetz R,M?r?y T,Taniuchi I,Steimle V,Littman D R,Ehlers M. 2005. Runx3 regulates integrin alpha E/CD103 and CD4 expression during development of CD4-/CD8+ T cells[J]. Journal of Immunology,175(3):1694-1705.

Jang M K,Mochizuki K,Zhou M S,Jeong H S,Brady J N,Ozato K. 2005. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription[J]. Molecular Cell,19(4):523-534.

Jeanmougin F,Wurtz J M,Douarin B L,Chambon P,Losson R. 1997. The bromodomain revisited[J]. Trends in Biochemical Sciences,22(5):151-153.

Kanno T,Kanno Y,Siegel R M,Jang M K,Lenardo M J,Ozato K. 2004. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells[J]. Molecular Cell,13(1):33-43.

Kelemen O,Convertini P,Zhang Z Y,Wen Y,Shen M L,Falaleeva M,Stamm S. 2013. Function of alternative splicing[J]. Gene,514(1):1-30.

Kim M S,Pinto S M,Getnet D,Nirujogi R S,Manda S S,Chaerkady R,Madugundu A K,Kelkar D S,Isserlin R,Jain S,Thomas J K,Muthusamy B,Leal-Rojas P,Kumar P,Sahasrabuddhe N A,Balakrishnan L,Advani J,George B,Renuse S,Selvan L D N,Patil A H,Nanjappa V,Radhakrishnan A,Prasad S,Subbannayya T,Raju R,Kumar M,Sreenivasamurthy S K,Marimuthu A,Sathe G J,Chavan S,Datta K K,Subbannayya Y,Sahu A,Yelamanchi S D,Jayaram S,Rajagopalan P,Sharma J,Murthy K R,Syed N,Goel R,Khan A A,Ahmad S,Dey G,Mudgal K,Chatterjee A,Huang T C,Zhong J,Wu X Y,Shaw P G,Freed D,Zahari M S,Mukherjee K K,Shankar S,Mahadevan A,Lam H,Mitchell C J,Shankar S K,Satishchandra P,Schroeder J T,Sirdeshmukh R,Maitra A,Leach S D,Drake C G,Halushka M K,Keshava Prasad T S,Hruban R H,Kerr C L,Bader G D,Iacobuzio-Donahue C A,Gowda H,Pandey A. 2014. A draft map of the human proteome[J]. Nature,509(7502):575-581.

Leroy G,Rickards B,Flint S J. 2008. The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription[J]. Molecular Cell,30(1):51-60.

Lin J T,Li H Y,Chang N S,Lin C H,Chen Y C,Lu P J. 2015. WWOX suppresses prostate cancer cell progression through cyclin D1-mediated cell cycle arrest in the G1 phase[J]. Cell Cycle,14(3):408-416.

Modrek B,Lee C. 2002. A genomic view of alternative spli-cing[J]. Nature Genetics,30(1):13-19.

Morgado-Pascual J L,Rayego-Mateos S,Tejedor L,Suarez-Alvarez B,Ruiz-Ortega M. 2019. Bromodomain and extraterminal proteins as novel epigenetic targets for renal di-seases[J]. Frontiers in pharmacology,10:1315. doi:10. 3389/fphar.2019.01315.

Ottinger M,Christalla T,Nathan K,Nathan K,Brinkmann M M,Viejoborbolla A,Schulz T F. 2006. Kaposi?s sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest[J]. Journal of Virology,80(21):10772-10786.

Pathak S,Miller J,Morris E C,Stewart W C L,Greenberg D A. 2018. DNA methylation of the BRD2 promoter is associated with juvenile myoclonic epilepsy in Caucasians[J]. Epilepsia,59(5):1011-1019.

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合