?

單頭飼養和群體飼養的西花薊馬實驗種群生命表比較

2021-03-26 00:05李欣華王登杰雷仲仁王海鴻
中國農業科學 2021年5期
關鍵詞:薊馬若蟲成蟲

李欣華,王登杰,雷仲仁,王海鴻

單頭飼養和群體飼養的西花薊馬實驗種群生命表比較

李欣華1,王登杰2,雷仲仁1,王海鴻1

1中國農業科學院植物保護研究所植物病蟲害生物學國家重點實驗室,北京 100193;2綿陽農業科學研究院,四川綿陽 621000

【】對西花薊馬()實驗種群生命表的研究大多采用單頭飼養(individual-rearing,IR)的方式,研究結果可用于田間自然情況下種群發生的預測。然而西花薊馬在自然情況下常常是群聚發生,而非單頭發生。論文旨在比較單頭飼養和群體飼養(group-rearing,GR)兩種方式建立起的西花薊馬實驗種群的生命表參數,探討何種方式建立起的生命表用于預測自然條件下西花薊馬的發生情況可能更為準確。分別用單頭飼養和群體飼養的方式構建西花薊馬實驗種群在菜豆豆莢上的年齡-階段兩性生命表,比較兩種飼養條件下西花薊馬的生活史和種群參數;采用bootstrap方法計算種群生長參數的平均數和標準誤;應用檢驗(Mann-Whitney test)(Sigmaplot 12.5)估計單頭飼養和群體飼養條件下西花薊馬種群參數、發育歷期和繁殖力間的差異。單頭飼養和群體飼養對若蟲期、蛹期、雄蟲壽命、總產卵前期、單雌產卵量、蛹重、成蟲體長有顯著影響, 對卵期、成蟲期、成蟲產卵前期、雌蟲壽命、蛹長、蛹寬、成蟲體寬的影響不顯著。單頭飼養西花薊馬的若蟲期(4.49 d)、蛹期(4.03 d)、雄蟲壽命(22.82 d)、總產卵前期(11.37 d)顯著長于群體飼養(3.05、3.32、18.64、10.00 d);單頭飼養西花薊馬的蛹重(0.03 mg)、雌成蟲體長(203.72 μm)、雄成蟲體長(149.74 μm)、單雌產卵量(48粒)顯著低于群體飼養(0.07 mg、288.81 μm、203.39 μm、133.39粒)。內稟增長率()、周限增長率()、凈增殖率(0)、總生殖率()和平均世代時間()在單頭飼養的情況下分別為0.161 d-1、1.175 d-1、20.730、35.699、18.70 d,在群體飼養情況下分別為0.242 d-1、1.274 d-1、60.499、102.342、16.88 d。群體飼養的西花薊馬種群增長比單頭飼養的快。相對于單頭飼養的西花薊馬,群體飼養的西花薊馬種群增長速度更快、單位時間內產生后代數更多,若使用單頭飼養方式建立生命表對西花薊馬種群發生動態進行預測預報可能會延誤最佳防治時機,以群體飼養的方式建立的生命表對田間種群的動態預測應該更準確。

西花薊馬;年齡-階段兩性生命表;單頭飼養;群體飼養

0 引言

【研究意義】西花薊馬()是一種世界性發生的,危害蔬菜、花卉及經濟作物的重要害蟲[1-3],起源于美國西部洛基山脈,2000年在中國云南省首次發現[4],并迅速傳播,已造成了巨大的經濟損失[4-6]。昆蟲生命表是研究昆蟲種群在一定生態條件下各階段個體的存活數、死亡數和死亡原因的重要手段[7]。到目前為止,對西花薊馬生命表的研究均采用單頭飼養(individual-rearing,IR)方式,包括寄主[8-12]、溫度[13-15]、殺蟲劑[16]、病原物[17]、生殖方式[18]、種群[19]以及復合因素[20-21]的影響。但事實上,在自然條件下西花薊馬常群聚發生[22]。單頭飼養和群體飼養(group-rearing,GR)的昆蟲生活史之間存在顯著差異。因此,根據上述兩種飼養方式分別建立生命表,對比生命表數據,可為西花薊馬生命表研究探索更可靠的方法,也為西花薊馬預測預報及防治提供更詳實的理論依據?!厩叭搜芯窟M展】單頭飼養的雄性太平洋甲蟲蟑螂()要比群體飼養(8—10頭)的發育歷期更長、成蟲體型更大[23]。群體飼養(4—35頭每組)與單頭飼養的西南龜瓢蟲()在生長速度、產卵前期、成蟲體型等方面有差異[24]。4齡松尺蠖()幼蟲群體飼養時的生長速度快于單頭飼養[25]。群體飼養的斑點木蝶()比單頭飼養的個體成蟲體型小[26]、雌蟲產卵量多[27]。因上述飼養方式的不同而產生生活史差異的現象在家蟋蟀()[28]、西方玉米根蟲()[29]、黏蟲()[30]、亞洲玉米螟()[31]、二點委夜蛾()[32]、桃小食心蟲()[33]、玉米蛀莖夜蛾()[34]、梨豆夜蛾()[35]、黃粉蟲()[36]、岡比亞按蚊()[37]、玻里尼西亞斑蚊()[38]、稻縱卷葉螟()[39]、小地老虎()[40]中也有發現?!颈狙芯壳腥朦c】單頭飼養西花薊馬的生命表得到了廣泛的研究,但目前為止,還沒有關于群體飼養西花薊馬的生命表研究?!緮M解決的關鍵問題】通過設置相同飼養環境,比較單頭飼養和群體飼養兩種方式下的生物學特性和生命表參數,以期為西花薊馬種群動態監測及其綜合治理決策提供依據。

1 材料與方法

試驗于2019—2020年在中國農業科學院植物保護研究所植物病蟲害生物學國家重點實驗室完成。

1.1 供試蟲源

西花薊馬2018年采自北京昌平區辣椒()田中。在中國農業科學院植物保護研究所植物病蟲害生物學國家重點實驗室建立實驗種群。飼養于三洋人工氣候箱內(MLR-351H,SANYO Electric Co.,Ltd),環境溫度(24±1)℃,光周期14 h﹕10 h(L﹕D),相對濕度(70±10)%。以菜豆()為寄主植物和產卵基質。供試全部蟲源為10對西花薊馬在菜豆上產卵12 h后取得。

1.2 單頭飼養和群體飼養西花薊馬各蟲態發育歷期測定

試驗在三洋人工氣候箱中進行(氣候條件設定同1.1)。將上述含卵寄主轉移至雙開口圓柱形玻璃罐(底部直徑×高=10 cm×30 cm,本試驗所用玻璃罐均為同一規格)中,玻璃罐兩端用尼龍紗網(200目)封住保持透氣,內部放置一張濾紙吸收罐內多余水分。每日在體視顯微鏡(SZX16,OLYMPUS)下觀察卵的孵化情況,將新孵出的1齡若蟲轉移至新玻璃罐中并記錄,作為試驗蟲源分別進行單頭飼養和群體飼養。剩余同批孵化西花薊馬分別以上述兩種飼養方式留作備用蟲源。每日定時更換新鮮菜豆,觀察記錄單頭飼養和群體飼養西花薊馬羽化前的發育與存活情況。試驗蟲源配對后,每日定時取出含卵寄主(菜豆)至新玻璃罐中,卵孵化后,將1齡若蟲的數量記為產卵量[17]。

1.2.1 單頭飼養 將新孵出的1齡若蟲分裝至玻璃罐中,每罐1頭,共40罐。待羽化后,在體視顯微鏡下鑒定成蟲性別并記錄,然后雌雄配對,若新羽化的試驗蟲源雌雄數量不對等,則使用備用蟲源配對補齊。配對后,繼續記錄試驗蟲源的壽命、產卵量,直至其死亡。若試驗蟲源配偶先死亡,則隨機從備用蟲源中為其另選配偶進行配對。蛹期取40頭備用蟲源,測量其蛹重、蛹長、蛹寬,羽化后各取40頭雌雄備用蟲源分別測量體長、體寬。

1.2.2 群體飼養 所用方法參考文獻[41-42]并加以改進,將新挑出的1齡若蟲共40頭[17]裝入玻璃罐中,逐日觀察,羽化后鑒定成蟲性別,記錄其產卵量和壽命。在飼養過程中,若所有雌蟲全部死亡,則隨機從備用蟲源中選取與存活雄蟲數量相等的雌性與其進行配對,記錄剩余雄性試驗蟲源的壽命;若所有雄蟲全部死亡,則隨機從備用蟲源中選取與存活雌蟲數量相當的雄性進行配對,記錄剩余雌性試驗蟲源的產卵量和壽命。試驗蟲源全部死亡后試驗停止。其蛹重、蛹長、蛹寬,雌雄蟲體長、體寬的測量方法同1.2.1。

1.3 數據分析

計算得出上述值后,再根據下列公式分別計算,內稟增長率(,intrinsic rate of increase,,初始年齡為0)、周限增長率(,finite rate of increase,λ=e)、總生殖率(,gross reproductive rate,=∑m)、凈增殖率(0,net reproductive rate,)、平均世代時間(,mean generation time,=(lnR)/)等參數。其中代表年齡,代表階段,代表齡期數。s′代表一個年齡階段的個體存活到年齡階段的概率,假設s=1,計算方法依據CHI等[43]。

根據上述計算公式,原始數據可使用TWOSEX- MSChart[47](http://140.120.197.173/Ecology,Visual BASIC環境,國立中興大學)完成相關運算。種群參數的平均值和標準誤使用bootstrap[48]法進行運算。采用檢驗(Mann-Whitney test)(Sigmaplot12.5,Systat Software Inc.,Chicago,IL)估計單頭飼養和群體飼養的西花薊馬種群參數、發育歷期和繁殖值間的差異。

體長、體寬、體重等數據使用SPSS 23.0計算平均值及標準誤,采用配對-test進行顯著性分析。

2 結果

2.1 飼養方式對西花薊馬生長發育和繁殖的影響

單頭飼養和群體飼養中每階段各指標如表1所示。其中若蟲期、單雌平均產卵量(<0.001),總產卵前期、蛹重、雌成蟲體長、雄成蟲體長(<0.01),蛹期、雄蟲壽命(<0.05)差異顯著。單頭飼養和群體飼養的卵期、雌成蟲期、雄成蟲期、雌成蟲產卵前期、雌蟲壽命、蛹長、蛹寬、雌成蟲體寬、雄成蟲體寬均無顯著差異。單頭飼養西花薊馬的若蟲期(4.49 d)、蛹期(4.03 d)、雄蟲壽命(22.82 d)、總產卵前期(11.37 d)顯著長于群體飼養(3.05、3.32、18.64、10.00 d);單頭飼養西花薊馬的蛹重(0.03 mg)、雌成蟲體長(203.72 μm)、雄成蟲體長(149.74 μm)、單雌產卵量(48粒)顯著低于群體飼養(0.07 mg、288.81 μm、203.39 μm、133.39粒)。

表1 單頭飼養和群體飼養的西花薊馬生活史

:該時期存活的西花薊馬個數the number of surviving individuals ofof the specific period。雌成蟲產卵前期代表雌蟲從羽化到產卵第1天;

總產卵前期代表雌蟲從卵期一直到產卵第1天Adult preoviposition period (APOP) is defined as the duration from eclosion to the first day of oviposition.

Total preoviposition period (TPOP) is defined as the duration from eggs to the first day of oviposition

采用SPSS中的成對-test進行差異顯著性分析Significant difference was analyzed by paired-sample-test of SPSS,***:<0.001;**:<0.01;*:<0.05;ns:無顯著差異No significant difference。表2同The same as Table 2

2.2 飼養方式對西花薊馬存活率和繁殖率的影響

存活率曲線s描述的是個體存活到年齡階段的可能性,可觀察到重疊現象[49]。如圖1所示,單頭飼養若蟲總歷期(74 d)、蛹總歷期(84 d)長于群體飼養。第8天時,單頭飼養若蟲已有72.5%化蛹,12.5%的個體仍為若蟲,且未出現羽化個體,而群體飼養若蟲已全部化蛹,且有20%的已羽化為成蟲。第9天時,單頭飼養若蟲已全部化蛹,但無羽化個體,群體飼養37.5%個體已完成羽化。第10天時,單頭飼養有7.5%的個體羽化,此時群體飼養個體已全部羽化。飼養至第14天時,單頭飼養個體全部羽化。

雌蟲特定年齡繁殖力(f)、特定年齡存活率(l)、特定年齡繁殖力(m)、特定年齡繁殖值(lm)如圖2所示。f是年齡階段的單日平均產卵量[49],雌成蟲位于生活史的第4階段,故為f。單頭飼養于f出現最大值4.26,群體飼養于f出現最大值為15.56,但f出現次高峰值,與峰值接近,其值為15.44。

l是年齡的存活率;m是年齡時所有個體平均生產子代數;lmlm的乘積,是年齡時所有存活個體的繁殖值[49]。從圖2可以看出單頭飼養的l值一直勻速下降,第35天,大部分薊馬的壽命達到最大值,曲線開始急劇下降;群體飼養的l曲線在第16天開始急劇下降,此時試驗蟲源雄蟲個體的數量開始銳減,在飼養至第23天時,試驗蟲源雄蟲全部死亡。

特定年齡生命期望(e)(圖3)是指在年齡階段個體的剩余存活時間,生命期望值會隨著年齡增長逐漸降低[49],單頭飼養的生命期望(25.721.8 d)高于群體飼養。單頭飼養雄蟲的生命期望從第16天起出現反常并在第24天超過雌蟲,原因為其中兩頭雄蟲的壽命超過了平均壽命(22.82 d),分別為24、30 d,與之配對的雌蟲均未產卵。

特定年齡-階段繁殖值(v)(圖4)是指在年齡階段的個體對以后的種群貢獻,初孵若蟲的繁殖值(v)等于周限增長率()[49]。單頭飼養的v值為1.175,群體飼養的v值為1.274。相對于單頭飼養(v= 18.36),群體飼養(v=27.70)的繁殖值高峰較高,出現得更早。飼養至23 d時,群體飼養的試驗蟲源雄蟲已全部死亡,使用試驗蟲源雌蟲以雌雄比1﹕1進行配對后,第25天又出現一次峰值(v=20.52)。

圖1 單頭飼養和群體飼養西花薊馬的特定年齡-階段特定存活率

圖3 單頭飼養和群體飼養西花薊馬的特定年齡-階段生命期望

圖4 單頭飼養和群體飼養西花薊馬的特定年齡-階段繁殖值

2.3 飼養方式對西花薊馬后代種群參數的影響

單頭飼養的內稟增長率(0.161 d-1)、周限增長率(1.175 d-1)、凈增殖率(20.730)和總生殖率(35.699)均極顯著低于群體飼養(0.242 d-1、1.274 d-1、60.499、102.342),而平均世代時間(18.70 d)極顯著高于群體飼養(16.88 d)(表2)。

3 討論

單頭飼養和群體飼養的西花薊馬在發育歷期、成蟲體長、蛹重、單雌平均產卵量、成蟲壽命等方面存在顯著差異。

群體飼養的西花薊馬發育歷期顯著短于單頭飼養個體,蛹重和成蟲體長顯著大于單頭飼養個體。此種由于飼養密度不同而引起的發育歷期差異的現象在秀麗線蟲()上也有發現[50]。群體飼養較單頭飼養昆蟲發育時間短的現象在太平洋甲蟲蟑螂[23]、珠腹珀蟋()[51]、西南龜瓢蟲[24]、亞洲玉米螟[31]中也有發現。

表2 單頭飼養和群體飼養西花薊馬的種群參數

與單頭飼養相比,群體飼養的昆蟲發育歷期短、蛹重較重可能與其幼蟲期取食成功率較高有關[52-54]。例如,覓食中的黑腹果蠅()幼蟲會通過視覺信號和化學信號(氣味等)追蹤到正在進食的同種其他個體,減少覓食行為所花費的精力、時間[52]。同樣,昆蟲的胰島素信號通路會對其營養攝取量進行反饋,營養攝取量多時該通路相關基因表達量升高,發育時間縮短,體尺增大。反之,發育時間增長,體尺減小[53]。在七葉樹蝴蝶()中,其類固醇激素和蛻皮激素同樣可起到調節發育速度和體尺的作用[53]。對于西花薊馬,其發育歷期、蛹重、體尺與取食成功率、營養攝取量的關系,以及內在的分子機制,仍有待進一步研究。

群體飼養西花薊馬的單雌平均產卵量顯著高于單頭飼養。類似的現象在螺旋粉虱()上也有發現[55]。成蟲體型和體重影響昆蟲繁殖力[56-59]。埃及伊蚊()在產卵最多時體型大的個體單雌平均產卵量、產卵次數顯著高于體型小的個體[56]。斑點木蝶中體型較大的雌性個體體內擁有較多的成熟卵[57]。地中海實蠅()的雌體體型大小與最大日產卵量顯著正相關[58,60]。日本黑蠅()的體型(翅長、頭寬)與繁殖力成正比[59]。黑腹果蠅成蟲體重低的個體產卵量少[61]。與單頭飼養相比,群體飼養的西花薊馬產卵量較高,可能與其體型較大,繁殖力較強有關。

單頭飼養西花薊馬的平均壽命長于群體飼養西花薊馬,類似的現象在秀麗線蟲上也有發現[50]。大多數生物(包括昆蟲在內)生存能量的分配會在繁殖和壽命間進行權衡,生殖能力強的個體壽命短[62]。當限制黑腹果蠅交配機會(切除雄性的外生殖器)時,雌蟲壽命顯著增長[63];限制其產卵(移除產卵基質)時,黑腹果蠅的壽命會延長[62,64]。與單頭飼養相比,群體飼養的西花薊馬單雌平均產卵量較高、壽命較短,可能與此有關。

單頭飼養方式會造成產卵延遲。單頭隔離飼養的西花薊馬首次產卵時間比群體飼養平均推遲0.81 d。同樣,在秀麗線蟲中,單頭飼養的群體首次產卵時間顯著晚于群體飼養[50]。有報道指出,西花薊馬產卵時間的延遲會造成產卵量的下降[65],可能是因為卵母細胞發育不良或被吸收。單頭飼養西花薊馬產卵量低于群體飼養可能與其產卵時間存在延遲有關。

單頭飼養西花薊馬的內稟增長率、周限增長率、凈增殖率和總生殖率顯著小于群體飼養,平均世代時間顯著長于群體飼養。由此可見,群體飼養西花薊馬種群擴增要顯著優于單頭飼養種群。若用單頭飼養的方式建立生命表,對西花薊馬種群動態進行預測預報,很可能錯過最佳防治時機。

4 結論

單頭飼養和群體飼養的西花薊馬生命表參數存在顯著差異。群體飼養西花薊馬生命表參數可能更符合田間種群發生動態,建議使用群體飼養的方式建立西花薊馬生命表。

[1] REITZ S R, GAO Y, KIRK W D J, HODDLE M S, LEISS K A, FUNDERBURK J E. Invasion biology, ecology, and management of western flower thrips. Annual review of entomology, 2020, 65: 17-37.

[2] REITZ S R. Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist, 2009, 92(1): 7-13.

[3] CHILDERS C C, LEWIS T. Feeding and oviposition injuries to plants//Thrips As crop pests.Wallingford, UK:CAB International, 1997:505-537.

[4] WU S, TANG L, ZHANG X, XING Z, LEI Z, GAO Y. A decade of a thrips invasion in China: lessons learned. Ecotoxicology, 2018, 27(7): 1032-1038.

[5] GAO Y, LEI Z, REITZ S R. Western flower thrips resistance to insecticides: detection, mechanisms and management strategies. Pest Management Science, 2012, 68(8): 1111-1121.

[6] ZHANG B, QIAN W, QIAO X, XI Y, WAN F. Invasion biology, ecology, and management ofin China. Archives of insect biochemistry and physiology, 2019, 102(3): e21613.

[7] MORRIS R F, MILLER C A. The development of life tables for the spruce budwormCanadian Journal of Zoology, 1954, 32(4): 283-301

[8] ZHANG Z J, WU Q J, LI X F, ZHANG Y J, XU B Y, ZHU G R. Life history of western flower thrips,(Thysan., Thripae), on five different vegetable leaves. Journal of Applied Entomology, 2007, 131(5): 347-354.

[9] SORIA C, MOLLEMA C. Life-history parameters of western flower thrips on susceptible and resistant cucumber genotypes. Entomologia Experimentalis et Applicata, 1995, 74(2): 177-184.

[10] 郅軍銳, 李景柱, 蓋海濤. 西花薊馬取食不同豆科蔬菜的實驗種群生命表. 昆蟲知識, 2010, 47(2): 313-317.

ZHI J R, LI J Z, GAI H T. Life table for experimental population offeeding on leguminous vegetables. Chinese Bulletin of Entomology, 2010, 47(2): 313-317. (in Chinese)

[11] HULSHOF J, KETOJA E, V?NNINEN I. Life history characteristics ofon cucumber leaves with and without supplemental food. Entomologia Experimentalis et Applicata, 2003, 108(1): 19-32.

[12] GAUM W G, GILIOMEE J H, PRINGLE K L. Life history and life tables of western flower thrips,(Thysanoptera: Thripidae), on English cucumbers. Bulletin of Entomological Research, 1994, 84(2): 219-224.

[13] ULLAH M S, LIM U T. Life history characteristics ofand(Thysanoptera: Thripidae) in constant and fluctuating temperatures. Journal of Economic Entomology, 2015, 108(3): 1000-1009.

[14] JIANG S, ZHANG N, WANG S, WANG J, LI J, ZHANG B, ZHENG C. Effects of heat shock on life parameters of(Thysanoptera: Thripidae) F1offspring. Florida Entomologist, 2014, 97(3): 1157-1166.

[15] 王海鴻, 薛瑤, 雷仲仁. 恒溫和波動溫度下西花薊馬的實驗種群生命表. 中國農業科學, 2014, 47(1): 61-68.

WANG H H, XUE Y, LEI Z R. Life tables for experimental populations of(Thysanoptera: Thripidae) under constant and fluctuating temperature. Scientia Agricultura Sinica, 2014, 47(1): 61-68.(in Chinese)

[16] 楊廣明, 郅軍銳, 李順欣, 劉利. 乙基多殺菌素和印楝素對西花薊馬生長發育及繁殖的亞致死效應. 應用生態學報, 2016, 27(11): 3698-3704.

YANG G M, ZHI J R, LI S X, LIU L. Sublethal effects of spinetoram and azadirachtin on development and reproduction of(Pergande). Chinese journal of applied ecology, 2016, 27(11): 3698-3704. (in Chinese)

[17] ZHANG T, REITZ S R, WANG H, LEI Z. Sublethal effects of(Ascomycota: Hypocreales) on life table parameters of(Thysanoptera: Thripidae). Journal of Economic Entomology, 2015, 108(3): 975-985.

[18] DING T, CHI H, GOKCE A, GAO Y, ZHANG B. Demographic analysis of arrhenotokous parthenogenesis and bisexual reproduction of(Pergande) (Thysanoptera: Thripidae). Scientific reports, 2018, 8(1): 3346.

[19] NIELSEN M C, TEULON D A J, CHAPMAN R B, BUTLER R C, Drayton G M, PHILIPSEN H. Comparison of life history parameters of two(Thysanoptera: Thripidae) strains in New Zealand. Environmental Entomology, 2010, 39(2): 303-311.

[20] LOWRY V K, SMITH J W, MITCHELL F L. Life-fertility tables for(Hinds) and(Pergande) (Thysanoptera: Thripidae) on peanut. Annals of the Entomological Society of America, 1992, 85: 744-754.

[21] HOLLINGSWORTH R G. Life history observations on(Thysanoptera: Thripidae) infesting gardenia in Hawaii, and a comparison of the humidity requirements forandproceedings of the hawaiian entomological society, 2003, 36: 79-87.

[22] TERRY L I.(Thysanoptera: Thripidae) oviposition in apple buds: Role of bloom state, blossom phenology, and population density.Environmental Entomology, 1991, 20(6):1568-1576.

[23] WOODHEAD A P, PAULSON C R. Larval development ofreared alone and in groups. Journal of Insect Physiology, 1983, 29(9): 665-668.

[24] OMKAR S, PATHAK. Crowding affects the life attributes of an aphidophagous ladybird beetle,. Bulletin of Insectology, 2009, 62(1): 35-40.

[25] ?MITS A. Performance of pine looperlarvae under population build-up conditions. Entomologia Experimentalis et Applicata, 2002, 104(1): 117-124.

[26] GIBBS M, LACE L A, JONES M J, MOORE A J. Intraspecific competition in the speckled wood butterfly: Effect of rearing density and gender on larval life history. Journal of Insect Science, 2004, 4: 16.

[27] GIBBS M, BREUKER C J. Effect of larval-rearing density on adult life history traits and developmental stability of the dorsal eyespot pattern in the speckled wood butterfly,. Entomologia Experimentalis et Applicata, 2005, 118(1): 41-47.

[28] MCFARLANE J E, ALLI I, STEEVES E. Studies on the group effect in(L.) using artificial diets. Journal of Insect Physiology, 1984, 30(2): 103-107.

[29] YU E Y, GASSMANN A J, SAPPINGTON T W. Effects of larval density on dispersal and fecundity of western corn rootworm,LeConte (Coleoptera: Chrysomelidae). PLoS One, 2019,14(3): e0212696.

[30] 蔣善軍, 羅禮智, 胡毅, 張蕾. Cry1Ac毒蛋白對粘蟲生長發育、繁殖及飛行能力的影響. 昆蟲學報, 2010, 53(12): 1360-1366.

JIANG S J, LUO L Z, HUy, ZHANG L. Effects of Cry1Ac protein on growth and development, reproduction and flight potential of the oriental armyworm,(Lepidoptera: Noctuidae). Acta Entomologica Sinica,2010, 53(12): 1360-1366. (in Chinese)

[31] 喬利, 潘茲亮, 盧兆成, 張麗霞, 仵均祥. 單頭飼養與群體飼養對亞洲玉米螟生長發育與繁殖的影響. 西北農業學報, 2011, 20(10): 204-206.

QIAO L, PAN Z L, LU Z C, ZHANG L X, WU J X. Growth development and reproduction of the(Guenee) under single raising and group raising. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(10): 204-206. (in Chinese)

[32] 李艷, 江幸福, 張蕾, 程云霞, 劉彥群, 羅禮智. 幼蟲密度對二點委夜蛾生長發育及繁殖的影響. 應用昆蟲學報, 2014, 51(3): 623-629.

LI Y, JIANG X F, ZHANG L, CHENG Y X, LIU Y Q, LUO L Z.Effects of larval density on the development and reproduction of. Chinese Journal of Applied Entomology, 2014, 51(3): 623-629. (in Chinese)

[33] LI X, FENG D, XUE Q, MENG T, MA R, DENG A, CHI H, WU Z, ATLIHAN R, MEN L, ZHANG Z. Density-dependent demography and mass-rearing of(Lepidoptera: Carposinidae) incorporating life table variability. Journal of Economic Entomology, 2019,112(1): 255-265.

[34] FANTINOU A A, PERDIKIS D C, STAMOGIANNIS N. Effect of larval crowding on the life history traits of(Lepidoptera: Noctuidae).European Journal of Entomology, 2008, 105(4): 625-630.

[35] FESCEMYER H W, HAMMOND A M. Effect of larval density and plant age on size and biochemical composition of adult migrant moths,Hübner (Lepidoptera: Noctuidae). Environmental Entomology, 1988, 17(2): 213-219.

[36] WEAVER D K, MCFARLANE J E. The effect of larval density on growth and development of. Journal of Insect Physiology, 1990, 36(7): 531-536.

[37] LYIMO E O, TAKKEN W, KOELLA J C. Effect of rearing temperature and larval density on larval survival, age at pupation and adult size of. Entomologia Experimentalis et Applicata, 1992, 63(3): 265-271.

[38] HAPAIRAI L K, MARIE J, SINKINS S P, BOSSIN H C. Effect of temperature and larval density on(Diptera: Culicidae) laboratory rearing productivity and male characteristics. Acta tropica, 2014,132(Suppl.): S108-S115.

[39] YANG F, HU G, SHI J J, ZHAI B P. Effects of larval density and food stress on life-history traits of(Lepidoptera: Pyralidae). Journal of Applied Entomology, 2015, 139(5): 370-380.

[40] SAPPINGTON T W, SHOWERS W B. Lack of translation of density-induced morphological polyphenism to long-duration flight behavior of black cutworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1992, 85(2): 188-194.

[41] CHI H, YOU M S, ATL?HAN R, SMITH C L, KAVOUSI A, ?ZG?K?E M S, GüNCAN A, TUAN S J, FU J W, XU Y Y,. Age-stage, two-sex life table: An introduction to theory, data analysis, and application. Entomologia Generalis,2020, 40(2): 103-124.

[42] NING S, ZHANG W, SUN Y, FENG J. Development of insect life tables: comparison of two demographic methods of(Diptera: Anthomyiidae) on different hosts. Scientific reports, 2017, 7(1): 4821.

[43] CHI H, LIU H. Two new methods for the study of insect population ecology.Bulletin of the Institute of Zoology, Academia Sinica, 1985, 24(2): 225-240.

[44] CHANG C, HUANG CY, DAI SM, ATLIHAN R, CHI H. Genetically engineered ricin suppresses(Diptera: Tephritidae) based on demographic analysis of group-reared life table. Journal of Economic Entomology, 2016, 109(3): 987-992.

[45] CHI H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 1988,17(1): 26-34.

[46] CHI H, SU H Y. Age-stage, two-sex life tables of(Ashmead) (Hymenoptera: Braconidae) and its host(Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 2006, 35(1): 10-21.

[47] CHI H. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. 2009, http://140.120.197.173/Ecology/.

[48] EFRON B, TIBSHIRANI R J. An introduction to the bootstrapMonographs on Statistics and Applied Probability,1993, 57: 436.

[49] CHI H, YANG T C. Two-sex life table and predation rate ofThunberg (Coleoptera: Coccinellidae) fed on(Sulzer) (Homoptera: Aphididae). Environmental Entomology, 2003, 32(2): 327-333.

[50] LUDEWIG A H, GIMOND C, JUDKINS J C, THORNTON S, PULIDO D C, MICIKAS R J, DORING F, ANTEBI A, BRAENDLE C, SCHROEDER F C. Larval crowding acceleratesdevelopment and reduces lifespan. PLoS genetics, 2017,13(4): e1006717.

[51] DAKSHAYANI K, MATHAD S B. A comparative study of growth, development and survival of the cricketwalker reared singly and in groups. Experientia, 1973, 29(8): 978-979.

[52] DURISKO Z, KEMP R, MUBASHER R, DUKAS R. Dynamics of social behavior in fruit fly larvae. PloS one, 2014, 9(4): e95495.

[53] NIJHOUT H F. The control of body size in insects. Developmental Biology, 2003, 261(1): 1-9.

[54] KOYAMA T, MIRTH C K. Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. Current Opinion of Insect Science, 2018, 25: 1-8.

[55] TARAVATI S, MANNION C. Effect of aggregation and cage setting on some life-history parameters of(Hemiptera: Aleyrodidae). Journal of Economic Entomology, 2016,109(1): 249-254.

[56] TSUNODA T, FUKUCHI A, NANBARA S, TAKAGI M. Effect of body size and sugar meals on oviposition of the yellow fever mosquito,(Diptera: Culicidae). Journal of Vector Ecology, 2010, 35(1): 56-60.

[57] BERGER D, WALTERS R, GOTTHARD K. What limits insect fecundity? Body size- and temperature-dependent egg maturation and oviposition in a butterfly. Functional Ecology, 2008, 22(3): 523-529.

[58] BLAY S, YUVAL B. Oviposition and fertility in the Mediterranean fruit fly (Diptera: Tephritidae): Effects of male and female body size and the availability of sperm. Annals of the Entomological Society of America,1999, 92(2):278-284.

[59] BABA M. Oviposition habits of(Diptera: Simuliidae), with reference to seasonal changes in body size and fecundity. Journal of Medical Entomology,1992, 29(4):603-610.

[60] EdwardsA W. The genetical theory of natural selection. Genetics, 2000, 154(4): 1419-1426.

[61] MIN K, FLATT T, KULAOTS I, TATAR M. Counting calories indiet restriction. Experimental Gerontology, 2007,42(3): 247-251.

[62] FLATT T. Survival costs of reproduction in.Experimental Gerontology, 2011, 46(5):369-375.

[63] FOWLER K, PARTRIDGE L. A cost of mating in female fruitflies. Nature, 1989, 338: 760-761.

[64] PARTRIDGE L, GREEN A, FOWLER K. Effects of egg-production and of exposure to males on female survival in.Journal of Insect Physiology, 1987, 33(10): 745-749.

[65] 楊廣明, 郅軍銳, 李順欣, 張宇羽. 延遲交配對西花薊馬成蟲壽命及繁殖力的影響. 山地農業生物學報, 2015, 34(4): 31-34.

YANG GM, ZHI JR, LI SX, ZHANG YY. Effect of delayed mating on adult longevity and reproduction of. Journal of Mountain Agriculture and Biology, 2015, 34(4): 31-34. (in Chinese)

Comparison of Life Tables for Experimental Populations of Individual-rearing and Group-rearing

Li Xinhua1, Wang Dengjie2, Lei Zhongren1, Wang Haihong1

1State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193;2Mianyang Academy of Agricultural Sciences, Mianyang 621000, Sichuan

】The method of individual-rearing (IR) was often used to study the life table of western flower thrip (), and the results can be used to predict the population occurrence under natural conditions in the field.However,often occur in groups rather than single head under natural conditions. The objective of this study to compare the life table parameters of individual-rearing and group-rearing (GR), and to explore the accuracy of population occurrence dynamics under natural conditions based on the data from individual-rearing and group-rearing.【】The age-stage, two-sex life table of the experimental population ofreared on bean pod was constructed by individual-rearing and group-rearing, respectively, and the life history and population parameters ofwere compared under the two conditions. The means and standard errors of population growth parameters were calculated using the bootstrap method. The Mann-Whitney test (test) was used to evaluate the differences in the population parameter, development period, and fecundity of individual-rearing and group-rearing.【】individual-rearing and group-rearing had significant effects on nymph stage, pupal stage, male longevity, total preoviposition period, per female oviposition, pupal weigh and adult body length, but not on egg stage, adult stage, adult preoviposition period, female longevity, pupal length, pupal width, adult width. The nymph stage (4.49 d), pupal stage (4.03 d), male longevity (22.82 d), total preoviposition period (11.37 d) of individual-rearingwere significantly longer than group-rearing ones (3.05, 3.32, 18.64 and 10.00 d, respectively). The pupal weigh (0.03 mg) of individual-rearingwas significantly lower than that of group-rearing(0.07 mg). The adult body lengths of individual-rearing(female: 203.72 μm, male: 149.74 μm) were significantly lower than those of group-rearing(female: 288.81 μm, male: 203.39 μm). The per female oviposition of individual-rearing(48) was significantly lower than that of group-rearing(133.39). The intrinsic rate of increase (), finite rate of increase (), net reproductive rate (0), gross reproductive rate () and mean generation time () of individual-rearingwere 0.161 d-1, 1.175 d-1, 20.730, 35.699, 18.70 d, respectively, while those of group-rearingwere 0.242 d-1, 1.274 d-1, 60.499, 102.342, 16.88 d, respectively. The population growth of individual-rearingwas slower than that of group-rearing.【】Compared with the individual-rearing, the population of group-rearinggrew faster and produced more offspring per unit time. Using the individual-rearing feeding method to establish a life table to predict the population dynamics ofmay delay the best control time. The life table established by the group-rearing method should predict the population dynamics more accurately.

; age-stage two-sex life table; individual-rearing; group-rearing

10.3864/j.issn.0578-1752.2021.05.008

2020-05-19;

2020-06-28

國家重點研發計劃(2017YFD0201205)、國家現代農業產業技術體系專項資金(CARS-25-B-07)

李欣華,E-mail:15733275161@163.com。通信作者王海鴻,Tel:010-62815930;E-mail:wanghaihong2020@sina.com

(責任編輯 岳梅)

猜你喜歡
薊馬若蟲成蟲
植物次生代謝物質對薊馬的行為調控作用及其在薊馬防控中的應用
基于輕量級SSD模型的夜間金蟬若蟲檢測
高CO2濃度下西花薊馬和花薊馬對蟲螨腈和唑蟲酰胺的響應比較
11種殺蟲劑對透明疏廣蠟蟬3齡若蟲的毒力測定
臨汾:抓緊防治玉米薊馬
環斑猛獵蝽對煙蚜若蟲的捕食作用
薇甘菊頸盲蝽基礎生物學特性
濟寧地區美國白蛾越冬代成蟲的監測與防治試驗
沈陽舟蛾科成蟲調查分類研究
楊梅果蠅綜合防治試驗
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合