?

一種高雙折射低限制性損耗光子晶體光纖設計

2021-04-12 07:11趙麗娟梁若愚趙海英徐志鈕
光電工程 2021年3期
關鍵詞:雙折射布里淵色散

趙麗娟,梁若愚,趙海英,徐志鈕*

一種高雙折射低限制性損耗光子晶體光纖設計

趙麗娟1,2,3,梁若愚1,趙海英1,徐志鈕1*

1華北電力大學電氣與電子工程學院,河北 保定 071003;2華北電力大學河北省電力物聯網技術重點實驗室,河北 保定 071003;3華北電力大學保定市光纖傳感與光通信技術重點實驗室,河北 保定 071003

本文設計了一種適用于長距離光纖通信的新型光子晶體光纖。該光纖包層內橢圓形和圓形空氣孔呈交錯排列,纖芯兩側為兩個小橢圓空氣孔。利用有限元分析方法對所設計光纖的傳輸特性進行分析并對其結構進行了優化,確定了最佳結構。結果表明,波長為1550 nm時,此新型光子晶體光纖在最佳結構下可提供高達3.51×10-2的高雙折射和低至1.5×10-9dB/m的限制性損耗。與現存的引入橢圓形空氣孔的光子晶體光纖相比,本文中的光子晶體光纖的雙折射系數有較大提高,限制性損耗系數降低了5個數量級。另外,本文還詳細研究了光子晶體光纖的色散隨光子晶體光纖結構的變化以及其布里淵增益特性,并分析了其可制造性?;谄涓唠p折射和低限制性損耗特性,此種光纖可應用于長距離光纖通信系統。

光子晶體光纖;高雙折射;低限制性損耗;有限元分析法

1 引 言

光子晶體光纖(Photonic crystal fiber, PCF)是一種空氣孔沿軸向周期性排列的,端面呈二維周期性分布的光子晶體結構[1],又稱為多孔光纖或微結構光纖,具有許多傳統光纖無法實現的性能,近幾年在行業內引起了極大的關注[2-4]。

與傳統的光纖相比,光子晶體光纖具有許多優異特性,例如大負色散、非線性特性、限制性損耗和高雙折射等。同時,雙折射特性、限制性損耗以及色散特性是長距離光纖通信系統中三個重要的衡量標準。當光子晶體光纖的兩個偏振軸之間的不對稱程度越大,其雙折射系數越大,傳輸過程中兩個偏振軸之間的模式耦合程度會減小,有助于提升光信號的傳輸距離。同時,較低的限制性損耗也有助于提升光信號的傳輸距離。另外,色散會引起光脈沖的展寬,極大地限制了傳輸信道的容量和光纖的帶寬[5]。因此,利用大負色散光纖進行色散補償在高速度長距離光纖通信系統中也十分必要。

2011年,Yang等人[6]引入橢圓形空氣孔,使得光子晶體光纖的雙折射達到了0.87×10-2,限制性損耗為0.01 dB/m。2016年,Wu等人[7]設計的光子晶體光纖的雙折射系數達到2.21×10-2。2017年,Liao等人[8]通過在纖芯引入橢圓空氣孔得到了高達3.41×10-2的雙折射系數和低至-399.98 ps·km-1·nm-1的色散值。2019年,Liu等人[9]設計的光子晶體光纖的限制性損耗有了新的突破,達到了10-6dB/m,其數量級有明顯降低。劉旭安等人[10]提出了一種基于雙空氣孔單元四角晶格排列的光子晶體光纖,其雙折射為10-2量級,限制性損耗為10-6dB/m量級。2020年,Agbemabiese等人[11]提出一種包層含圓形和橢圓形空氣孔的光子晶體光纖,其雙折射系數為2.018×10-2,限制性損耗為10-5dB/m量級。在目前現存的光子晶體光纖的設計中,空氣孔的分布較為單一,大大降低其偏振軸之間的不對稱性,影響雙折射系數的進一步提高以及其他傳輸特性的優化,因此,已無法滿足當今通信系統高速增長的需求。

本文設計的光子晶體光纖與已有光纖最明顯的區別是本文光纖橫截面內圓形與橢圓形空氣孔交錯排列。利用有限元方法系統地進行數值分析之后,得出了所設計光纖最優的結構參數,并且分析了其傳輸特性和布里淵增益譜特性。研究結果表明,在1550 nm處,此光纖在最佳結構下的雙折射系數可達3.51×10-2,限制性損耗低至1.5×10-9dB/m,偏振軸具有平坦色散,偏振軸色散值最低可達到-500 ps·km-1·nm-1。偏振軸和偏振軸的布里淵頻移分別為10.15 GHz和10.4 GHz。本文提出的光纖在光纖傳感,制作保偏光纖以及長距離光纖通信系統等領域具有一定的應用價值。

2 光纖設計及基本理論

光纖的橫截面示意圖如圖1所示。橢圓形空氣孔與圓形空氣孔呈交錯排列,孔間距為。圖中灰色區域為橢圓形空氣孔,短半軸和長半軸分別用和表示;綠色區域為半徑為的圓形空氣孔;圍繞纖芯的黃色區域為兩個小橢圓空氣孔,其短半軸和長半軸分別為1和,橢圓率用=1/表示;光纖半徑為。

圖1 光纖橫截面

表1 光纖結構及完美匹配層參數

在利用有限元分析法對建立的模型進行計算時,添加了一層厚度為的完美匹配層(perfectly matched layer,PML)作為邊界吸收條件,使計算結果更加精確。經過系統地數據分析,最終確定的部分結構參數如表1所示。

3 光纖特性分析

本文仿真模擬基于表1中的光纖結構參數。在本小節中取1=0.35 μm,=0.2。圖2為該結構下光纖和偏振軸的模場分布。從圖2可以看出,偏振軸和偏振軸的模場分布分別呈現出橢圓形和矩形形狀,其模式電場關于軸和軸的分布失去了極軸對稱性,導致了該光子晶體光纖高雙折射系數的產生,不對稱性越高,光纖模式雙折射越高。

3.1 雙折射系數

有效折射率(eff)是一個定量描述波導中單位長度相位延遲的量,隨著波長的增加,光束的場分布逐漸擴展到包層區域,有效折射率隨之減小,如圖3所示。

當發生變化時,雙折射系數也會隨之發生改變,其變化趨勢如圖4所示。

如圖3、圖4所示,當小于0.4 μm,波長小于1800 nm時,同波長下偏振軸有效折射率和雙折射系數的差異較小。圖3中子圖部分為波長在1600 nm~2000 nm,在0.2 μm~0.35 μm范圍內變化時光纖、偏振軸有效折射率的標準差,從圖中可以看出,在1800 nm后光纖偏振軸的有效折射率出現了一定程度的變化,而偏振軸差異較小,因此雙折射系數差異增大。而當=0.4 μm時,光纖雙折射系數有明顯下降,是因為此時橢圓孔全部呈現圓形,降低了偏振軸和偏振軸的非對稱性。

當小于0.4 μm時其值的大小對光纖特性影響較小,而偏大時,其制造難度較低。計算表明在其他參數保持最優的情況下,=0.35 μm接近最優值。接下來我們僅優化,PCF的其他參數如表1所示。

圖5顯示了在典型值=0.2、0.6和0.8時雙折射系數隨波長的變化情況,其中1分別對應于0.08 μm,0.24 μm和0.32 μm。此外,在波長為1550 nm處標注了參考文獻[8,12-15]中典型PCF的雙折射系數值以與本文提出的光纖結構雙折射系數值進行對比。如圖5所示,雙折射系數隨著的減小而增加,當波長為1550 nm,=0.2時獲得了3.51×10-2的高雙折射。同時從圖5中可以看出,與文獻[8,12-15]中設計的光子晶體光纖相比,本文所提出的PCF結構在=0.2時具有最高的雙折射系數,這是因為所提出的空氣孔交錯分布結構大大提高了兩偏振軸之間的不對稱性,高雙折射光子晶體光纖可以有效減少光信號傳輸過程中兩個偏振軸之間的能量耦合,有助于增加光纖通信系統的傳輸距離[16-18]。

圖2 η=0.2時光纖LP01模式模場分布和能量等值線分布圖。(a), (b) x偏振軸;(c), (d) y偏振軸

圖3 光纖有效折射率隨a的變化

圖4 光纖雙折射系數隨a的變化

圖5 不同η下PCF的雙折射系數 隨波長的變化

圖6 光纖色散隨波長的變化

3.2 色散

PCF的色散包括材料色散和波導色散[19]。在有限元計算過程中已經包括了材料色散,因此本文僅計算波導色散,其計算式如下[20]:

其中:是波長,是真空中的光速,Re(eff)是模式有效折射率的實部。本文設計的PCF色散在不同下隨波長變化情況如圖6所示。

在光纖通信系統中,光纖色散會引起傳輸信號的畸變,使得通信質量下降,限制通信容量和通信距離,在通信系統中加入適當長度具有較低負色散的色散補償光纖可以改善色散對通信系統的影響;而色散平坦在超連續譜產生中發揮著重要作用,因此在光通信傳輸中的光纖設計可以綜合考慮色散平坦與負色散兩種特性。圖6是根據仿真計算結果得到的色散隨波長變化的曲線,當在0.2~0.6范圍內變化時,其、偏振軸的零色散波長大概在600 nm~1100 nm范圍內變化。當=0.2時,偏振方向的色散值可低至約-500 ps·km-1·nm-1;在偏振方向也可以提供相對平坦的負色散,同時具有零色散平坦的特性,近零平坦色散有利于實現非線性光學中的相位匹配、孤子脈沖的產生和傳輸以及超寬且平坦超連續譜的產生[5];當=0.4時,其具有比=0.2時更低的色散,但是其色散平坦度較差,不具有零色散平坦的特性;當=0.6時,其色散平坦度也較差。因此,本文設計的PCF在=0.2時同時有大負色散以及零色散平坦的特性,可用作高速率長距離傳輸系統中的色散補償光纖元件,在超連續譜產生方面也具有重要的應用價值。

3.3 限制性損耗

限制性損耗是由PCF結構引起的,在光信號傳輸過程中,光并不能完全束縛在纖芯進行傳輸。因此,限制性損耗可認為是由光的泄漏引起,表示為

光纖限制性損耗的大小直接影響傳輸距離以及中繼站間隔距離的遠近。從圖7可以看出,當波長一定時,限制性損耗隨的增加而增大。在1550 nm處,=0.2時,偏振軸的限制性損耗約為1.5×10-9dB/m,偏振軸的限制性損耗約為4×10-9dB/m。與文獻[16]相比降低了5個數量級,因此,它具有更優異的傳輸性能,可以延長通信系統傳輸距離。

從圖4至圖7可知,當=0.2時,雙折射系數最高,負色散較為平坦且限制損耗最小,具有更好的性能。另外,制造難度隨著減小而增加。因此,我們可以確定=0.2為光纖包層中小橢圓空氣孔的最佳結構。

3.4 布里淵增益

圖7 光纖限制性損耗隨波長的變化。(a) x偏振軸;(b) y偏振軸

圖8 光子晶體光纖LP01模式的聲場分布

圖9 光子晶體光纖的布里淵增益譜

基于確定的光纖最佳結構,分析光子晶體光纖的布里淵增益頻譜特性。每個聲學模式對應一個布里淵峰。布里淵增益與聲學模式的關系可定義為[22]

其中:和p分別是散射光和入射光的頻率;vω分別是布里淵散射譜中第個峰的布里淵頻移和線寬;是第個布里淵增益譜的峰值。

圖8為LP01模式的聲場分布,從圖中可以看到聲波的能量集中于纖芯分布,由于光場和聲場之間有相互作用,從而可以形成布里淵增益譜中的峰。

圖9為本文設計的光子晶體光纖的布里淵增益譜。從圖9中可以看出,偏振方向的布里淵頻移小于偏振方向的布里淵頻移,其布里淵頻移分別為10.15 GHz和10.4 GHz。在實際應用當中,根據布里淵頻移可直接算出聲速,由聲速可以算出彈性常數,由聲速的變化可得到關于聲速的各向異性、弛豫過程和相變的信息等;由線寬可以研究聲衰減過程。另外,在分布式光纖傳感系統中,通過測量布里淵頻移的變化能實現對光纖所處環境溫度與應變的傳感[23-26],本節為所設計的PCF的進一步應用提供了理論基礎。

3.5 與現有光子晶體光纖的性能比較

表2為所提出的PCF與已有設計之間的雙折射系數(),色散()和限制損耗(())的比較。結果表明,本文提出的PCF性能有顯著提高,在高速率和長距離傳輸系統領域中具有潛在的應用。

3.6 制造可行性分析

近年來,在光子晶體光纖制造[29]方面,Sol-gel澆鑄法已變得越來越流行,它可以靈活地改變包層中空氣孔的形狀、大小和間距,而不會產生空隙。該方法先將熔融石英澆注到根據包層結構設計的模具中來制造纖維預制件,然后將預制件放入光纖拉伸器中進行拉制[30]。此方法為我們提出的結構的制造帶來了解決方案。然而,在拉制過程中圓形氣孔直徑仍不可避免地會有1%~2%的誤差。圖10顯示了制造偏差對光纖雙折射系數的影響。從圖中可以看出,圓形氣孔直徑的變化對所設計光纖的雙折射系數的影響很小,因此降低了對制造精度的要求,大大提高了其可制造性。

4 結 論

本文設計了一種新型光子晶體光纖結構,包層中大橢圓形和圓形氣孔序列交錯分布,纖芯周圍有兩個小橢圓形氣孔。通過有限元方法系統地研究了其傳輸特性?;谠敿毜臄抵捣治鲇懻摿诵E圓空氣孔橢圓率對光纖性能的影響,得到了PCF的最佳參數。本文的結論如下:

1) 當波長為1550 nm時,基于最佳參數的光纖雙折射系數和限制性損耗分別為3.51×10-2和1.5×10-9dB/m。與現有研究結果相比,所提出的PCF的雙折射增加了0.97×10-2,限制性損耗降低了大約5個數量級,大大提高了光信號在通信系統中的傳輸距離。

2)=0.2時,PCF的偏振軸可以提供較平坦的大負色散,偏振軸的色散可低至-500 ps·km-1·nm-1,可用于制造色散補償元件,有效降低脈沖展寬對信道容量及帶寬的限制。

3) 最佳結構下,光子晶體光纖和偏振方向的布里淵頻移分別約為10.15 GHz和10.4 GHz。

綜上所述,本文設計的PCF可以用于高速率長距離傳輸通信系統領域,并在光纖傳感領域具有潛在的應用前景。

表2 與現有光子晶體光纖的性能比較

圖10 當圓空氣孔直徑(2b)有1%~2%的誤差時 雙折射系數隨波長的變化

[1] Steel M J, Osgood R M. Polarization and dispersive properties of elliptical-hole photonic crystal fibers[J]., 2001, 19(4): 495–503.

[2] Wang X Y, Cui Y Z, Bi W H,. Research on control method of Graphene layers grown in air holes of photonic crystal fiber based on Raman spectroscopy[J]., 2020, 40(12): 3659–3664. 王曉愚, 崔永兆, 畢衛紅, 等. 基于拉曼光譜的光子晶體光纖孔內生長石墨烯層數控制方法的研究[J]. 光譜學與光譜分析, 2020, 40(12): 3659–3664.

[3] Robert P, Fourcade-Dutin C, Dauliat R,. Spectral correlation of four-wave mixing generated in a photonic crystal fiber pumped by a chirped pulse[J]., 2020, 45(15): 4148–4151.

[4] Wei F H, Zhang X J, Tang S F. Design and analysis of photonic crystal fiber refractive index sensor based on surface Plasmon resonance[J]., 2020, 41(1): 35–38, 43. 魏方皓, 張祥軍, 唐守鋒. 基于表面等離子體共振的光子晶體光纖折射率傳感器的設計與分析[J]. 半導體光電, 2020, 41(1): 35–38, 43.

[5] Wei H Y, Pei X N. Design of near-infrared zero-dispersion flattened all-solid microstructured optical fiber[J]., 2018, 42(10): 41–45. 魏紅彥, 裴小娜. 近紅外零色散平坦全固態微結構光纖的設計[J]. 光通信技術, 2018, 42(10): 41–45.

[6] Yang K Y, Chau Y F, Huang Y W,. Design of high birefringence and low confinement loss photonic crystal fibers with five rings hexagonal and octagonal symmetry air-holes in fiber cladding[J]., 2011, 109(9): 093103.

[7] Wu L M, Song P, Wang J,. A squeezed lattice high negative dispersion and high birefringence photonic crystal fiber[J]., 2016, 45(S1): S120001. 武麗敏, 宋朋, 王靜, 等. 一種高雙折射高負平坦色散壓縮型光子晶體光纖[J]. 紅外與激光工程, 2016, 45(S1): S120001.

[8] Liao J F, Huang T Y, Xiong Z Z,. Design and analysis of an ultrahigh birefringent nonlinear spiral photonic crystal fiber with large negative flattened dispersion[J]., 2017, 135: 42–49.

[9] Liu Q, Liu Q Y, Sun Y D,. A high-birefringent photonic quasi-crystal fiber with two elliptical air holes[J]., 2019, 184: 10–15.

[10] Liu X A, Cheng H P, Jiao Z. Properties of regular-lattice photonic crystal fiber based on a double-hole unit[J]., 2019, 43(1): 48–52. 劉旭安, 程和平, 焦錚. 雙孔單元四邊形晶格光子晶體光纖特性的研究[J]. 激光技術, 2019, 43(1): 48–52.

[11] Agbemabiese P A, Akowuah E K. Numerical analysis of photonic crystal fiber of ultra-high birefringence and high nonlinearity[J]., 2020, 10(1): 21182.

[12] Liu M, Hou J Y, Yang X,. Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity[J]., 2018, 27(1): 014206.

[13] Yang T Y, Wang E L, Jiang H M,. High birefringence photonic crystal fiber with high nonlinearity and low confinement loss[J]., 2015, 23(7): 8329–8337.

[14] Sonne A, Ouchar A, Sonne K. Improving of high birefringence with negative dispersion using double octagonal lattice photonic crystal fiber[J]., 2016, 127(1): 8–10.

[15] Gao Y, Sima C, Cheng J,. Highly-birefringent and ultra-wideband low-loss photonic crystal fiber with rhombic and elliptical holes[J]., 2019, 450: 172–175.

[16] Prajapati Y K, Kumar R, Singh V. Design of a photonic crystal Fiber for dispersion compensation and sensing applications using modified air holes of the cladding[J]., 2019, 49(5): 745–751.

[17] Li Y Q, Zhang L X, Fan H B,. A self-heterodyne detection Rayleigh Brillouin optical time domain analysis system[J]., 2018, 427: 190–195.

[18] Rong G H, Yi X S. Investigation on a new high birefringence photonic crystal fiber[J]., 2018, 39(2): 211–215. 榮耕輝, 伊小素. 一種新型高雙折射光子晶體光纖的特性研究[J]. 半導體光電, 2018, 39(2): 211–215.

[19] Zhang X D, Yuan M M, Chang M,. Characteristics in square air hole structure photonic crystal fiber[J]., 2018, 45(5): 170633. 張學典, 袁曼曼, 常敏, 等. 正方形空氣孔光子晶體光纖特性分析[J]. 光電工程, 2018, 45(5): 170633.

[20] Chen N, Zhang X D, Nie F K,. Dispersion-compensating photonic crystal fiber with wavelength tunability based on a modified dual concentric core structure[J]., 2018, 65(12): 1459–1465.

[21] Yang T Y, Jiang H M, Wang E L,. Photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]., 2016, 35(3): 350–354.楊天宇, 姜海明, 王二壘, 等. 一種近紅外波段的高雙折射高非線性光子晶體光纖[J]. 紅外與毫米波學報, 2016, 35(3): 350–354.

[22] Pan Y H, Lu Y G, Pen J Q,. Brillouin gain spectrum characteristics of photonic crystal fibers[J]., 2019, 39(6): 0619001. 潘宇航, 路元剛, 彭楗欽, 等. 光子晶體光纖的布里淵增益譜特性[J]. 光學學報, 2019, 39(6): 0619001.

[23] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]., 2012, 12(7): 8601–8639.

[24] Xu Z N, Hu Y H, Zhao L J,Fast and highly accurate Brillouin frequency shift extracted algorithm based on modified quadratic polynomial fit[J]., 2020, 40(3): 842–848. 徐志鈕, 胡宇航, 趙麗娟, 等. 基于改進二次多項式擬合的布里淵頻移快速高精度提取算法[J]. 光譜學與光譜分析, 2020, 40(3): 842–848.

[25] Xu Z N, Hu Y H, Zhao L J,. Rapid temperature and strain measurement method for optic-electric composite submarine cable based on slope-assisted method[J]., 2020, 40(5): 202–208. 徐志鈕, 胡宇航, 趙麗娟, 等. 基于單斜坡法的光電復合海纜溫度、應變快速測量方法[J]. 電力自動化設備, 2020, 40(5): 202–208.

[26] Sheng Y, Lu J, Yao G F,. Analysis of high birefringent and confinement loss of elliptical air-holes rectangular photonic crystal fiber[J]., 2014, 43(S1): 0106008. 盛勇, 陸駒, 姚高峰, 等. 橢圓空氣孔矩形結構光子晶體光纖的高雙折射及限制損耗分析[J]. 光子學報, 2014, 43(S1): 0106008.

[27] Zhang W, Li S G, Bao Y J,. A design for single-polarization single-mode photonic crystal fiber with rectangular lattice[J]., 2016, 359: 448–454.

[28] Pan C, Zhou J P, Ni H B. Colloidal photonic crystal modified optical fiber and relative humidity detection application[J]., 2018, 45(9): 180168. 潘超, 周俊萍, 倪海濱. 膠體光子晶體修飾光纖及相對濕度檢測應用[J]. 光電工程, 2018, 45(9): 180168.

[29] Sun C Y, Wang W C, Jia H Z. A squeezed photonic crystal fiber for residual dispersion compensation with high birefringence over S+C+L+U wavelength bands[J]., 2020, 458: 124757.

Design of a photonic crystal fiber with low confinement loss and high birefringence

Zhao Lijuan1,2,3, Liang Ruoyu1, Zhao Haiying1, Xu Zhiniu1*

1School of Electrical and Electronic Engineering, North China Electric Power University, Baoding, Hebei 071003, China;2Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding, Hebei 071003, China;3Baoding Key Laboratory of Optical Fiber Sensing and Optical Communication Technology, North China Electric Power University, Baoding, Hebei 071003, China

ection of the proposed PCF

Overview:Optical fiber communication is a system in which the light waves are used as the information carriers and the optical fibers are used as the transmission media. Optical fiber is more excellent than the transmission of cable and the microwave communication due to its wide transmission band, high anti-interference ability and low confinement loss, and has become the main transmission method. At the same time, with the development of communication technology, optical fiber communication systems have higher requirements for the performance of optical fibers. Traditional single-mode fibers can no longer meet the demands. Compared with conventional fibers, photonic crystal fibers (PCFs) have many unique characteristics, including no cut-off single mode transmission, highly tunable dispersion, excellent nonlinear effect, birefringence effect and so on. Therefore, PCFs have attracted considerable interests in recent years. In 2011, K. Yang proposed a PCF with elliptical air holes distributing on the inner rings. The birefringence of this PCF achieves 0.87×10-2, and the confinement loss is 0.01 dB/m. In 2016, the birefringence of the PCF designed by L. Wu reaches 2.21×10-2. In 2017, by introducing the elliptical air holes in the core, a birefringence of 3.41×10-2and a dispersion of -608.93 ps·km-1·nm-1was obtained by J. Liao. In 2019, the birefringence of the PCF with two elliptical air holes in the core proposed by Q. Liu is 1.4207×10-2, and the order of the confinement loss achieves 10-4dB/m. However, the existing studies with simple arrangement of air holes in the cladding show poor asymmetry, affecting the further improvement of the properties such as the birefringence and the confinement loss, so it could not meet the rapidly growing demands for optical fiber communication.

To fix the above problems, we proposed a novel PCF for long distance communication with crossly distributed elliptical and circular air holes sequences in the cross-section in this paper. The birefringence and confinement loss of the proposed PCF were systematically analyzed by using of the full vector finite element method. Then, we obtained the optical structure parameters by systematically numerical analysis and explored the Brillouin gain spectrum characteristics of the PCF. The results reveal that the proposed PCF offers an ultrahigh birefringence of 3.51×10-2with the confinement loss as low as 1.5×10-9dB/m for the optimal structure of the PCF at the wavelength of 1550 nm, and the Brillouin frequency shift of- and-polarization are about 10.15 GHz and 10.4 GHz respectively. In addition, the PCF proposed in this work may be helpful for applications in the field of fiber optical sensing, the polarization-maintaining fiber, and the long-distance transmission of optical signal.

Zhao L J, Liang R Y, Zhao H Y,Design of a photonic crystal fiber with low confinement loss and high birefringence[J]., 2021, 48(3): 200368; DOI:10.12086/oee.2021.200368

Design of a photonic crystal fiber with low confinement loss and high birefringence

Zhao Lijuan1,2,3, Liang Ruoyu1, Zhao Haiying1, Xu Zhiniu1*

1School of Electrical and Electronic Engineering, North China Electric Power University, Baoding, Hebei 071003, China;2Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding, Hebei 071003, China;3Baoding Key Laboratory of Optical Fiber Sensing and Optical Communication Technology, North China Electric Power University, Baoding, Hebei 071003, China

A photonic crystal fiber (PCF) for long distance communication was proposed in this paper. The circular and elliptical air holes distribute in the cladding, and there are two small elliptical air holes around the core in cross section of the PCF. The characteristics of the PCF were analyzed by using the finite element method (FEM) systematically. The results show that the PCF offers an ultrahigh birefringence of 3.51×10-2and the confinement loss as low as 1.5×10-9dB/m with the optimal structure at the wavelength of 1550 nm. Compared with the existing photonic crystal fibers with elliptical air holes, the birefringence has a large increase, and the confinement loss reduces by 5 orders of magnitude. Additionally, we also analyzed the relationship between the dispersion of the PCF and the wavelength, and obtained the Brillouin gain spectrum characteristics. In general, the PCF can be used in long distance communication system.

photonic crystal fiber; high birefringence; low confinement loss; finite element method

National Natural Science Foundation of China (51607066, 61775057), the Natural Science Foundation of Hebei Province (E2019502177), and the Fundamental Research Funds for the Central Universities (2019MS085)

10.12086/oee.2021.200368

TN818

A

* E-mail: wzcnjxx@sohu.com

趙麗娟,梁若愚,趙海英,等. 一種高雙折射低限制性損耗光子晶體光纖設計[J]. 光電工程,2021,48(3): 200368

Zhao L J, Liang R Y, Zhao H Y,Design of a photonic crystal fiber with low confinement loss and high birefringence[J]., 2021, 48(3): 200368

2020-10-12;

2021-02-05

國家自然科學基金資助項目(51607066, 61775057);河北省自然科學基金資助項目(E2019502177);中央高?;究蒲袠I務費專項資金項目(2019MS085)

趙麗娟(1981-),女,博士,副教授,主要從事光纖傳感與光纖通信的研究。E-mail:hdzlj@126.com

徐志鈕(1979-),男,博士,副教授,主要從事分布式光纖傳感及其在電氣設備狀態監測和故障診斷中的應用的研究。E-mail:wzcnjxx@sohu.com

版權所有?2021中國科學院光電技術研究所

猜你喜歡
雙折射布里淵色散
“光的折射”“光的色散”知識鞏固
基于布里淵散射的光纖溫度和應變快速感知
“光的折射”“光的色散”知識鞏固
色散的成因和應用
『光的折射』『光的色散』隨堂練
平行四邊形晶格結構中布里淵區的研究
線雙折射磁光光纖光柵中光偏振態演化
線雙折射磁光光纖光柵中光偏振態演化
面心立方、體心立方晶格第一布里淵區的畫法
拉曼效應對低雙折射光纖偏振態的影響
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合