?

窯街礦區海石灣井田油A層腐泥煤有機質成熟度辨析

2022-01-04 11:54宋孝忠張炳忠宋艷強
煤田地質與勘探 2021年6期
關鍵詞:煤巖反射率成熟度

宋孝忠,張炳忠,雷 瑩,宋艷強

窯街礦區海石灣井田油A層腐泥煤有機質成熟度辨析

宋孝忠1,張炳忠2,雷 瑩1,宋艷強2

(1. 中煤科工集團西安研究院有限公司,陜西 西安 710077;2. 窯街煤電集團有限公司,甘肅 蘭州 730080)

在石油、天然氣、頁巖氣和煤層氣資源勘探開發方面,鏡質體反射率指標被公認是唯一可對比的烴源巖有機質成熟度評價指標。為準確測定窯街礦區海石灣井田油A層腐泥煤的有機質成熟度,采集井田鉆孔煤巖樣品,開展顯微鏡下顯微成分反射光、熒光光學特征觀測。測試發現,油A層腐泥煤中存在2種不同特征鏡質組,一種為發熒光的鏡質組,反射色低、反射率測值低;另一種為不發熒光鏡質體,反射色高、反射率測值相對偏高。油A層沉積環境分層明顯,上部為腐泥煤,顯微成分以藻類體為主,含有大量的黃鐵礦,反映深部沼澤強還原環境;下部顯微成分以腐泥基質、基質鏡質體、角質體為主,相較于上部,藻類體及黃鐵礦含量明顯降低,反映出其沉積物源發生變化,藻類等低等生物輸入比例降低,高等植物物源比例增高,反映為相對較弱的還原環境。根據井田地層沉積環境、油A層腐泥煤顯微組成及其與下部煤二層腐植煤的鏡質組成熟度對比分析,認為油A層腐泥煤中不發熒光鏡質體的反射率能夠反映其真實的成熟度,與下部煤二層處于同一變質階段。研究認識為開展腐泥煤有機質成熟度分析提供了新的方法、思路,當煤巖層中高等植物含量較少,或者與其相鄰地層成熟度差異較大時,建議將局部測試結果與整個煤系各煤/巖層進行比對,同時結合其鏡質體熒光特征和沉積環境綜合判斷分析。

窯街礦區;腐泥煤;有機質成熟度;熒光鏡質體;沉積環境

鏡質體反射率指標被公認為評判烴源巖有機質成熟度指標。腐植煤中鏡質組發育,易于辨識。但油頁巖及腐泥煤中鏡質組含量低,且多以碎屑及基質形態發育,鏡下顯微組成難以辨識。存在腐泥煤中原生鏡質體反射率低于與其共生腐植煤鏡質體現象[1-13],對準確判識腐泥煤的成熟度造成一定干擾。前人文獻及以往地勘資料中[14-21],窯街礦區海石灣井田中侏羅統窯街組第二巖段(J22)油頁巖層與相鄰煤層鏡質體反射率差異較大,所反映的二者有機質成熟度存在異常,但少有文獻對該區油頁巖中的鏡質組組成及成因開展進一步的研究。筆者基于該研究區勘探數據及鉆孔煤巖心資料,描述分析所采集樣品的宏觀煤巖及顯微鏡下光學特征,并結合窯街礦區海石灣井田地層沉積環境,研究油A層腐泥煤中鏡質組成因及油A層有機質成熟度異常原因,找出能更加準確測定油A層的鏡質組,為該區煤層氣和天然氣勘探開發提供可靠數據。

1 海石灣井田油A層概況

窯街組煤系自下而上可分為5個巖段(圖1),油頁巖層及主體煤層發育于第二巖段J22。下部為黑色炭質泥巖、中細砂巖、含礫細砂巖夾薄煤層(煤三);中部為特厚及厚煤層(煤二);上部為粉砂巖、炭質泥巖及薄層油頁巖互層,第二巖段上部自上而下含煤B1、B2、B3(薄層,圖1中只標注了B2層),頂部有一層高灰腐泥質油頁巖(油A層)與第三巖段分界。

油A層即原勘探地層的“煤一層”,在井田內分布廣泛,厚度0~11.79 m,一般為4.14 m;下距煤B1層平均為4.49 m,距煤二層平均為13.60 m。油A層結構簡單,呈致密塊狀,光澤暗淡。頂板多為泥灰巖、含鋁泥巖,底板多數為油頁巖(油四層),局部為炭質泥巖。

圖1 海石灣井田窯街組巖性綜合柱狀圖

2 油A層腐泥煤煤巖特征

2.1 檢測樣品

選取海石灣煤礦三采區2個鉆孔巖心樣,分別采取了油A層、煤二層樣品開展煤巖鑒定分析,樣品情況見表1。

表1 鉆孔煤巖心樣品采集情況

2.2 宏觀特征

油A層樣品宏觀煤巖特征(圖2a—圖2b、圖2d—圖2e),顏色為灰黑色,光澤暗淡,致密堅韌,似均一狀結構,近塊狀構造,層理不清,不發育裂隙,具有腐泥煤的宏觀特性。油A層上部樣品中可見分散狀、近層狀黃鐵礦發育(圖2a、圖2d),層面上呈脈狀分布;下部樣品黃鐵礦不發育。肉眼可見樣品含少量亮煤細顆粒。

圖2 油A層與煤二層樣品的宏觀煤巖特征

油A層與下部煤層宏觀煤巖特征區別明顯,下部煤層多為半暗煤及半亮煤,黑色,玻璃光澤,條帶狀結構,亮煤與暗煤交互發育,層狀構造;煤中裂隙發育,層面上呈階梯狀,剖面上裂隙多切穿顯微組分分層(圖2c、圖2f)。

2.3 顯微鏡下光學特征

油A層上部樣品的煤巖顯微組成以藻類體、腐泥基質及少量腐植煤碎屑組成,礦物主要為黃鐵礦,屬于典型腐泥煤中的藻煤類型。其中,藻類體呈不規則的橢圓形或紡錘形,個體直徑一般20~80 μm,外形清晰,邊緣大多不平整,鋸齒狀,表面呈蜂窩狀或海綿狀,低–中突起(圖3a—圖3f),相當于E. Stach(1982)的藻[1-3]。油浸反射光下,藻類體為灰黑色至暗黑色,有時具黃色、褐色或紅色的內反射(圖3b);藍光激發下,藻類體發明亮不等的檸檬黃、橙黃至褐黃色熒光(圖3c—圖3d、圖3f)。油A層上部藻煤中發育大量黃鐵礦,多呈莓粒狀及自形晶分散在腐泥基質中(圖3a、圖3h),黃鐵礦粒徑多在幾微米至十幾微米大小。

油A層下部樣品的顯微煤巖特征與上部存在差異,煤巖顯微組成以腐泥基質、腐植煤碎屑、角質體為主,含少量藻類體及孢子體(圖3c、圖3e、圖3g),黃鐵礦含量低,明顯低于上部藻煤,應屬于腐泥煤中藻煤與燭煤的過渡類型。

3 油A層鏡質組

3.1 鏡質組光學特征

油A層上部腐泥煤中鏡質組含量少,主要以碎屑及基質形態發育(圖4a—圖4e),與腐植煤中鏡質體在形態上差異明顯(圖4f),腐植煤中顯微組分連續完整,組分邊界清晰易辨識。

上部腐泥煤中同時出現2種均質鏡質體,多為10~30 μm碎屑成分分散于腐泥基質中,可見2種鏡質體相鄰同時出現(圖4a、圖4c、圖4e)。油浸反射光下,2種鏡質體反射色差異較大,反射色深、灰度低鏡質體與腐泥基質接近,反射色亮、灰度高鏡質體與煤二層鏡質體接近(圖4a—圖4f)。油浸藍光激發下,通過對比顯微鏡同一視域下反射光圖像,反射色深、灰度低鏡質體發微弱褐色熒光(圖4d與圖4g、圖4e與圖4h),而腐泥煤中高反射色鏡質體與煤二層鏡質體不發熒光(圖4e與圖4h、圖4f與圖4i)。鏡下觀察,油A層上部腐泥煤中以發熒光鏡質組為主,熒光鏡質組數量多于不發熒光鏡質組。

但是,油A層下部腐泥煤中鏡質組含量高于上部,碎屑顆粒多、粒徑相對較大,以不發熒光鏡質組為主。

圖3 油A層腐泥煤顯微煤巖特征

圖4 油A層與煤二層鏡質組特征

3.2 鏡質體反射率

據原海石灣井田勘探數據資料(表2),油A層鏡質體最大反射率平均為0.54%,煤二層鏡質體最大反射率平均為0.93%,二者測值差異較大。

表2 海石灣井田鏡質組類型及鏡質體反射率

本次2個鉆孔所采集樣品觀測數據中(表2),分別對油A層腐泥煤中2種鏡質體反射率進行了識別測定。其中,發熒光鏡質體反射率分別為0.52%和0.48%,不發熒光鏡質體反射率為0.95%和0.89%,2種鏡質體的反射率差別較大。煤二層腐植煤鏡質體反射率為0.95%和0.96%。發熒光鏡質體反射率與腐泥基質反射率接近,不發熒光鏡質體與煤二層腐植煤中鏡質體反射率基本一致。

4 鏡質組類型及成因分析

4.1 沉積環境

據文獻資料[22-24],海石灣井田成煤于中生代侏羅紀中侏羅世,為陸相山間盆地型沉積。其中,窯街群湖相沉積發育,泥巖、頁巖、油頁巖、泥灰巖為其主要巖性組成。沼澤相主要發育在本群下部,且很穩定,形成特厚煤層。地質剖面上,自上而下,油A層腐泥煤、底板油頁巖、炭質泥巖及腐植煤共生。

油A層腐泥煤上部煤巖顯微組成以藻類體、腐泥基質及少量腐植煤碎屑組成,含有大量的黃鐵礦以莓粒狀分散于腐泥基質中。沉積物源主要以藻類等低等生物輸入占主體,同時混有少量高等植物,經腐泥化作用形成腐泥煤。依據有機顯微組成、礦物成分及其組合形態,反映出油A層上部處于湖泊或沼澤中較深水的強還原環境。

油A層腐泥煤下部煤巖顯微組成以腐泥基質、腐植煤碎屑、角質體為主,含少量藻類體、孢子體,相較于上部,藻類體及黃鐵礦含量明顯降低,反映出其沉積物源發生變化,藻類等低等生物輸入比例降低,高等植物物源比例增高。

下部煤層為腐植煤,其沉積物源為高等植物,經泥炭化–煤化作用形成。煤層層理清晰,顯微煤巖成分由鏡質組、惰質組和少量殼質組組成。

從物源及顯微組成上,從下部煤二層到油A層表現出由高等植物–高等植物和低等植物混合–以低等植物為主導的有序過渡;沉積環境呈現為沉積相沼澤覆水位逐漸加深,由相對較弱的還原環境過渡到深水強還原環境的過程。

4.2 鏡質組類型及成因

關于腐泥煤中鏡質組類型與成因的研究[2-3]都發現,腐泥煤中鏡質組在光性與成因上與腐植煤中鏡質組不同。腐泥煤中鏡質組在油浸反光下顏色偏深、反射率偏低,部分鏡質體發微弱暗色熒光,有學者將之稱為“熒光鏡質組”,也有稱其為“腐泥鏡質組”,目前,沒有統一定名。根據成因,有文獻將腐植煤中鏡質組劃分為原生鏡質組和再沉積鏡質組兩類,認為前者形成于盆地原處,具暗褐色熒光,后者由陸源區搬運而來,無熒光。但從研究區油A層腐泥煤中鏡質組分布情況看,2種均質鏡質體多以碎屑成分分散于腐泥基質中,形態相近,且2種鏡質體多相鄰同時出現,無法分辨原生和再沉積。筆者認為沒有研究清楚腐泥煤鏡質組形成機理前,宜根據熒光特性將其分為“熒光鏡質組”和“無熒光鏡質組”。

腐泥煤中發熒光的鏡質體反射率比腐植煤中低且差別較大,針對這一現象的成因機理,主要存在3種不同觀點[2,10,25]:①多數學者認為,在泥炭化作用階段的強還原環境下,富氫類脂物及瀝青質浸染擴散到鏡質組中導致其反射率偏低[2];② A. Walker認為,藻類體比共生鏡質組成熟快,其生成的烴類充填于鏡質組的顯微孔隙中,使得鏡質體反射率降低[10];③ L. C. Price認為,不同類型有機巖中鏡質組富氫程度是影響其反射率的決定因素,由低等植物為主的成煤作用,使得腐泥煤在化學成分上富氫缺氧,在光性上反射率偏低[25]。

4.3 煤化程度

從鉆孔巖心地質剖面看,油A層與下部煤層間距小,下距煤B1層平均僅為4.49 m,并且其底板多數為油頁巖,局部為炭質泥巖,在巖性上與下部煤層屬于正常沉積過渡,無巖性突變。正常情況下,油A層與下部煤層應為同一煤化階段,二者煤化程度應接近或一致,不應有明顯差別。

分析認為,油A層腐泥煤中不發熒光的正常鏡質體反射率與下部煤層中鏡質體反射率基本一致,能夠反映其真實的煤化程度。而腐泥煤形成過程中,混入的少量高等植物受富脂類低等生物腐泥化作用下的長期厭氧強還原環境影響,部分成為熒光鏡質組,其在光性上表現為發微弱暗色熒光,反射率低,與腐泥基質反射率接近,不能反映本層位的實際成熟度。

綜合分析認為,判定油A層成熟度時,應選取不發熒光的正常鏡質體作為測定對象;同時建議當開展對該區腐泥煤或低階煙煤進行鏡質體反射率測定時,宜增加熒光檢驗,并將測試結果與下部煤層進行比對;對于其他區域出現類似異常問題時,應結合煤系特征及沉積環境綜合判斷分析,避免誤判。

5 結論

a. 窯街礦區海石灣井田地層中,油A層沉積環境分層明顯,上部為腐泥煤,顯微成分以藻類體為主,含有大量的黃鐵礦,反映深部沼澤強還原環境;下部顯微成分以腐泥基質、基質鏡質體、角質體為主,從物源及顯微組成上表現出從下至上由相對較弱的還原環境過渡到深水強還原環境的過程。

b. 油A層腐泥煤中共存2種不同特征鏡質組,一種為發熒光的鏡質體,反射色低、反射率測值低,另一種為不發熒光的鏡質體,反射色高、反射率測值相對較高。

c. 根據海石灣井田地層沉積環境、油A層腐泥煤顯微組成及與其下部煤二層腐植煤的鏡質組成熟度對比分析認為,油A層腐泥煤與其下部煤二層處于同一變質階段,腐泥煤中不發熒光正常鏡質體的反射率能夠反映其真實的成熟度。

d. 開展腐泥煤反射率測定時,尤其是當煤巖層中高等植物含量較少,或者與其相鄰地層成熟度差異較大時,建議將局部測試結果與整個煤系各煤/巖層進行比對,同時結合其鏡質體熒光特征和沉積環境綜合判斷分析。

致謝:本文在撰寫及論證過程中,得到了張秀儀教授級高工、鐘玲文研究員和李小彥研究員的指導和幫助,在此一并表示感謝!

[1] 楊起,韓德馨. 中國煤田地質學(上冊)[M]. 北京:煤炭工業出版社,1979.

YANG Qi,HAN Dexin. Coalfield geology in China(Volume Ⅰ)[M]. Beijing:China Coal Industry Publishing House,1979.

[2] 韓德馨. 中國煤巖學[M]. 北京:中國礦業大學出版社,1996.

HAN Dexin. Coal petrology of China[M]. Beijing:China University of Mining and Technology Press,1996.

[3] 陳佩元,孫達三,丁丕訓,等. 中國煤巖圖鑒[M]. 北京:煤炭工業出版社,1996.

CHEN Peiyuan,SUN Dasan,DING Pixun,et al. Atlas for coal petrography of China[M]. Beijing:China Coal Industry Publishing House,1996.

[4] 斯塔赫 E. 斯塔赫煤巖學教程[M]. 楊起等譯. 北京:煤炭工業出版社,1990.

STACH E. Stach’s textbook of coal petrology[M]. YANG Qi et al translate. Beijing:China Coal Industry Publishing House,1990.

[5] 龔至從,張秀儀. 腐植煤的顯微組份劃分及命名[J]. 煤炭學報,1979(2):11–20.

GONG Zhicong,ZHANG Xiuyi. Grouping and nomenclature of microscopic constituents of humic coals[J]. Journal of China Coal Society,1979(2):11–20.

[6] 葉道敏. 試論等變質煤鏡質體性質差異之普遍性[J]. 煤田地質與勘探,2003,31(2):1–4.

YE Daomin. On the universality of the vitrinite property diversity in iso-metamorphosed coals[J]. Coal Geology & Exploration,2003,31(2):1–4.

[7] 趙隆業,陳基娘,王天順. 關于中國油頁巖的工業成因分類[J]. 煤田地質與勘探,1991,19(5):2–6.

ZHAO Longye,CHEN Jiniang,WANG Tianshun. Industrial-original classification of Chinese oil shales[J]. Coal Geology & Exploration,1991,19(5):2–6.

[8] 張秀儀,童元貞,肖達先,等. 黃陵燭煤的成因探討[J]. 中國煤田地質,1996,8(增刊1):10–16.

ZHANG Xiuyi,TONG Yuanzhen,XIAO Daxian,et al. Study on origin of cannel coal in Huangling mining district[J]. Coal Geology of China,1996,8(Sup.1):10–16.

[9] 范章群,宋孝忠. 新疆中生代煤中半鏡質組特征及其研究意義[J].煤田地質與勘探,2014,42(5):9–12.

FAN Zhangqun,SONG Xiaozhong. Characteristics of semi-vitrinite of the Mesozoic coal in Xinjiang area and their research significance[J]. Coal Geology & Exploration,2014,42(5):9–12.

[10] 肖賢明,陳中凱,金奎勵. 中國腐泥煤的巖石學特征[J]. 煤田地質與勘探,1990,18(1):7–13.

XIAO Xianming,CHEN Zhongkai,JIN Kuili. The petrological characteristics of sapropelic coals in China[J]. Coal Geology & Exploration,1990,18(1):7–13.

[11] 肖賢明,程頂勝. 腐泥煤的煤化作用研究[J]. 煤田地質與勘探,1992,20(2):21–29.

XIAO Xianming,CHENG Dingsheng. Studies on the coalification of sapropelic coals[J]. Coal Geology & Exploration,1992,20(2):21–29.

[12] 趙海舟. 腐泥煤變質系列的煤巖煤質特征[J]. 中國煤田地質,1995,7(1):72–76.

ZHAO Haizhou. Characteristics of coal rock and coal quality of sapropel coal metamorphic series[J]. Coal Geology of China,1995,7(1):72–76.

[13] 周國慶,姜堯發,劉夢溪. 徐州大屯腐泥煤的煤巖煤質和微量元素特征[J]. 中國煤炭地質,2011,23(7):7–9.

ZHOU Guoqing,JIANG Yaofa,LIU Mengxi. Sapropelic coal petrologic,quality and trace element characteristics in Datun mining area,Xuzhou[J]. Coal Geology of China,2011,23(7):7–9.

[14] 劉桂建,楊萍玥,彭子成,等. 淄博煤田共生腐泥煤與腐植煤化學組成對比[J]. 地質地球化學,2003,31(1):23–27.

LIU Guijian,YANG Pingyue,PENG Zicheng,et al. Comparative study of chemical composition of paragenetic sapropelic coal and humic coal from Zibo coalfield[J]. Geology Geochemistry,2003,31(1):23–27.

[15] 李太任. 山西省蒲縣東河腐泥煤研究[J]. 煤炭學報,1983,6(2):36–43.

LI Tairen. Study of Donghe sapropelic coal in Pu County,Shanxi Province[J]. Journal of China Coal Society,1983,6(2):36–43.

[16] 解光新,李小彥,莊軍. 中國菌藻類煤的成因分類形成條件及其特征[J]. 煤田地質與勘探,2001,29(3):10–13.

XIE Guangxin,LI Xiaoyan,ZHUANG Jun. Classification,forming conditions and characteristic of sclerotia-algal coals,China[J]. Coal Geology & Exploration,2001,29(3):10–13.

[17] 張庚申,杜利平. 窯街礦區煤成氣及其儲集條件[J]. 煤田地質與勘探,1992,20(2):30–35.

ZHANG Gengshen,DU Liping. Coal-derived gas and its reservior conditions in Yaojie mining area,Gansu Province[J]. Coal Geology & Exploration,1992,20(2):30–35.

[18] 張庚申. 民和盆地海石灣井田的伴生石油[J]. 中國煤田地質,1993,5(1):30–33.

ZHANG Gengshen. Associated petroleum in Haishiwan wellfield in Minhe Basin[J]. Coal Geology of China,1993,5(1):30–33.

[19] 衛平生,王新民. 民和盆地煤層氣特征及形成地質條件[J]. 天然氣工業,1997,17(4):19–22.

WEI Pingsheng,WANG Xinmin. Characteristics and geological conditions of coalbed methane in Minhe Basin[J]. Natural Gas Industry,1997,17(4):19–22.

[20] 史仲武. 窯街煤田海石灣勘探區煤層內瓦斯研究[J]. 中國煤田地質,1989,1(3):18–23.

SHI Zhongwu. Research on gas in coal seam in Haishiwan exploration area of Yaojie coal field[J]. Coal Geology of China,1989,1(3):18–23.

[21] 王紅霞. 窯街煤田外圍賦煤特征及找煤方向[J]. 西北地質,2015,48(1):191–195.

WANG Hongxia. Coal-bearing features and prospecting orientation in peripheral Yaojie coalfield[J]. Northwestern Geology,2015,48(1):191–195.

[22] 王普. 甘肅省煤炭資源賦存特征[J]. 中國煤炭地質,2014,26(11):17–22.

WANG Pu. Coal resource hosting characteristics in Gansu Province[J]. Coal Geology of China,2014,26(11):17–22.

[23] 張虎權,王廷棟,閻存鳳,等. 民和盆地侏羅系地層劃分與對比[J]. 地層學雜志,2007,31(1):62–67.

ZHANG Huquan,WANG Tingdong,YAN Cunfeng,et al. The subdivision and correlation of the Jurassic System of the Minhe Basin[J]. Journal of Stratigraphy,2007,31(1):62–67.

[24] 張庚申. 民和盆地中侏羅世煤系沉積與聚煤特征分析[J]. 中國煤田地質,1995,7(2):26–30.

ZHANG Gengshen. Analysis on sedimentation and coal accumulation characteristics of Middle Jurassic coal measures in Minhe Basin[J]. Coal Geology of China,1995,7(2):26–30.

[25] PRICE L C,BARKER C E. Suppression of vitrinite reflectance in amorphous rich kerogen:A major unrecognized problem[J]. Journal of Petroleum Geology,1985,8(1):59–84.

Analysis of organic matter maturity of sapropel coal in oil layer A of Haishiwan mine field of Yaojie mining area

SONG Xiaozhong1, ZHANG Bingzhong2, LEI Ying1, SONG Yanqiang2

(1. Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp., Xi’an 710077, China;2. Yaojie Coal and Power Group Co. Ltd., Yaojie 730080, China)

The vitrinite reflectance is recognized as the only comparable evaluation index of organic matter maturity of source rock in the exploration and development of oil and gas, shale gas and coalbed methane resources. Current research was done to determine the organic matter maturity of sapropel coal in oil layer A in Haishiwan mine field more accurately. Coal samples were collected from boreholes and observation of the optical characteristics of reflected light and fluorescence microscopic components were studied under the microscope. It was found that there are two different characteristic vitrinites in sapropel coal in oil layer A. One was fluorescent vitrinite with low reflection color and low determined reflectivity, the other was non-fluorescent vitrinite with measured higher reflection color and relatively higher reflectivity. The sedimentary environment of oil layer A is obviously stratified. The upper part is sapropelic coal. The maceral composition is mainly alginate, containing a large amount of pyrite, reflecting the strong reducing environment of deep swamp; The lower part is mainly composed of sapropelic groundmass, desmocollinite and cutinite. Compared with the upper part, the contents of alginite and pyrite are significantly reduced, reflecting the change of sedimentary source. The proportion of organism like algae decreases, whereas the proportion of plants increases. This reflects a relatively weak reducing environment. According to the sedimentary environment of the mine field, the comparative analysis was carried out between the microscopic composition of the sapropel in oil layer A and the vitrinite composition maturity of the sapropel in its lower coal seam No.2. Major findings were that the reflectivity of the non-fluorescent vitrinite in oil layer A can reflect its true maturity, and that was in the same metamorphic stage as the lower coal seam No. 2. It provides a new method and new thought for the analysis of organic matter maturity of sapropelic coal.When the content of plants in coal seams is relatively low or there is a significant difference with maturity of adjacent strata, it is recommended to compare the test results of specific layers with the whole coal / rock stratum. Then a comprehensive analysis should be made in combination with its vitrinite fluorescence characteristics and sedimentary environments.

Yaojie mining area; sapropelic coal; maturity of organic matter; fluorescent vitrinite; sedimentary environments

語音講解

P618.11

A

1001-1986(2021)06-0074-07

2021-09-15;

2021-10-26

國家自然科學基金項目(41972167)

宋孝忠,1976年生,男,山東魚臺人,博士,副研究員,從事煤田地質與煤層氣勘探開發及煤巖自動化測試技術研究. E-mail:songxiaozhong@cctegxian.com

宋孝忠,張炳忠,雷瑩,等. 窯街礦區海石灣井田油A層腐泥煤有機質成熟度辨析[J]. 煤田地質與勘探,2021,49(6):74–80. doi: 10.3969/j.issn.1001-1986.2021.06.008

SONG Xiaozhong,ZHANG Bingzhong,LEI Ying,et al.Analysis of organic matter maturity of sapropel coal in oil layer A of Haishiwan mine field of Yaojie mining area[J]. Coal Geology & Exploration,2021,49(6):74–80. doi: 10.3969/ j.issn.1001-1986.2021.06.008

移動閱讀

(責任編輯 范章群)

猜你喜歡
煤巖反射率成熟度
利用鏡質組反射率鑒定蘭炭與煤粉互混樣的方法解析
中紅外波段超廣角抗反射微納結構的研究
商品條碼印制質量檢測參數
——缺陷度的算法研究
車燈反射腔真空鍍鋁反射率研究
無煙煤各向異性吸附膨脹動態響應實驗研究
碟盤刀具復合振動切削煤巖的損傷力學模型
基于CT掃描的不同圍壓下煤巖裂隙損傷特性研究
產品制造成熟度在型號批生產風險管理中的應用
國內外技術成熟度評價相關標準規范對比分析研究
整機產品成熟度模型研究與建立
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合