?

對偶τ-Rickart模

2022-07-06 08:44李煜彥何東林
蘭州理工大學學報 2022年3期
關鍵詞:等價對偶定理

李煜彥,何東林

(隴南師范高等??茖W校 數信學院,甘肅 隴南 742500)

1 預備知識

定義1[14]稱M是τ-Rickart模,如果對任意ψ∈End(M),τM(ψ)是M的直和因子.

定義2[6]稱M是對偶Rickart模,如果對任意ψ∈End(M),Imψ=ψ(M)是M的直和因子.

引理1[13]τ-Rickart模的直和因子是τ-Rickart模.

引理2[13-14]設M是模,則下列條件等價:

1)M是τ-Rickart模;

2)M=τ(M)⊕M′,其中M′是(τ-撓自由)Rickart模;

3) 對任意f∈End(M),f-1(τ(M))是M的直和因子;

引理3[4]設M是模,S=End(M).則下列條件等價:

1)M是具有C2條件的Rickart模;

2)S是von Neumann正則環;

3) 對任意φ∈S,Kerφ和Imφ是M的直和因子.

2 主要結論

命題1設M是模,則以下結論成立:

1) 若M是τ-撓自由模,則M是對偶τ-Rickart模當且僅當M是對偶Rickart模;

2) 若M是非奇異模,則M是對偶t-Rickart模當且僅當M是對偶Rickart模;

3) 若M是τ-撓自由且非奇異模,則M是對偶τ-Rickart模當且僅當M是對偶t-Rickart模當且僅當M是對偶Rickart模.

證明顯然.

由文獻[13-15]知,直和因子包含τ(M)的τ-Rickart模和τ-Baer模分別具有SIP性質和強SIP性質.對偶地,直和因子包含τ(M)的對偶τ-Rickart模,下面結論成立.

命題2設M是模,N1,N2是M的且包含τ(M)直和因子.若M是對偶τ-Rickart模,則N1+N2是M的直和因子.

N1+N2=e1M⊕(1-e1)e2M=e1M⊕fM=

(e1+f-e1f)M

從而N1+N2是M的直和因子.

下面結論說明對偶τ-Rickart模保持直和因子.

定理1設M是模,L是M的直和因子.若M是對偶τ-Rickart模,則L是對偶τ-Rickart模.

證明設M=L⊕L′,ψ∈End(L).令φ=ψ⊕1L′,其中1L′是L′上的恒等自同態,則φ∈End(M).因為τ(M)=τ(L)⊕τ(L′),所以Imφ+τ(M)=(Imφ+L′)+(τ(L)⊕τ(L′))=(Imφ+τ(L))⊕L′.由于M是對偶τ-Rickart模,故存在N≤M,使得M=(Imφ+τ(L))⊕L′⊕N.于是L=(Imφ+τ(L))⊕[(L′⊕N)∩L)],即Imφ+τ(L)是L的直和因子.從而L是對偶τ-Rickart模.

由定理1,易得如下兩個推論.

推論1R是對偶τ-Rickart環當且僅當每個循環投射R-模是對偶τ-Rickart模.

證明充分性) 顯然.

必要性) 設R是對偶τ-Rickart環,M是循環投射R-模.則存在R的理想J,使得J是R的直和因子,且M?J.由定理1知,J是對偶τ-Rickart模,因此M是對偶τ-Rickart模.

推論2設R是環,考慮以下條件:

1) 每個自由R-模是對偶τ-Rickart模;

2) 每個投射R-模是對偶τ-Rickart模;

3) 每個平坦R-模是對偶τ-Rickart模.

則3)?2)?1).當任意R-模是有限表示模時,2)?3).

證明因為自由模都是投射的,且投射模都是平坦的,所以3)?2)?1)成立.

1)?2) 設M是投射模,則存在自由模F,使得M是F的直和因子.由1)知,F是對偶τ-Rickart模,故由定理1知,M是對偶τ-Rickart模.

2)?3) 因為有限表示平坦模是投射的,故結論成立.

下面給出對偶τ-Rickart模的等價刻畫.

定理2設M是模,則下列條件等價:

1)M是對偶τ-Rickart模;

2) 存在W≤M,使得M=τ(M)⊕W,其中W是(τ-撓自由)對偶Rickart模;

5) 對任意ψ∈End(M),短正合序列

是可裂的,其中ι和π分別是包含同態和自然滿同態.

證明1)?2) 設M是對偶τ-Rickart模,0是M上的零同態.則τ(M)=Im 0+τ(M)是M的直和因子.于是存在W≤M,使得M=τ(M)⊕W,易知W是τ-撓自由的,由命題1和定理1知,W是對偶Rickart模.

2)?1) 設ψ∈End(M),ι:W→M是包含同態,π:M→W是標準投射.則

Imψ+τ(M)=Im(πψι)+τ(M)

因為W是對偶Rickart模,所以Im(πψι)是W的直和因子.因此Imψ+τ(M)是M的直和因子,從而M是對偶τ-Rickart模.

1)?3) 由命題2得證.

3)?4) 設I是End(M)的有限生成右理想,則存在ψi∈End(M)(i=1,2,…,n),使得

于是

4)?1) 設φ∈End(M),I=φEnd(M).則

1)?5) 對任意ψ∈End(M),短正合序列

推論3若環R是半單的,則任意R-模M都是對偶τ-Rickart模,且其τ-撓子模τ(M)是投射的.

證明設ψ∈End(M).因為R是半單的,所以τ(M)是投射的,且短正合序列

可裂.由定理2知,M是對偶τ-Rickart模.

引理4[4]M是Rickart模當且僅當M具有D2條件并且對任意φ∈End(M),Imφ同構于M的某個直和因子.

引理5[6]M是對偶Rickart模當且僅當M具有C2條件并且對任意φ∈End(M),Imφ同構于M的某個直和因子.

由模的C2條件和D2條件可知,τ-Rickart模和對偶τ-Rickart模之間有如下聯系.

猜你喜歡
等價對偶定理
HEVC對偶編碼單元劃分優化算法
J. Liouville定理
等價轉化
A Study on English listening status of students in vocational school
n次自然數冪和的一個等價無窮大
例析對偶式在解三角問題中的妙用
怎樣利用對偶式處理高考解幾問題
將問題等價轉化一下再解答
等價轉化思想在高中數學中的應用
一個簡單不等式的重要應用
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合