?

湖北省葡萄主產區灰葡萄孢菌多樣性分析

2022-07-14 15:56王澤瓊劉勇王榕馨姜婷龔林忠孫中海呂亮
南方農業學報 2022年4期
關鍵詞:灰霉病多樣性湖北

王澤瓊 劉勇 王榕馨 姜婷 龔林忠 孫中海 呂亮

摘要:【目的】了解湖北省葡萄主產區灰葡萄孢菌(Botrytis cinerea)多樣性,為葡萄灰霉病防治提供科學依據?!痉椒ā坎捎贸R幬⑸锓蛛x法對從湖北省8個葡萄主產區采集的葡萄灰霉病樣本進行灰葡萄孢菌分離,在PDA培養基上觀察分離物菌落培養形態并測定菌絲生長速率;利用特異引物對各分離物的Flipper和Boty轉座子片段進行擴增,區分轉座子類型;擴增Bc-hch基因并用Hha I酶切檢測分離物的多態性以區分組群;依據菌絲生長速率、菌落形態及轉座子類型挑選4株典型分離物在4個葡萄品種果實上進行致病力測定?!窘Y果】從病害樣本中共分離獲得51株分離物,菌落培養形態表明30株分離物為菌核型,20株為孢子型,僅1株為菌絲型,出現頻率分別為58.82%、39.22%和1.96%。所有分離物菌絲生長速率均較高,在10.86~13.94 mm/d。分離物只存在2種轉座子類型,其中50株為Transposa型,僅1株為Flipper型。Bc-hch基因Hha I酶切多態性鑒定結果表明,所有菌株均為Group II,為狹義的灰葡萄孢菌。分離物致病力測定結果表明,菌絲生長速率最低的WH3在供試葡萄品種上的致病力均最強,其次是Flipper型分離物SX1,菌絲生長速率最高的XN2和菌絲型WH6分離物致病力均較弱,且不同分離物在不同品種上致病力趨勢不同?!窘Y論】湖北省葡萄主產區灰葡萄孢菌菌落培養形態較豐富,所有分離物均為狹義灰葡萄孢菌,只存在Transposa和Flipper 2種轉座子類型,前者占絕對優勢,典型分離物間致病力差異明顯。

關鍵詞: 葡萄;灰霉病;灰葡萄孢菌;多樣性;致病力;湖北

中圖分類號: S436.631.1? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2022)04-1049-08

Diversity of Botrytis cinerea in major grape production

regions of Hubei Province

WANG Ze-qiong1, LIU Yong1, WANG Rong-xin2, JIANG Ting2, GONG Lin-zhong1*,

SUN Zhong-hai1*, LYU Liang3

(1Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Science, Wuhan, Hubei? 430064, China; 2 Wuhan Institute of Bioengineering, Wuhan, Hubei? 430415, China; 3Key Laboratory of Integrated Pest Management on

Crops in Central China, Ministry of Agriculture and Rural Affairs, R. P. China/Hubei Key Laboratory

of Crop Diseases, Insect Pests and Weeds Control,Wuhan, Hubei? 430064, China)

Abstract:【Objective】To assess the diversity of Botrytis cinerea in major grape production regions of Hubei Provin-ce, so as to provide scientific support for grape gray mold control. 【Method】Isolates of B. cinerea from 8 main grape production regions in Hubei Province were isolated by conventional microbial separation method. All the isolates were cultured on PDA medium to observe the morphological characteristics and measure the mycelium growth rates. Transposon segments Flipper and Boty were amplified using specific primers to detect the transposon types. Bc-hch gene was amplified and detected by Hha I digestion to identify the group. Four representative isolates were used for pathogenicity analysis by inoculating on fruits of 4 grape varieties. 【Result】Totally, 51 isolate were obtained. Results of the morphological analysis showed that:Among them, 30 isolates were the sclerotia type with the frequency of 58.82%, which was the most prevalent type; twenty isolates were the conidial type with the frequency of 39.22%; only 1 isolate was the mycelium type with the frequency of 1.96%. Mycelium growth rates of all isolates were high and ranged from 10.86 mm/d to 13.94 mm/d. Only two transposon types were found in isolates: 50 were Transposa and only 1 was Flipper. All the isolates were classified into group II according to the restriction polymorphism analysis of enzyme Hha I of Bc-hch gene. Pathogencity analysis revealed that, isolate WH3 which had the lowest mycelium growth rate had the strongest pathogenicity. SX1, the only Flipper type isolate, had the second strongest pathogenicity. Pathogenicity of XN2 which had the highest growth rate and WH6 which was the only mycelium type were weaker. Pathogenicity regulations of isolates on different varieties were different. 【Conclusion】Morphological characteristics of B. cinerea in the major grape production regions of Hubei Provin-ce is abundant. All the isolates are identified as B.cinerea in a narrow sense. There are two genotypes of transposable elements:Transposa and Flipper types. The Transposa type is predominant. The differentiation of pathogenicity is obvious between representative isolates.

Key words: grape; gray mold disease; Botrytis cinerea; diversity; pathogenicity; Hubei

Foundation items:National Modern Agricultural Industry Technology System Construction Project (CARS-29-19); Hubei Technology Innovation Major Project (2019ABA093); Open Fund of Key Laboratory of Comprehensive Pest Mana-gement of Crops in Central China of Ministry of Agriculture and Rural Affairs (2018ZTSJJ9)

0 引言

【研究意義】灰葡萄孢菌(Botrytic cinerea)引起的灰霉病是湖北省葡萄生產上的一種重要病害,主要危害葡萄花序和果實,導致落花落果,每年因此造成的損失在20%~40%?;移咸焰呔闹鞣秶鷱V,能侵染1000多種植物(Veloso and van Kan,2018),其遺傳變異大,在表型及分子水平上均表現出豐富的多樣性,環境適應性強,易發生變異或產生抗藥性(鄭媛萍,2018;Saito et al.,2019;賈爽爽,2020;孔瓊等,2020;DeLong et al.,2020)。湖北省屬亞熱帶季風氣候,葡萄生長季降水量充沛,高濕的氣候條件極易造成葡萄灰霉病流行。因此,針對湖北葡萄主產區灰葡萄孢菌開展多樣性研究,對掌握本產區葡萄上灰葡萄孢菌發生規律,并據此制定綜合防控方案具有重要指導意義?!厩叭搜芯窟M展】灰葡萄孢菌表型多樣性豐富,其菌落培養形態一般可劃分為菌絲型(M)、菌核型(S)和孢子型(C)(張靜,2010);也可分為菌絲型和菌核型兩大類,再分別細分為M1~M4亞表型和S1~S5亞表型(Mirzaei et al.,2010;Kuzmanovska et al.,2012)共9種表型?;移咸焰呔诜肿铀缴弦脖憩F出較強的遺傳變異。在系統發育水平上,灰葡萄孢菌包含2個群(Fournier et al.,2003),Group I為假灰葡萄孢(B. pseudocinerea),Group II是狹義的灰葡萄孢(B. cinerea)(Walker et al.,2011),2個群可根據粗糙脈孢菌het-c營養體不親和位點同源基因Bc-hch位點的Hha I酶切多態性來劃分;Group II分布更普遍,侵染力更強(Johnston et al.,2014;Mu?oz et al.,2016)。真菌轉座子是一類跳躍性元件,因其在真核基因組中的分布、插入位置及拷貝數的不同會導致菌株間或群體內出現遺傳多樣性從而更好地適應環境?;移咸焰呔幸褕蟮?個轉座子Boty(Diolez et al.,1995)和Flipper(Levis et al.,1997),根據轉座子存在特點可劃分為4種類型:同時含有2種轉座子的Transposa型、僅含有Flipper的Flipper型、僅含有Boty的Boty型和不含這2種轉座子的Vacuma型。研究認為轉座子類型與病原菌致病力及樣品采集時期具有一定相關性(Mu?oz and Campos,2013;Johnston et al.,2014;Kumari et al.,2014),且一般認為Transposa型分離物致病力及抗藥性較強(Martinez et al.,2003;Mu?oz and Campos,2013;Johnston et al.,2016)。大部分灰葡萄孢菌分離菌株為異宗配合,被2個單獨的交配型基因 MAT1-1和MAT1-2所控制,當2種交配型基因在種群中以1∶1存在時,病原菌有性重組概率提高,有利于增強真菌的生活力和適應性(喬廣行等,2015;Pei et al.,2019;周默等,2020),以此可評估灰葡萄孢群體的變異潛力。此外,SSR分析(王帆帆等,2020;DeLong et al.,2020;Diao et al.,2020),3-磷酸甘油醛脫氫酶基因(G3PDH)、熱激蛋白60基因(HSP60)和依賴DNA的RNA聚合酶亞基II基因(RPB2)等基因序列的同源進化分析(張靜,2010;Mu?oz et al.,2016),多位點測序分型(Plesken et al.,2021)等也有報道應用于遺傳多樣性分析?!颈狙芯壳腥朦c】湖北省葡萄上灰霉病發生較普遍,而其病原灰葡萄孢菌多樣性及群體研究尚未見報道?!緮M解決的關鍵問題】采用常規微生物分離法對從湖北省8個葡萄主產區采集的葡萄灰霉病樣本進行灰葡萄孢菌分離,通過對灰葡萄孢菌菌落培養形態觀察及菌絲生長速率測定、轉座子類型檢測、Bc-hch基因的Hha I酶切多態性分析及典型菌株的致病力測定,了解湖北省葡萄主產區灰葡萄孢菌的多樣性,為科學防治葡萄灰霉病打下基礎。

1 材料與方法

1. 1 試驗材料

2017—2018年,從湖北省不同葡萄產區采集病害樣本,樣本信息見表1。

1. 2 病原菌分離

采用常規微生物分離方法對病原菌進行分離純化,每株葡萄保留1個單孢分離物,保存于-80 ℃冰箱。

1. 3 菌落形態觀察

將保存菌株接種到新鮮PDA培養基上活化3 d,用直徑5 mm的滅菌打孔器沿菌落邊緣打取菌餅,接種到PDA培養基上,每株菌株設3個重復,20 ℃恒溫暗培養,15 d后觀察培養形態。以培養24~48 h的菌落半徑增長量為菌絲生長速率,菌絲生長速率(mm/d)=(48 h菌落直徑-24 h菌落直徑)/2。

1. 4 DNA提取

將活化后的菌株接種至鋪有滅菌玻璃紙的PDA培養基中20 ℃下倒置培養,3 d后刮取菌絲,參照DNA提取試劑盒(杭州新景生物試劑開發有限公司)操作說明提取病原菌總DNA。取1 μL DNA樣品用NanoDrop 2000超微量分光光度計進行濃度檢測,樣品稀釋至濃度為50 ng/μL備用。

1. 5 灰葡萄孢菌轉座子檢測

Flipper轉座子檢測引物為Flipper-F(5'-GCAC AAAACCTACAGAAGA-3')/Flipper-R(5'-ATTCGT TTCTTGGACTGTA-3') (Levis et al.,1997);Boty轉座子檢測引物為Boty-F(5'-TTAGCCAAGGGATGG ATCAG-3')/Boty-R(5'-TTCGAGCACTGCCTTAAC CT-3')(Johnston et al.,2014)。引物由生工生物工程(上海)股份有限公司合成。PCR反應體系25.0 μL:2×PCR Mix(Coolaber,北京)12.5 μL,DNA 模板1.0 μL,上、下游引物各1.0 μL,滅菌去離子水補足至25.0 μL。2種轉座子PCR擴增程序均為:94 ℃預變性5 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 90 s,進行35個循環;72 ℃延伸5 min。PCR產物經1.2%瓊脂糖凝膠電泳檢測。

1. 6 Bc-hch基因序列擴增及酶切

Bc-hch基因擴增引物為Bc-hch-F(5'-AAGCCC TTCGATGTCTTGGA-3')/Bc-hch-R(5'-ACGGATTC CGAACTAAGTAA-3')(Fournier et al.,2003)。PCR反應體系同1.5。PCR擴增程序:94 ℃預變性5 min;94 ℃ 30 s,55 ℃ 30 s,72 ℃ 90 s,進行35個循環;72 ℃延伸10 min。將擴增得到的基因片段用Hha I(TaKaRa,大連)酶切。酶切反應體系20.0 μL:PCR 產物8.0 μL,Hha I 1.0 μL,10×Buffer 2.0 μL,滅菌去離子水補足至20.0 μL。37 ℃酶切4 h,產物經1.5% 瓊脂糖凝膠電泳檢測。

1. 7 致病力測定

結合菌落形態、菌絲生長速率及轉座子類型,挑選4株典型分離物進行致病力測定。將新鮮采摘近成熟期的陽光玫瑰、夏黑、甬優和紅地球葡萄健康果粒剪下,清水洗凈后用75%乙醇表面消毒30 s,無菌水清洗3次,自然晾干。沿菌絲邊緣打取直徑5 mm的菌餅接種于葡萄果實上,菌絲面朝下,每個果實接種1塊,以PDA培養基塊為對照,重復3次,每個重復3個果實。將接種后的果實置于無菌吸水紙上保濕,20 ℃培養4 d后十字交叉法測量病斑直徑并計算病斑面積。

2 結果與分析

2. 1 灰葡萄孢菌不同分離物培養形態特征

采用常規微生物分離法從病害樣本中共分離獲得51株分離物。分離物在PDA上培養15 d后,菌落培養形態可明顯分為3種類型,其中菌核型30株,有大、小粒2種形態,菌絲短,產生黑色菌核,環狀生長,外周均有少量分生孢子產生;孢子型20株,菌絲生長較菌核型豐富,分生孢子由外緣向中間生長,培養21 d鋪滿整個培養基表面,沒有菌核產生;菌絲型僅1株,為WH6,菌絲生長濃密蓬松,產生少量分生孢子,沒有菌核產生(圖1)。菌核型出現頻率為58.82%,孢子型為39.22%,菌絲型僅為1.96%;8個采集地中,只有仙桃的3株分離物形態均為孢子型,其余地區的分離物菌核型和孢子型均有出現;分離物菌絲生長速率在10.86~13.94 mm/d,其中生長最慢的為WH3,最快的為XN2(表1)。

2. 2 灰葡萄孢菌不同分離物的轉座子分類

用Boty和Flipper 2種轉座子的特異引物進行PCR擴增,結果(圖2)表明,51株分離物中只含有2種轉座子類型,除分離物SX1為Flipper型外,其余均為Transposa型,未發現Boty和Vacuma型分離物(表1)。

2. 3 Bc-hch基因酶切多態性分析結果

51個灰葡萄孢菌分離物Bc-hch基因位點擴增后均能得到1171 bp大小的目標片段,PCR產物經Hha I酶切后均出現6條帶,最大片段為517 bp(圖3)。參照Fournier等(2003)結果,本研究中所有分離物均屬于Group II,是狹義的灰葡萄孢菌。

2. 4 不同分離物對不同葡萄品種果實的致病力分析結果

挑選編號為WH6、WH3、SX1和XN2菌株進行致病力測定,其中SX1是唯一的轉座子類型為Flipper的分離物,WH6是唯一的菌絲型分離物,XN2的生長速率最快,WH3最慢,分離物生長速率表現為WH3<WH6<SX1<XN2。由表2可知,4株分離物在4個品種葡萄果實上均能侵染造成病斑并產生分生孢子。在葡萄果實上致病力分化較大,病斑面積36.70~465.33 mm2,其中,WH3的致病力最強,病斑面積為235.43~465.33 mm2,顯著高于其他分離物(P<0.05,下同),SX1次之,WH6和XN2的致病力均較弱,在甬優葡萄上表現最明顯。

從分離物特性與致病力的關系來看,4株分離物中,只有SX1轉座子類型為Flipper,在陽光玫瑰上致病力與XN2和WH6相當,在夏黑上的致病力與XN2相當,在紅地球和甬優上的致病力顯著強于XN2和WH6,致病力較強。但由于得到的Flipper型分離物僅SX1一株,無法評估轉座子類型與致病力間的關系。WH6是唯一的菌絲型分離物,其致病力與XN2相當,僅在夏黑上顯著弱于XN2。WH3菌絲生長最慢,但致病力顯著強于其他分離物;XN2菌絲生長最快,但致病力與生長速率較慢的WH6相當。

同一分離物在不同葡萄品種上的致病力趨勢存在一定差異,如4個分離物在甬優和紅地球上的致病力趨勢相同,均為WH3最強,其余依次為SX1、WH6和XN2;在陽光玫瑰上WH3最強,在其余品種上的致病力相當;在夏黑上WH3的致病力最強,SX1和XN2次之,WH6最弱。

3 討論

灰葡萄孢菌具有豐富的表型多樣性,一般可分為菌核型、孢子型和菌絲型3種,也可分為菌核型和菌絲型2種,在此基礎上再細分為9種表型。無論以哪種分類方法,其分離物大多以菌核型為主(Martinez et al.,2003;Kumari et al.,2014;張艷杰等,2017;Pei et al.,2019;周默等,2020)。本研究51株分離物中菌核型占58.82%,為主要類型,其中又有大、小菌核2種表型,形態較豐富。張艷杰等(2017)將菌絲生長速率在9.28~12.91 mm/d的分離物聚類為高等級,本研究中分離物菌絲生長速率在10.86~13.94 mm/d,有不少分離物超過12.91 mm/d,表明所得到的分離物生長速率快?;移咸焰呔儺惪?,表型不穩定,因此還需從分子水平上對其多樣性進行評估。

在分子水平上灰葡萄孢菌遺傳多樣性受有性重組、繁殖及轉座子等的影響。對來源于不同地區及寄主的分離物研究表明,灰葡萄孢菌轉座子類型大多以Transposa為主(張靜,2010;張佳等,2016;Wahab,2015;Pei et al.,2019;DeLong et al.,2020),該特點在灰葡萄孢菌葡萄分離物中表現明顯(Martinez et al.,2005;Kretschmer and Hahn,2008;Esterio et al.,2011;Samuel et al.,2012;Zhang et al.,2018),甚至可達100%(Mu?oz et al.,2010)。本研究中發現的轉座子類型只有Transposa和Flipper 2種,前者占絕對優勢,后者僅有1株。研究認為灰葡萄孢菌葡萄分離物轉座子類型及出現頻率可能與采樣時期及植株是否顯癥相關,相比在葡萄花期采樣,結果期分離物中Transposa型出現頻率明顯上升,其他類型頻率明顯下降,花期Vacuma型出現頻率較其他時期高(Martinez et al.,2003,2005;Johnston et al.,2016)。無癥狀植株中分離物多樣性更豐富(Johnston et al.,2014,2016)。轉座子出現頻率還與藥劑施用相關,不同類型轉座子分離物表現出對不同藥劑的抗性,Transposa型分離物抗藥性更廣泛(Esterio et al.,2011)。同時,轉座子類型與地理位置、寄主(Zhang et al.,2018;Pei et al.,2019)及氣候(Zhang et al.,2018)等均存在相關性?;移咸焰呔咸逊蛛x物中Vacuma型主要分布于我國北方,但分離頻率也不高(Zhang et al.,2018)。Boty型和Flipper型轉座子分離物分別具有地域和寄主專一性(Kumari et al.,2014)。本研究中灰葡萄孢菌分離物的轉座子只有Transposa和Flipper 2種,類型單一,可能與分離物均來自湖北省內,地域相近、氣候條件相似、施藥和管理措施較相似及菌株產生抗藥性(鄭媛萍,2018)等因素有關。此外,本研究樣品均采自灰霉病顯癥材料,可能影響了其多樣性表現。Transposa型占絕對優勢,說明湖北省的灰葡萄孢菌可能具有較廣的抗藥性,后期應注意其抗藥性監控及藥劑篩選。

來源于不同寄主的灰葡萄孢菌分離物研究表明,Group I出現頻率低,Group II更為普遍,侵染力更強(Johnston et al.,2014;Mu?oz et al.,2016),在葡萄分離物中也是如此(Esterio et al.,2011;Zhang et al.,2018)。來源于湖北省8個葡萄主產區的灰葡萄孢菌分離物只檢測到Group II,表明所有分離物均為狹義的灰葡萄孢菌,沒有發現假灰葡萄孢分離物。但湖北省番茄上已有假灰葡萄孢分離物的報道(Li et al.,2015),葡萄上是否存在假灰葡萄孢菌還需進一步收集樣品,增加采樣地區及次數以驗證。

本研究選取的4株典型分離物在葡萄果實上致病力分化明顯。大部分研究認為Transposa型轉座子分離物致病力更強(Martinez et al.,2003;張靜,2010;Mu?oz and Campos,2013;Johnston et al.,2016;周默等,2020),也有Boty型分離物致病力最強的報道(張佳等,2016)。WH3是Transposa型轉座子分離物,致病力最強,而Flipper型轉座子分離物SX1致病力并不弱于另2個Transposa型轉座子分離物。受Flipper型分離物樣本量限制,無法評估湖北省葡萄上灰葡萄孢菌轉座子類型與致病力間的關系。此外,致病力測定結果與選用品種有關,同一分離物在不同葡萄品種上致病力趨勢不完全一致,因此有必要選取不同品種或篩選對不同分離物致病力趨勢相近的品種進行測定。

4 結論

湖北省葡萄主產區灰葡萄孢菌菌落培養形態較豐富,以菌核型為主。所有分離物均為狹義灰葡萄孢菌,暫未發現假灰葡萄孢分離物。分離物只具有Transposa和Flipper 2種轉座子類型,前者占絕對優勢,而Transposa型是抗藥性和致病力最強的類型,生產中應加強病害防治并監測抗藥性變化。典型分離物致病力分化明顯,在不同品種上不同分離物致病力趨勢存在差異。

參考文獻:

賈爽爽. 2020. 我國葡萄灰霉菌對主要殺菌劑的抗藥突變型分布與多藥抗性機制研究[D]. 北京:中國農業科學院. [Jia S S. 2020. Study on the distribution of resistant mutation to main fungicides and the mechanism of multi-drug resistance of Botrytis cinerea in China[D]. Beijing:Chinese Academy of Agricultural Sciences.] doi:10.27630/ d.cnki.gznky.2020.000891.

孔瓊,袁盛勇,李珣,薛春麗,李林倩,余朝陽,楊紅玉. 2020. 灰葡萄孢蛋白質毒素的致病性研究[J].? 河南農業科學,49(4):72-77. [Kong Q,Yuan S Y,Li X,Xue C L,Li L Q,Yu C Y,Yang H Y. 2020. Study on pathogenicity of protein toxin secreted from Botrytics cinerea[J]. Journal of Henan Agricultural Sciences,49(4):72-77.] doi:10. 15933/j.cnki.1004-3268.2020.04.010.

喬廣行,李興紅,黃金寶,林秀敏,周瑩. 2015. 灰葡萄孢交配型基因的分析與檢測[J]. 菌物學報,34(1): 108-116. [Qiao G H,Li X H,Huang J B,Lin X M, Zhou Y. 2015. Analysis and molecular detection of Botrytis cinerea ma-

ting type genes[J]. Mycosystema,34(1):108-116.] doi:

10.13346/j.mycosystema.130210.

王帆帆,曾佳,郭杰,唐其, 郭曉亮, 段媛媛,游景茂. 2020. 華重樓灰霉病菌灰葡萄孢 ITS 分型及 SSR 遺傳多樣性分析[J]. 菌物學報,40(2):1-13. [Wang F F,Zeng J, Guo J,Tang Q,Guo X L,Duan Y Y,You J M. 2020. ITS and SSR-PCR analyses reveal the genetic diversity of Botrytis cinerea strains collected from Paris polyphylla var. chinensis[J]. Mycosystema,40(2):1-13.] doi:10.13346/j.mycosystema.200234.

張靜. 2010. 湖北省灰霉病病菌區系和灰葡萄孢菌多樣性研究[D]. 武漢:華中農業大學. [Zhang J. 2010. Studies on taxonomy of Botrytis species in Hubei Province and diversity of B. cinerea[D]. Wuhan:Huazhong Agricultural University.]

張佳,張曉歌,張璨,張國珍. 2016. 北京地區草莓灰葡萄孢菌的轉座子及其分布頻率[J]. 植物保護,42(2):177-181. [Zhang J,Zhang X G,Zhang C,Zhang G Z. 2016. Presen-ce and frequency distribution of Transposable elements in Botrytis cinerea from strawberry in Beijing[J]. Plant Protection,42(2):177-181.] doi:10.3969/j.issn.0529-1542. 2016.02.032.

張艷杰,許換平,沈鳳英,李興紅,李亞寧,劉大群. 2017. 我國葡萄灰葡萄孢菌形態型和致病力分化[J]. 農業生物技術學報,25(11):1740-1755. [Zhang Y J,Xu H P,Shen F Y,Li X H,Li Y N,Liu D Q. 2017. Phenotypes and viru-lence variability among grape gray mold isolates from grapes (Vitis vinifera) in China[J]. Journal of Agricultural Biotechnology,25(11):1740-1755.] doi:10.3969/j.issn.1674-7968.2017.11.002.

鄭媛萍. 2018. 我國葡萄灰霉病菌對主要殺菌劑的抗藥性檢測[D]. 北京:中國農業科學院. [Zheng Y P. 2018. The detection on the main fungicides resistance of Botrytis cinerea from grape in China[D]. Beijing:Chinese Academy of Agricultural Sciences.]

周默,盧寶慧,劉麗萍,白慶榮,高潔. 2020. 人參灰葡萄孢菌Botrytis cinerea的種群表型和基因型多樣性[J]. 華中農業大學學報,39(3):45-53. [Zhou M,Lu B H,Liu L P,Bai Q R,Gao J. 2020. Phenotypeic and genetic variability among Botrytis cinerea population isolated from ginseng[J]. Journal of Huazhong Agricultural University,39(3):45-53.] doi:10.13300/j.cnki.hnlkxb.2020.03.006.

DeLong J A,Saito S,Xiao C L,Naegele R P. 2020. Population genetics and fungicide resistance of Botrytis cinerea on Vitis and Prunus spp. in California[J]. Phytopathology,110(3):694-702. doi:10.1094/PHYTO-09-19-0362-R.

Diao Y Z,Larsen M M,Kamvar Z N,Zhang C,Li S,Wang W Z,Lin D,Peng Q, Knaus B J, Foster Z S L,Grünwald N J,Liu X L. 2020. Genetic differentiation and clonal expansion of Chinese Botrytis cinerea populations from tomato and other crops in China[J]. Phytopathology,110:428-439. doi:10.1094/PHYTO-09-18-0347-R.

Diolez A,Marchies F,Fortini D,Brygoo Y. 1995. Boty,a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea[J]. Applied and Environment Microbiology,61(1):103-108. doi:10.1128/aem.61.1.103-108.1995.

Esterio M,Mu?oz G,Ramos C,Estévez R,Salinas A,Auger J. 2011. Characterization of Botrytis cinerea isolates pre-sent in Thompson seedless table grapes in the central valley of Chile[J]. Plant Disease,95:683-690. doi:10.1094/PDIS-04-10-0298.

Fournier E,Levis C,Fortini D,Leroux P,Giraud T,Brygoo Y. 2003. Characterization of Bc-hch,the Botiytis cinerea homolog of the Neurospora crassa het-c vegetative incompatibility locus,and its use as a population marker[J]. Mycologia,95(2):951-961. doi:10.1080/15572536.2004. 11833110.

Johnston P R,Hoksbergen K,Park D,Beever R E. 2014. Genetic diversity of Botrytis in New Zealand vineyards and the signi?cance of its seasonal and regional variation[J]. Plant Pathology,63(4):888-898. doi:10.1111/ppa.12143.

Johnston P R,Park D,White D,Wilkie J P. 2016. Genetic diversity of Botrytis populations in New Zealand vineyards across seasons and regions[J]. New Zealand Plant Protection,69:25-29. doi:10.30843/nzpp.2016.69.5911.

Kretschmer M,Hahn M. 2008. Fungicide resistance and genetic diversity of Botrytis cinerea isolates from a vineyard in Germany[J]. Journal of Plant Disease and Protection,115 (5):214-219. doi:10.1007/BF03356266.

Kumari S,Tayal P,Sharma E,Kapoor R. 2014. Analyses of genetic and pathogenic variability among Botrytis cinerea isolates[J]. Microbiological Research,169(11):862-872. doi:10.1016/j.micres.2014.02.012.

Kuzmanovska B,Rusevski R,Ljupcho J,Mirjana J,Dario I,Katerina B. 2012. Phenotypic and genetic characterization of Botrytis cinerea isolates from tomato[J]. Genetika,44(3):633-647. doi:10.2298/GENSR1203663K.

Levis C,Fortini D,Brygoo Y. 1997. Flipper,a mobile Fot1-like transposable element in Botrytis cinerea[J]. Molecular and General Genetics,254:674-680. doi:10.1007/s00 4380050465.

Li N,Zhang J,Yang L,Wu M D,Li G Q. 2015. First report of Botrytis pseudocinerea causing gray mold on tomato (Lycopersicon esculentum) in central China[J]. Plant Disea-se,99(2):283. doi:10.1094/PDIS-03-14-0256-PDN.

Martinez F,Blancard D,Lecomte L,Levis C,Dubos B,Fermaud M. 2003. Phenotypic differences between vacuma and transposa subpopulations of Botrytis cinerea[J]. European Journal of Plant Pathology,109:479-488. doi:10. 1023/A:1024222206991.

Martinez F,Dubos B,Fermaud M. 2005. The role of saprotrophy and virulence in the population dynamics of Botrytis cinerea in vineyards[J]. Phytopathology,95:692-700. doi:10.1094/PHYTO-95-0692.

Mirzaei S,Goltapeh E M,Shams-Bakhsh M,Safaie M,Chaichi M. 2010. Genetic and phenotypic diversity among Botrytis cinerea isolates in Iran[J]. Journal of phytopathology,157(7-8):474-482. doi:10.1111/j.1439-0434.2008. 01518.x.

Mu?oz C,Talquenca S G,Oriolani E,Combina M. 2010. Genetic characterization of grapevine-infecting Botrytis cinerea isolates from Argentina[J]. Revista Iberoamericana de Micología,27(2):66-70. doi:10.1016/j.riam.2009.12. 006.

Mu?oz G,Campos F. 2013. Genetic characterization of Botrytis cinerea,isolates collected from pine and eucalyptus nurse-ries in Bio-Bio Region,Chile[J]. Forest Pathology,43(6):509-512. doi:10.1111/efp.12057.

Mu?oz G,Campos F,Salgado D,Galdames R,Gilchrist L,Chahin G,Andrade O. 2016. Molecular identification of Botrytis cinerea,Botrytis paeoniae and Botrytis pseudocinerea associated with gray mould disease in peonies (Paeo-nia lactiflora Pall.) in southern Chile[J]. Revista Iberoa-mericana de Micología,33(1):43-47. doi:10.1016/j.riam. 2015.02.002.

Pei Y G,Tao Q J,Zheng X J,Li Y,Sun X F,Li Z F,Qi X B,Xu J,Zhang M,Chen H B,Chang X L,Tang H M,Sui L Y,Gong G S. 2019. Phenotypic and genetic characterization of Botrytis cinerea population from kiwifruit in Si-chuan Province,China[J]. Plant Disease,103:748-758. doi:10.1094/PDIS-04-18-0707-RE.

Plesken C,Pattar P,Reiss B,Noor Z N, Zhang L,Klug K,Huettel B,Hahn M. 2021. Genetic diversity of Botrytis cinerea revealed by multilocus sequencing,and identification of B. cinerea populations showing genetic isolation and distinct host adaptation[J]. Frontiers in Plant Science,12:e663027. doi:10.3389/fpls.2021.663027.

Saito S,Michailides T J,Xiao C L. 2019. Fungicide-resistant phenotypes in Botrytis cinerea populations and their impact on control of gray mold on stored table grapes in California[J]. European Journal of Plant Pathology,154(2):203-213. doi:10.1007/s10658-018-01649-z.

Samuel S,Veloukas T,Papavasileiou A,Karaoglanidis G S. 2012. Differences in frequency of transposable elements presence in Botrytis cinerea populations from several hosts in Greece[J]. Plant Disease,96:1286-1290. doi:10.1094/PDIS-01-12-0103-RE.

Veloso J,van Kan J A L. 2018. Many shades of grey in Botrytis-host plant interactions[J]. Trends in Plant Scien-ce,23(7):613-622. doi:10.1016/j.tplants.2018.03.016.

Wahab H A. 2015. Characterization of Egyptian Botrytis cinerea isolates from different host plants[J]. Advances in Microbiology,5(3):177-189. doi:10.4236/aim.2015.53017.

Walker A S,Gautier A,Confais J,Martinho D,Viaud M,Le Pêcheur P,Dupont J,Fournier E. 2011. Botrytis pseudocinerea,a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea[J]. Phytopathology,101(12):1433-1445. doi:10.1094/PHYTO-04-11-0104.

Zhang Y J,Li X H,Shen F Y,Xu H P,Li Y N,Liu D Q. 2018. Characterization of Botrytis cinerea isolates from grape vineyards in China[J]. Plant Disease,102:40-48.? doi:10.1094/PDIS-01-17-0062-RE.

收稿日期:2021-08-02

基金項目:國家現代農業產業技術體系建設專項(CARS-29-19);湖北省技術創新重大專項 (2019ABA093);農業農村部華中作物有害生物綜合治理重點實驗室開放基金項目(2018ZTSJJ9)

通訊作者:龔林忠(1977-),https://orcid.org/0000-0001-6042-0769,研究員,主要從事葡萄、桃等果樹遺傳育種與栽培研究工作,E-mail:gcs325@126.com;孫中海(1961-),https://orcid.org/0000-0001-5412-3274,博士,研究員,主要從事果樹及經濟林果育種與栽培研究工作,E-mail:hbfruit@126.com

第一作者:王澤瓊(1981-),https://orcid.org/0000-0002-7361-1561,博士,主要從事植物保護研究工作,E-mail:wangzeqiong@126.com

猜你喜歡
灰霉病多樣性湖北
番茄灰霉病的發生與防治
湖北現“最牛釘子戶” 車道4變2給樓讓路
如何防治草莓灰霉病
如何防治番茄灰霉病
淺談新時期群文輔導工作的特征
舞蹈表演的表現形式多樣性研究
水磨地區蕨類植物多樣性調查分析
蔬菜灰霉病的綜合防治技術
湖北2009年7月13日企業收購生豬價
2009年5月18日湖北企業收購生豬價
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合