?

石漠化區露石巖-土界面流形成過程模擬試驗

2023-01-16 09:35彭旭東戴全厚劉婷婷許勝兵岑龍沛
農業工程學報 2022年17期
關鍵詞:雨強產流石漠化

曾 庥,彭旭東,戴全厚,劉婷婷,許勝兵,岑龍沛

石漠化區露石巖-土界面流形成過程模擬試驗

曾 庥,彭旭東※,戴全厚,劉婷婷,許勝兵,岑龍沛

(貴州大學林學院,貴州大學土壤侵蝕與生態修復研究中心,貴陽 550025)

巖-土界面是石漠化區露石巖面流和地表徑流下滲轉化為地下裂隙流的主要路徑。作為地下裂隙流的重要組成部分,巖-土界面流對坡面降雨徑流轉化、水分地下快速滲漏以及土壤侵蝕/漏失具有重要影響。為探究喀斯特石漠化區露石巖-土界面流形成過程與轉化機制,通過模擬典型露石巖-土界面,采用人工模擬降雨試驗研究露石面-土壤組成的巖-土結構單元下地表徑流及地表下壤中流、巖-土界面流及非巖-土界面流的形成過程及輸出特征,探究其對巖周徑流形成轉化的影響。結果表明:巖-土界面流產流量在降雨過程中呈先增加后穩定的變化趨勢;相同條件下,有出露巖面流形成的巖-土界面流(巖面傾角45°、60°、75°)產流量遠大于僅有土壤水分下滲形成的巖-土界面流(巖面傾角90°),前者是后者的4.78~16.58倍。巖面傾角是影響巖周徑流形成、轉化的主要因素,巖面傾角越大則巖-土界面流對水分漏失總量貢獻越小,而非巖-土界面流則相反;雨強次之。然而,雨強是影響初始產流時間、穩定產流時間的主要因素,二者均隨雨強增大顯著減?。?0.01);巖面傾角次之。巖-土界面的存在不僅直接形成巖-土界面流,同時對非巖-土界面流表現出較強的補給效應,約有一半的巖-土界面流最終以非巖-土界面流的形式流失。研究結果可為石漠化區產流過程及機制的深度揭示提供理論依據。

巖-土界面流;地下裂隙流;產流過程;徑流損耗;出露巖石;石漠化區

0 引 言

中國西南喀斯特地區是世界上連片裸露碳酸鹽巖面積最大、巖溶發育最強烈、生態環境最脆弱的地區,基巖大量出露[1-4],土層薄且缺乏過渡層,這一特征是石漠化的過程和結果,也是區分喀斯特區與非喀斯特區的重要指標,被形象地稱為喀斯特區土壤“鐵板燒效應”[5]??λ固貐^土壤剖面中通常缺乏C層(過渡層),土壤常與碳酸鹽巖直接接觸形成軟硬明顯不同的巖-土界面,在降雨等條件誘發下易發生水土流失而使基巖裸露,加速石漠化的形成[6-7]?;鶐r出露過程實際上是石面土壤、石周土壤被侵蝕的過程[8-10]。巖石形成弱透水面或不透水面,裸露巖石表面匯集的雨流與經巖-土界面上覆土壤入滲的水分在巖-土界面處匯集,并繼續沿巖-土界面向下運移[11],造成坡地降雨沿巖-土界面流失,這一沿巖-土界面流動的雨流稱為巖-土界面流。已有研究發現降雨雨水沿巖-土界面流失的現象,Yair等[12-13]分別在朱迪亞山脈和內蓋夫沙漠的山脈上進行大規模滴灌試驗后,發現出露巖石產生的連續徑流幾乎在噴灑開始后立即發生,沿巖面流動到周圍土壤中,直至巖石周圍土壤完全飽和,才會出現地表徑流;但關于露石徑流是究竟如何進入巖石周圍土壤中還有待進一步研究。Wilcox 等[14]研究發現,巖溶區石灰巖的高導水率允許雨水相對快速地滲透到斷裂基巖的最上層,在斷裂基巖內,側向優先流占主導地位,而巖-土界面流占比較小。Sohrt等[15]通過灌溉試驗結果表明,出露巖石巖面產生形成的徑流在地下繼續沿巖-土界面優先流動,而作用在土表的降雨主要以垂直且更均勻的方式向下入滲;與直接從土壤表面滲透的雨水相比,出露巖石形成的徑流滲透速度更快,滲透深度更大,具有更大的地下水補給潛力。出露巖石對石漠化坡地降雨產流具有重要影響,一方面,出露的巖石可直接成為降雨過程中的匯水面[10,16-17],另一方面,巖-土界面是影響坡面水文過程的重要路徑[18-19],出露巖面攔截雨水或林下穿透雨,容易形成沿巖-土界面向下漏失的巖面流[20]。

雖然已有針對喀斯特區出露巖石降雨產流的系統研究,但多數僅側重于地表土壤入滲、土壤水分變化、地表及地下產流以及表層巖溶帶水文調蓄功能[21-23],而石漠化區出露巖石類型(石灰巖和白云巖等)及產狀(傾向、傾角等)復雜、巖面形態(凹、凸等)多樣,巖面流易受巖面形態影響以匯聚或分散方式分配到出露巖石周圍并主要以巖-土界面流形式形成地下漏失,而部分巖面流進入巖周土壤并在疊加土壤下滲的雨水徑流后以非巖-土界面流形式形成地下漏失。巖-土界面流對坡面降雨徑流轉化、水分地下快速滲漏以及土壤侵蝕/漏失具有重要影響。然而,針對巖-土界面流輸出過程、影響因素及其對地下裂隙流貢獻等尚不清楚。

因此,本研究通過模擬典型露石面-土壤組成的巖-土結構單元,采用人工模擬降雨試驗研究地下裂隙流(分為巖-土界面流和非巖-土界面流)及地表徑流、壤中流的輸出過程及特征,探究巖-土界面流形成對巖周徑流形成轉化的影響,以期系統揭示喀斯特石漠化區產流過程及機制。

1 材料與方法

1.1 試驗材料

試驗土樣采自貴州省貴陽市花溪區(106°39′18″E,26°19′17″N)碳酸鹽巖發育的石灰性土坡耕地0~30 cm耕層土壤,其土壤砂粒(>0.05~1.00 mm)體積分數為9.27%、粉粒(0.002~0.05 mm)為75.34%、黏粒(<0.002 mm)為15.35%(中國制),土壤風干后過5 mm篩后裝入規格為長1.0 m、寬0.5 m、深度0.35 m的試驗鋼槽(圖1)中,自下而上按野外實測土壤緊實度分層裝填(容重分別為1.2、1.0和0.9 g/cm3),每層10 cm,共30 cm,隨后用特制木板耙平填土表面,壓實邊界處以減小邊界效應影響。

圖1 降雨裝置示意圖

1.2 試驗設計

在對露石巖-土界面野外調查的基礎上,以雨強、巖面傾角及巖面形狀為驅動因子,以地表坡度、地下裂隙度、土層厚度等為試驗條件,開展石漠化區露石巖-土界面流形成過程的研究。

自然條件下巖-土界面流的流動過程復雜且不易實測,本研究通過平直鋼板模擬露石巖面及巖-土界面,以分析露石巖-土界面流形成過程與輸出機制,其鋼板長88 cm,寬50 cm;基于野外調查,出露巖石巖面傾角主要集中在40°~80°之間,因此設計4個巖面傾角,分別為45°、60°、75°和90°(對照),以反映巖面及巖-土界面占比及有效集雨面積的差異?;谇捌谘芯縖8,24],試驗鋼槽巖-土交界處裂隙寬度為2 cm,用于收集巖-土界面流,其中巖石以鑲嵌的形式插入裂隙中,以保證巖-土界面流完全從裂隙處流出,避免混入非巖-土界面流;底部鋼槽距巖-土界面10、20、30、40、50 cm處設置5條寬2 cm的裂縫,用于模擬和收集非巖-土界面流;在距土表深度10、20、30 cm處的鋼槽四周打孔,孔隙直徑為1 cm,間隔5 cm,用于模擬和收集壤中流[25];在與土壤表面齊平處設有地表徑流收集裝置。根據貴州喀斯特區侵蝕性降雨標準(降雨量15 mm左右)[26],設計雨強為26、49、63、98 mm/h共4個水平。每場降雨從開始產流計時,每10 min接一次樣并測量其產流量,降雨歷時140 min;每個巖面傾角依次從小雨強到大雨強為一個降雨周期,試驗前,降小雨至土壤水分飽和,靜置一夜,每次降雨結束后,調節巖石坡度并更換土壤。本試驗設計地表坡度為15°。

1.3 模擬降雨

降雨試驗在貴州大學林學院降雨大廳進行。試驗采用自行設計的巖-土界面流模擬研究裝置和便攜式全自動下噴式人工降雨設備(型號:QYJY- 501)完成。降雨器降雨高度6 m,雨滴終點速度滿足天然降雨特性,雨強采用手動調節,其變化范圍在10~200 mm/h之間,調節時間低于30 s,調節精度±7 mm/h,降雨有效范圍6.5 m×6.5 m,降雨均勻度高于85%。同時,在鋼槽兩側放置多個雨量筒以測定每次降雨的實際雨強。每場降雨2次重復。

1.4 參數計算

鋼槽集雨面積為裸露巖面與土壤表面水平投影面積之和。通過調節巖面傾角改變相應的巖石集雨面積與土壤表面集雨面積。有效集雨面積計算公式如下:

巖面11cos(1)

土表22cos15°(2)

總巖面土表(3)

式中巖面為出露巖石集雨面積,m2;土表為土表集雨面積,m2;1為出露巖石寬度,m;1為出露巖石長度,m;2為土表寬度,m;2為土表長度,m;為巖石傾角,(°)。

露頭巖面(出露地表部分)投影面積為巖面流有效集雨面積,其在無損失時形成的徑流為巖面流理論值;整個巖面投影面積為巖-土界面流有效集雨面積,其在無土壤覆蓋時理論上形成的徑流為巖-土界面流理論值,而其巖石上覆土壤會改變雨流通路,一部分巖面流進入土壤,造成巖-土界面流損耗。

c=a?b(4)

=c/a(5)

a=0.44·cos(·Π/180°)·/60(6)

式中a為巖-土界面流理論值,mm,b為巖-土界面流實測值,mm;c為巖-土界面流損耗量,mm;為巖-土界面流損耗率,%。0.44為巖石面積,m2;0.44·cos(·Π/180°)為巖-土界面流(含巖面流)投影集雨面積,m2;為雨強,mm/h;/60為降雨歷時,h。

2 結果與分析

2.1 巖-土界面流產流過程

巖-土界面流產流量在降雨過程中呈先增加后穩定的變化趨勢(圖2)。相同巖面傾角下,巖-土界面流初始產流時間隨雨強的增大而減??;而相同雨強下,巖-土界面流初始產流時間隨巖面傾角增大無明顯變化。從產流開始到產流穩定所需時間與初始產流時間規律相似。非巖-土界面流初始產流時間變化規律不明顯,但其均早于巖-土界面流,且小于12.30 min。由于巖面傾角90°下不產生巖面流,只有少量土壤入滲水分沿巖-土界面流動,即使雨強為98 mm/h時產流最大值也僅有1.29 mm;同時,有露石巖面匯流形成的巖-土界面流(巖面傾角為45°、60°、75°)產流量遠大于僅有土壤水分下滲形成的巖-土界面流(巖面傾角為90°),前者是后者的4.78~16.58倍。

圖2 不同巖面傾角下巖-土界面流產流量隨降雨歷時變化過程

對比不同傾角巖-土界面產流趨勢可知(圖3),巖-土界面流隨傾角的增大而減小,隨雨強的增大而增大;非巖-土界面產流量與巖-土界面規律相似,非巖-土界面流會受到來自巖面流的影響,其原因是巖面流在進入巖-土交界處時,一部分巖面流憑借其初速度沖入土壤[15],被土壤吸收轉化成非巖-土界面流,且傾角越小,巖面流對非巖-土界面流產流量影響越大。同一條件下,非巖-土界面流遠大于巖-土界面流,降雨流失的方式主要是以土壤吸收后向下入滲為主[27]。

圖3 不同雨強下巖-土界面流統計特征隨巖面傾角的變化關系

2.2 巖-土界面流損耗特征

喀斯特區巖石往往以出露的形式鑲嵌在土層中,巖面的鑲嵌使部分原本沿巖面入滲的巖面流進入土壤,造成巖-土界面流的損耗(表1)??梢园l現,雨強對巖-土界面流損耗影響不大;而巖面傾角對巖-土界面流損耗有著明顯影響,傾角越小,巖-土界面流損耗越大,巖面傾角45°損耗均超過50%。損耗的巖面流在初速度、重力與土壤阻力共同作用下,一部分進入土表形成地表徑流;一部分進入土壤形成壤中流;而絕大部分進入土壤最終轉化為非巖-土界面流,是地下裂隙流重要的源區之一。

2.3 巖-土界面流對水分流失貢獻分析

分析各徑流對水分流失的貢獻可知(圖4),相同巖面傾角下,產流分配比(為各徑流占總徑流量的比例)在不同雨強間差異不明顯,而相同雨強下,產流分配比在不同巖面傾角間差異明顯;巖-土界面流對水分流失貢獻占比(5%~33%)隨傾角增大而減小,非巖-土界面流對水分流失貢獻占比(64%~95%)隨傾角增大而增大,推測巖面傾角是影響降雨產流分配較為重要的因素,雨強次之。相同巖面傾角下,雨強對巖-土界面水分流失占比影響不大;而相同雨強下,巖-土界面流水分流失占比隨傾角的增大而減小。非巖-土界面流對水分流失占比與巖-土界面流規律相反。有露石巖面匯流產生的巖-土界面流(巖面傾角45°、60°、75°)水分流失貢獻遠大于僅有土壤水分下滲形成的巖-土界面流(巖面傾角為90°)。本試驗中,地表徑流僅出現在雨強為98 mm/h 時以及巖面傾角45°、雨強63 mm/h時(集雨面積最大);而壤中流受巖面傾角與雨強共同作用的影響,但兩者對降雨水分流失的貢獻較?。?%~3%)。對比各徑流對降雨產流流失貢獻占比發現,非巖-土界面流是形成地下裂隙流的主要徑流方式之一。

表1 巖-土界面流損耗特征

圖4 不同巖面傾角下巖-土界面產流占比

2.4 各影響因子對巖-土界面產流特征相關性分析

由雨強和巖面傾角與產流特征之間的線性關系及相關性系數(圖5)可知,雨強對巖-土界面初始產流時間存在極顯著負相關(<0.01,=?0.776),初始產流時間隨雨強增大呈線性減小,而雨強對非巖-土界面初始產流時間無明顯影響;巖面傾角對巖-土界面流與非巖-土界面流初始產流時間均無明顯影響。雨強對巖-土界面與非巖-土界面穩定產流時間均存在極顯著負相關(<0.01,分別為?0.772、?0.623),穩定產流時間隨雨強增大呈線性減??;而傾角對穩定產流時間無明顯影響。雨強對巖-土界面與非巖-土界面產流量均存在極顯著正相關(<0.01,分別為0.589、0.814),產流量隨雨強增大呈線性增大;而巖面傾角對巖-土界面產流量存在極顯著負相關(<0.01,=?0.709),對非巖-土界面存在顯著負相關(<0.05,=?0.506),產流量隨傾角增大呈線性減小。

注:*,顯著(P<0.05);*,極顯著(P<0.01)。

3 討 論

3.1 巖面流及巖-土界面流形成過程

降雨條件下,出露巖面匯集的巖面流在巖-土界面交界處遇到土壤后,一部分繼續沿巖面入滲;另一部分進入土壤中,形成非巖-土界面流,但二者最終以地下裂隙流形成向下漏失。本研究發現,有出露巖面匯流形成的巖-土界面流產流量遠大于僅有土壤水分入滲形成的巖-土界面流;隨著巖面傾角減小,巖-土界面流產流量增大,其原因是裸露的巖石增大了匯水面積,形成的巖面流沿巖-土界面入滲,以及從巖-土交界處進入土表的巖面流還未來得及形成地表徑流就以壤中流的方式向下入滲,遇到不透水或弱透水的巖面后轉換成巖-土界面流,加大了土壤水分漏失。Zhang等[28]對喀斯特地區巖面以及土面的研究也發現,在裸巖出露較多的喀斯特地區,巖面會對周圍土面的水分進行再分配,約一半的巖面產流會以徑流的形式流入周圍的土面,也就是說約50%的巖面流進入了巖-土界面。還有研究表明,巖面是喀斯特區降雨產流的源區,大量徑流會隨著巖面向下輸送到周圍土壤,沿著巖-土界面補充深層土壤水分,巖-土界面的水分響應比同一深度的土壤水分快得多[29],說明巖-土界面流是最先形成地下裂隙流的徑流形式。

本研究中,巖面傾角越大,巖-土界面流損耗越小,越有利于巖面流及巖-土界面流沿巖-土界面下滲,但對水分流失的貢獻反而越小,其原因是傾角大的巖面有效集雨面積小,對整體水分流失貢獻占比小。簡言之,相同體積的巖面流能更多地沿角度大的巖-土界面入滲,但減小巖面傾角,可以促使更多的巖面流進入土壤,這對巖周土壤水分起到了更好的補充。覃自陽等[30]通過研究巖層傾向對喀斯特槽谷區地表/地下產流過程的影響,也發現相似的結論,在逆層坡條件下,地下產流與巖層傾角存在顯著負相關關系(<0.05),其最高為60°,最低為90°。這表明,巖面傾角對巖-土界面流的形成及轉化具有重要影響,傾角越小越能夠促使更多的雨水徑流快速進入地下。

3.2 巖-土界面流對水土流失/漏失的影響

本研究中,石漠化露石面與土壤組成的巖-土結構單元的地表產流最小雨強在49~63 mm/h,其數值高于魏興萍等[31]對巖溶槽谷區坡耕地野外監測結果(25~50 mm/h),同樣也高于彭旭東等[32]對喀斯特坡耕地產流產沙臨界值的研究(30~50 mm/h),這是因為設計的巖-土結構單元有效降雨面積相對較小,較小雨強下土壤表面還未充分形成徑流就以壤中流的方式向下流失,當遇到巖石界面后沿界面流失,這說明巖面以傾斜方式鑲嵌在土壤中,可以增大地表徑流臨界雨強。陳洪松等[27]通過大型徑流小區(1 000 m2)長期野外徑流監測的結果顯示,石漠化峰叢坡地地表徑流較非喀斯特區低,不同土地利用方式坡面次降雨徑流系數均<5%,地表產流很少,降雨幾乎全部入滲。本試驗中,只有在最大雨強(98 mm/h)下才明顯觀測到巖-土界面流和非巖-土界面流中帶有少量泥沙。因此,喀斯特區土壤地下漏失是降雨長年累月作用的結果,僅通過室內模擬試驗是難以明顯觀測到土壤地下漏失的。

本研究發現,雨強對巖-土界面初始產流時間存在極顯著的負相關(<0.01,=?0.776),初始產流時間隨雨強增大呈線性減小,而雨強對非巖-土界面初始產流時間無明顯影響;說明相同條件下,巖-土界面流對雨強變化做出快速反應,非巖-土界面流則不然,其原因是巖-土界面流由于有界面的存在,水分流失的穩定通路快速形成,當雨強由小變大時,能夠迅速表現出差異;而非巖-土界面流水分流失來源主要是土表承接降雨后向下入滲,雖然初始產流時間小于巖-土界面流,但其從初始產流達到穩定產流時間大于巖-土界面,根本原因在于土壤本身具有緩沖作用,且受土壤機械組成、團聚體和孔隙的影響。降雨初期,水分在土壤中的運移尚未形成穩定的通路,故初始產流時間對雨強的變化不如巖-土界面流敏感。然而,一旦水分在土壤中運移的穩定通路形成,對雨強的變化就會相當靈敏,故穩定產流時間與雨強呈極顯著負相關(<0.01,=?0.623)。吳堯等[33]將土壤入滲過程分為三個階段:入滲瞬變階段(0~8 min)、入滲漸變階段(8~30 min)、入滲穩定階段(30~120 min),表明土壤的入滲過程主要受土壤機械組成、團聚體和孔隙組成的綜合影響,這很好地解釋了本研究的結果。

巖-土界面流是造成喀斯特區表層土壤水分地下漏失的重要方式?,F有研究已發現喀斯特水文過程的異質性和復雜性,本研究重點分析了平直型露石巖-土界面流的產流過程及輸出機制,但關于其他類型出露巖石(如內凹、外凸、不規則等)產流過程的認知還需更進一步的研究。

4 結 論

1)巖-土界面流產流量在降雨過程中呈先增加后穩定的變化趨勢。相同條件下,有露石巖面流形成的巖-土界面流(巖面傾角45°、60°和75°)產流量遠大于僅有土壤水分下滲形成的巖-土界面流(巖面傾角90°),前者是后者的4.78~16.58倍。

2)雨強對巖-土界面流損耗影響不大;而巖面傾角對巖-土界面流損耗有著明顯影響,傾角越小,巖-土界面流損耗越大,巖面傾角45°損耗均超過50%。巖-土界面的存在不僅直接形成巖-土界面流,同時對非巖-土界面流表現出較強的補給效應,約有一半的界面流最終以非巖-土界面流的形式流失。

3)巖面傾角是影響降雨產流分配的主要因素,雨強次之;巖-土界面流對水分流失貢獻占比(5%~33%)隨傾角增大而減小,非巖-土界面流對水分流失貢獻占比(64%~95%)隨傾角增大而增大。地表徑流、壤中流對水分流失貢獻占比極?。?%~3%)。

4)巖-土界面流與非巖-土界面流產流量隨雨強增大而增大,隨巖面傾角增大而減??;初始產流時間、穩定產流時間隨雨強增大而減小,而巖面傾角對初始產流時間、穩定產流時間無明顯影響。

[1] Zhang Y, Long Y, Zhang X, et al. Using depression deposits to reconstruct human impact on sediment yields from a small karst catchment over the past 600 years[J]. Geoderma, 2020, 363: 114168.

[2] 王世杰. 喀斯特石漠化:中國西南的最嚴重的生態地質環境問題[J]. 礦物巖石地球化學通報,2003,22(2):120-126.

Wang Shijie. Karst rock desertification: The most serious ecological and geological environmental problem in southwest China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(2): 120-126. (in Chinese with English abstract)

[3] 種國雙,海月,鄭華,等. 石漠化遙感信息提取方法進展[J]. 應用科學學報,2021,39(6):961-968.

Zhong Guoshuang, Hai Yue, Zheng Hua, et al. Progress in remote sensing information extraction methods for rocky desertification[J]. Journal of Applied Sciences, 2021, 39(6): 961-968. (in Chinese with English abstract)

[4] Liao S B, Cai H, Tian P J, et al. Combined impacts of the abnormal and urban heat island effect in Guiyang, a typical Karst Mountain City in China[J]. Urban Climate, 2022, 41: 101014.

[5] 李建明,王志剛,王愛娟,等. 退耕還林恢復年限對巖溶槽谷區石漠化土壤物理性質的影響[J]. 農業工程學報,2020,36(1):99-108.

Li Jianming, Wang Zhigang, Wang Aijuan, et al. Effects of the restoration period of returning farmland to forests on the physical properties of rocky desertification soil in the karst trough valley area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 99-108. (in Chinese with English abstract)

[6] Lan X, Ding G J, Dai Q H, et al. Assessing the degree of soil erosion in karst mountainous areas by extenics[J]. Catena, 2022, 209: 105800.

[7] 張信寶,王世杰,賀秀斌,等. 碳酸鹽巖風化殼中的土壤蠕滑與巖溶坡地的土壤地下漏失[J]. 地球與環境,2007,35(3):202-206.

Zhang Xinbao, Wang Shijie, He Xiubin, et al. Soil creep in the weathered crust of carbonate rocks and soil underground leakage on karst slopes[J]. Earth and Environment, 2007, 35(3): 202-206. (in Chinese with English abstract)

[8] Peng X D, Dai Q H. Drivers of soil erosion and subsurface loss by soil leakage during karst rocky desertification in SW China[J]. International Soil and Water Conservation Research 2022, 10(2): 217-227.

[9] Peng H, Yang W, Aira Sacha N F, et al. Hydrochemical characteristics and health risk assessment of groundwater in karst areas of southwest China: A case study of Bama, Guangxi[J]. Journal of Cleaner Production, 2022, 341: 130872.

[10] Jiang Y, Gao J, Yang L, et al. The interactive effects of elevation, precipitation and lithology on karst rainfall and runoff erosivity[J]. Catena, 2021, 207: 105588.

[11] 付同剛,陳洪松,張偉,等. 喀斯特小流域土壤含水率空間異質性及其影響因素[J]. 農業工程學報,2014,30(14):124-131.

Fu Tonggang, Chen Hongsong, Zhang Wei, et al. Spatial heterogeneity of soil moisture content and its influencing factors in karst small watersheds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 124-131. (in Chinese with English abstract)

[12] Yair A. Hillslope hydrology water harvesting and areal distribution of some ancient agricultural systems in the northern Negev desert[J]. Journal of Arid Environments, 1983, 6(3): 283-301.

[13] Lange J, Greenbaum N, Husary S, et al. Runoff generation from successive simulated rainfalls on a rocky, semi-arid, Mediterranean hillslope[J]. Hydrological Processes, 2003, 17(2): 279-296.

[14] Wilcox B P, Taucer P I, Munster C L, et al. Subsurface storm flow is important in semiarid karst shrub lands[J]. Geophysical Research Letters, 2008, 35(10): L10403.

[15] Sohrt J, Ries F, Sauter M, et al. Significance of preferential flow at the rock soil interface in a semiarid karst environment[J]. Catena, 2014, 123: 1-10.

[16] 王世杰. 喀斯特石漠化概念演繹及其科學內涵的探討[J]. 中國巖溶,2002,21(2):101-105.

Wang Shijie. Discussion on the concept of karst rock desertification and its scientific connotation[J]. Karst in China 2002, 21(2): 101-105. (in Chinese with English abstract)

[17] 羅旭玲,王世杰,白曉永,等. 西南喀斯特地區石漠化時空演變過程分析[J]. 生態學報,2021,41(2):680-693.

Luo Xuling, Wang Shijie, Bai Xiaoyong, et al. Analysis of spatio-temporal evolution of rocky desertification in southwest Karst region[J]. Acta Ecologica Sinica, 2021, 41(2): 680-693. (in Chinese with English abstract)

[18] 楊振華,宋小慶,蘇維詞. 西南喀斯特地區坡地產流過程及其利用技術[J]. 地球科學,2019,44(9):2931-2943.

Yang Zhenhua, Song Xiaoqing, Su Weici. Slope flow process and its utilization technology in southwest karst area[J]. Earth Science, 2019, 44(9): 2931-2943. (in Chinese with English abstract)

[19] Dai Q H, Peng X D, Yang Z, et al. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area[J]. Catena, 2017, 152: 218-226.

[20] Shen Y X, Yu Y, Manuel Esteban L B, et al. Change of soil K, N and P following forest restoration in rock outcrop rich karst area[J]. Catena, 2020, 186: 104395.

[21] Mcguire K J, Mcdonnell J J. Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities[J]. Water Resources Research, 2010, 46(10): W10543.

[22] Fu Z Y, Chen H S, Xu Q X, et al. Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: Implications of field rainfall simulation experiments[J]. Hydrological Processes, 2016, 30(5): 795-811.

[23] Fiori A, Russo D, Lazzaro M D. Stochastic analysis of transport in hillslopes: Travel time distribution and source zone dispersion[J]. Water Resources Research, 2009, 45(8): 2263-2289.

[24] Dai Q H, Peng X D, Yang Z, et al. Runoff and erosion processes on bare slopes in the Karst Rocky Desertification Area[J]. Catena, 2017, 152: 218-226.

[25] Yan Y J, Dai Q H, Yuan Y F, et al. Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China[J]. Geoderma: An International Journal of Soil Science, 2018(5): 30-40.

[26] 戴全厚,嚴友進. 西南喀斯特石漠化與水土流失研究進展[J]. 水土保持學報,2018,32(2):1-10.

Dai Quanhou, Yan Youjin. Research progress on rocky desertification and soil erosion in Southwest Karst[J]. Journal of Soil and Water Conservation, 2018, 32(2): 1-10. (in Chinese with English abstract)

[27] 陳洪松,楊靜,傅偉,等. 桂西北喀斯特峰叢不同土地利用方式坡面產流產沙特征[J]. 農業工程學報,2012,28(16):121-126.

Chen Hongsong, Yang Jing, Fu Wei, et al. Characteristics of aborted sand production on slopes of different land use patterns in the karst peak cluster in northwest Guangxi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 121-126. (in Chinese with English abstract)

[28] Zhang J, Wang S, Fu Z Y, et al. Soil thickness controls the rainfall-runoff relationship at the karst hillslope critical zone in southwest China[J]. Journal of Hydrology, 2022, 609: 127779.

[29] Peng X D, Dai Q H. Drivers of soil erosion and subsurface loss by soil leakage during karst rocky desertification in SW China[J]. International Soil and Water Conservation Research, 2022, 10(2): 217-227.

[30] 覃自陽,甘鳳玲,何丙輝. 巖層傾向對喀斯特槽谷區地表/地下產流過程的影響[J]. 水土保持學報,2020,34(5):68-75,80.

Qin Ziyang, Gan Fengling, He Binghui. Effects of rock stratigraphic propensity on surface/underground flow processes in karst trough valley area[J]. Journal of Soil and Water Conservation, 2020, 34(5): 68-75. 80. (in Chinese with English abstract)

[31] 魏興萍,袁道先,謝世友. 運用137Cs與土壤營養元素探討重慶巖溶槽谷區山坡土壤的流失和漏失[J]. 水土保持學報,2010,24(6):16-19.

Wei Xingping, Yuan Daoxian, Xie Shiyou. Using137Cs and soil nutrients to discuss soil loss and leakage on hillsides in Chongqing karst trough valley[J]. Journal of Soil and Water Conservation, 2010, 24(6): 16-19. (in Chinese with English abstract)

[32] 彭旭東,戴全厚,李昌蘭,等. 模擬雨強和地下裂隙對喀斯特地區坡耕地養分流失的影響[J]. 農業工程學報,2017,33(2):131-140.

Peng Xudong, Dai Quanhou, Li Changlan, et al. Effect of simulated rainfall intensities and underground pore fissure degrees on soil nutrient loss from slope farmlands in Karst Region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 131-140. (in Chinese with English abstract)

[33] 吳堯,姚健,吳永波. 岷江上游典型植被下土壤分形特征及對水分入滲的影響[J]. 水土保持通報,2012,32(2):12-16.

Wu Yao, Yao Jian, Wu Yongbo. Soil fractal characteristics and effects on water infiltration under typical vegetation in the upper reaches of the Min River[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 12-16. (in Chinese with English abstract)

Simulation test on the formation of rock-soil interface flow from outcrops in the rocky desertification areas

Zeng Xiu, Peng Xudong※, Dai Quanhou, Liu Tingting, Xu Shengbing, Cen Longpei

(,,,550025,)

Rock-soil interface is one of the main paths to transform from the outcrop rock surface flow and surface runoff infiltrating into the underground fissure flow in the rocky desertification area. Among them, the rock-soil interface flow has posed a significant influence on the transformation of rainfall runoff, rapid underground leakage of water, and soil erosion or leakage on slopes. This study aims to explore the formation process and transformation mechanism of the rock-soil interface flow from the outcrops in the karst rocky desertification area. A series of artificial rainfall experiments were carried out after simulating a typical rock-soil interface from outcrops. Specifically, the driving factors were rainfall intensity, rock surface inclination, and rock surface shape. The test conditions were the surface slope, underground fissure density, and soil layer thickness. An investigation was made on the production and output characteristics of the surface runoff and such subsurface flows as the interflow, rock-soil and non-rock-soil interface flow under the rock-soil structure unit with the exposed rock surface and soil. Then, the formation of the rock-soil interface flow was analyzed to clarify the influence on the transformation of runoffs around outcrops. Results showed that: 1) The amount of flow at the rock-soil interface increased first and then stabilized during the rainfall process. The amount of rock-soil interface flow formed by rock surface flows from the outcrops (rock surface inclination surface were 45°, 60°, and 75°) was much greater than that by only the seepage flow in the soil (rock surface inclination was 90°) under the same conditions, where was 4.78 to 16.58 times of the latter. 2) There was little effect of rainfall intensity on the loss of the rock-soil interface flow. However, the rock surface inclination presented a significant impact on the loss of the rock-soil interface flow. The smaller rock surface inclination was, the greater the loss of the rock-soil interface flow was, in which the loss was more than 50% at the rock surface inclination of 45°. The rock-soil interface was directly formed by the rock-soil interface flow. A strong recharge was obtained on the non-rock-soil interface flow, where about half of the interfacial flow was eventually lost in the form of non-rock-soil interface flow. 3) The rock surface inclination was the main factor affecting the generation and distribution of rainfall runoff, followed by the rainfall intensity. The rock-soil interface flow contributed to the total water loss, and then decreased with the increase of the rock surface inclination, whereas, there was an increasing proportion of non-rock-soil interface flow to the total water loss. The surface runoff and interflow contributed little to the water loss. 4) Both the yields of rock-soil interface flow and non-rock-soil interface flow increased with the increase of rainfall intensity, but decreased with the increase of the rock surface inclination. The initial and stable flow generation times decreased with the increase in rainfall intensity. But there was no effect of the rock surface inclination on the initial and stable flow generation times. The time to form the stable production and flow path at the rock-soil interface was faster than that at the non-rock-soil interface. Once a stable path for water migration was formed, there was a rapid response to the changes in the rainfall intensity. The finding can also provide a theoretical basis for the generation and mechanism of runoff around outcrops in the rocky desertification area.

rock-soil interface flow; underground fissure flow; runoff producing process; runoff losses; outcrop; rocky desertification area

10.11975/j.issn.1002-6819.2022.17.012

S157.1

A

1002-6819(2022)-17-0110-08

曾庥,彭旭東,戴全厚,等. 石漠化區露石巖-土界面流形成過程模擬試驗[J]. 農業工程學報,2022,38(17):110-117.doi:10.11975/j.issn.1002-6819.2022.17.012 http://www.tcsae.org

Zeng Xiu, Peng Xudong, Dai Quanhou, et al. Simulation test on the formation of rock-soil interface flow from outcrops in the rocky desertification areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(17): 110-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.17.012 http://www.tcsae.org

2022-08-16

2022-08-31

國家自然科學基金資助項目(42007067,42267054);貴州省科技計劃項目(黔科合基礎[2020]1Y176);貴州省普通高等學校青年科技人才成長項目(黔教合KY字[2021]082);貴州省高層次創新型千層次人才項目;貴州省一流學科建設項目(GNYL[2017]007)

曾庥,研究方向為喀斯特土壤侵蝕與水土保持。Email:Zx2021023482@163.com。

彭旭東,博士,副教授,研究方向為喀斯特土壤侵蝕與水土保持。Email:bipxd@126.com。

猜你喜歡
雨強產流石漠化
產流及其研究進展
魯甸縣石漠化發展趨勢及綜合治理對策
不同坡面單元人工降雨產流試驗與分析
云南省石漠化土地利用現狀分析與評價
廣西南寧市巖溶土地石漠化狀況及動態變化分析
北京山區側柏林地坡面初始產流時間影響因素
典型巖溶區不同水土流失強度區石漠化特征分析
托里降雨時間分布特征分析
雨強及坡度對黃土區草地坡面水流流速的影響
渭南市1961-2016年雨日、雨強的季節變化特征
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合