?

基于網絡藥理學探究黃連調控巨噬細胞干預動脈粥樣硬化斑塊穩定性的潛在機制

2023-09-06 14:41劉婷韓慧子向磊趙夢涵俞琦
右江醫學 2023年8期
關鍵詞:網絡藥理學動脈粥樣硬化黃連

劉婷 韓慧子 向磊 趙夢涵 俞琦

【摘要】目的探究黃連調控巨噬細胞干預動脈粥樣硬化斑塊穩定性的潛在機制。方法對GEO數據庫中的動脈斑塊相關數據集進行差異分析得到巨噬細胞干預動脈粥樣硬化斑塊相關基因。從TCMSP數據庫獲取黃連的有效成分和潛在靶點。對兩者取交集后找出發揮作用的化學成分和潛在靶點。對潛在靶點進行蛋白質-蛋白質相互作用(PPI)、基因本體(GO)、京都基因與基因組百科全書(KEGG)分析,探究黃連調控巨噬細胞干預動脈粥樣硬化斑塊穩定性的作用機制。結果穩定斑塊組和破裂斑塊組差異分析共找到892個差異基因。通過TCMSP共找出黃連中的11個化學成分,251個靶點。兩者取交集后得到16個黃連調控巨噬細胞的潛在靶點。PPI結果顯示,DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1等16個交集基因之間有較強的相互作用關系,且DPP4、HMOX1、CAV1和VCAM1處于PPI網絡的樞紐位置。GO結果表明,生物學過程(BP)與對脂多糖的反應、對細菌來源分子的反應、對T細胞激活的正向調節等有關。細胞組成(CC)與膜筏、膜微區、膜區等細胞器有關。分子功能(MF)參與肽酶活化劑活性、趨化因子活性等分子功能的調節。KEGG結果與流體剪切應力及動脈粥樣硬化、NF-kappa B信號傳導途徑有關。結論黃連內槲皮素可能通過調節DPP4、HMOX1、CAV1等靶點影響斑塊內巨噬細胞的信號傳導途徑,進而干預斑塊穩定性。

【關鍵詞】黃連;巨噬細胞;動脈粥樣硬化;斑塊穩定性;網絡藥理學

中圖分類號:R543.5文獻標志碼:ADOI:10.3969/j.issn.1003-1383.2023.08.002

Exploration on the potential mechanism of Coptis chinensis Franch in regulating macrophages

to intervene the stability of atherosclerosis plaque based on network pharmacology

LIU Ting, HAN Huizi, XIANG Lei, ZHAO Menghan, YU Qi

(School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China)

【Abstract】ObjectiveTo investigate the potential mechanisms of Coptis chinensis Franch in regulating macrophages to intervene the stability of atherosclerosis plaque. MethodsDifferential analysis of arterial plaque related datasets from GEO database was performed to obtain macrophage intervention in atherosclerotic plaque related genes. The active ingredients and potential targets of Coptis chinensis Franch were obtained from TCMSP database, and the intersection of the two was taken to identify the chemotactic components and potential targets that play a role. Protein-protein interactions (PPI), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed on the potential targets to investigate the mechanism of action of Coptis chinensis Franch in regulating macrophages to intervene the stability of atherosclerosis plaque. ResultsA total of 892 differential genes were found in the differential analysis of the stable and ruptured plaque groups. 11 chemical components and 251 targets in Coptis chinensis Franch were identified by TCMSP, and 16 potential targets of Coptis chinensis Franch were obtained after taking the intersection of the two. PPI results showed that there were strong interactions between 16 intersecting genes, including DPP4, TNFAIP6, IL6ST, POR, RUNX1T1, HMOX1 and CAV1, etc. And DPP4, HMOX1, CAV1 and VCAM1 were at the pivotal position of the PPI network. GO results showed that biological process (BP) was associated with response to lipopolysaccharide, response to molecules of bacterial origin, and positive regulation of T cell activation. Cell composition (CC) was associated with organelles such as membrane rafts, membrane microregions, and membrane zones. Molecular function (MF) was involved in the regulation of molecular functions such as peptidase activator activity and chemokine activity. KEGG results were related to fluid shear stress and signal transduction of atherosclerosis and NF-kappa B signal transduction pathway. ConclusionQuercetin within Coptis chinensis Franch may affect the intraplaque macrophage signaling pathway by regulating DPP4, HMOX1, CAV1 and other targets, and thus intervene plaque stability.

【Key words】Coptis chinensis Franch; macrophages; atherosclerosis; plaque stability; network pharmacology

動脈粥樣硬化(atherosclerosis,AS)是一種慢性炎癥性疾病,是心腦血管疾病、外周動脈疾病等的病理基礎[1]。巨噬細胞是調控炎癥反應、調節免疫的重要角色,可通過分泌基質金屬蛋白酶,降解斑塊細胞外基質中的膠原纖維,導致AS患者斑塊破裂、出血、血栓形成[2],并釋放大量介質和酶,影響動脈粥樣硬化患者的預后[3]。在臨床實踐中,現有治療手段重在改善臨床癥狀及防止不良事件發生,多采用介入或使用他汀類藥物降低患者血脂水平[4]。但由于介入手術價格較為昂貴,他汀類藥物有較高的毒副作用,因此患者多傾向于中醫保守治療。中國傳統醫學治療AS有獨到的見解和優勢,中醫理論將AS歸于“脈痹”“脫疽”“胸痹”等范疇。治療上秦景明、李中梓等眾多醫家重視火熱之邪所致胸痹而痛,反復強調寒涼之品的使用。黃連(Coptis chinensis Franch)是臨床中治療AS的常見配伍藥材,雖在診治過程中取得了較好的療效,但具體作用機制不清楚[5]。網絡藥理學可基于“藥物-成分-靶基因-疾病”交互作用網絡,系統性觀察藥物及其有效成分對疾病靶基因的干預與影響,從而揭示中藥作用于人體的機理。因此,本文采用網絡藥理分析方法[6]探索黃連作用于AS患者動脈斑塊內巨噬細胞所介導的斑塊破裂的分子機制。

1材料與方法

1.1活性成分的藥代動力學評價通過中藥系統藥理學分析平臺TCMSP(https://www.tcmsp-e.com/)檢索并收集黃連中各個藥物所含的化學成分,根據毒藥物動力學(ADME)原理,以TCMSP最新篩選標準:口服利用度(OB)≥30%,類藥性(DL)≥0.18為篩選條件,篩選組方中所含有的有效化學成分[7]?;赥CMSP將篩選得到的有效成分進行靶點蛋白獲取,去重后借助Uniprot數據庫(https://www.uniprot.org/)對靶點蛋白標準化處理。

1.2巨噬細胞在不同狀態斑塊中的基因表達差異GEO數據庫(http://www.ncbi.nlm.nih.gov/geo/)的GSE41571數據集含有5個穩定斑塊組織和6個破裂斑塊組織內巨噬細胞的表達譜數據。通過“limma”包,找出兩組樣本的差異基因。并繪制火山圖和熱圖。對藥物靶點及差異基因取交集找出黃連影響巨噬細胞介導斑塊穩定性的潛在靶點。

1.3繪制成分-靶點網絡圖將交集基因與所對應的化學成分導入Cytoscape 3.8.1進行可視化。

1.4蛋白質-蛋白質相互作用(PPI)網絡通過STRING數據庫(https://www.string-db.org/)對交集基因進行蛋白互作分析,找出不同蛋白間的相互作用。

1.5基因本體(gene ontology,GO)和京都基因與基因組百科全書(Kyoto encyclopedia of genes and genomes,KEGG)通路富集分析黃連的潛在作用靶點通過“org.Hs.eg.db”包進行ID轉換后,使用“clusterProfiler”包進行GO分析與KEGG富集分析。其中GO分類富集分析包括生物學過程(biological process,BP)、分子功能(molecular function,MF)、細胞組成(cellular component,CC),選取BP、MF、CC排名前20的條目進行可視化,KEGG通路富集根據富集在通路上基因數目以及與疾病的相關性,用“ggplot2”包進行可視化。

2結果

2.1黃連成分和靶點的提取通過TCMSP共找出黃連中的11個化學成分,251個靶點。見表1。

2.2GEO芯片差異分析通過“limma”包對穩定斑塊組和破裂斑塊組差異分析,我們共找到892個差異基因。其中,上調基因376個,下調基因516個。分別提取上調基因和下調基因的前20個基因繪制熱圖(見圖1A),對所有差異基因繪制火山圖(見圖1B)。

2.3韋恩圖的繪制通過對藥物靶點和巨噬細胞在不同斑塊間的差異基因去交集后,得到16個黃連調控巨噬細胞的潛在靶點(見圖2)。

2.4繪制成分-靶點網絡圖繪制成分-靶點網絡圖后發現,黃連治療巨噬細胞的潛在成分主要為槲皮素。槲皮素可通過調節DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1、GJA1、VCAM1、CXCL8、ABCG2、GSTP1、COL3A1、CXCL2、CTSD、PCOLCE影響AS患者體內斑塊的穩定性(見圖3)。

2.5PPI繪制PPI結果顯示,DPP4、TNFAIP6、IL6ST、POR、RUNX1T1、HMOX1、CAV1、GJA1、VCAM1、CXCL8、ABCG2、GSTP1、COL3A1、CXCL2、CTSD、PCOLCE之間有較強的相互作用關系,且DPP4、HMOX1、CAV1和VCAM1處于PPI網絡的樞紐位置,表明這些基因可能是影響動脈粥樣硬化斑塊穩定性的核心(見圖4)。

2.6富集分析GO結果表明,BP與對脂多糖的反應、對細菌來源分子的反應、對T細胞激活的正向調節、對白細胞-細胞黏附的正向調節、對營養物質的反應、氣體穩態、T細胞激活、縫隙連接組裝、白細胞遷移、細胞-細胞黏附的積極調節等生物學過程有關(見圖5A)。CC與膜筏、膜微區、膜區、三級顆粒管腔、小窩、早期內體、細胞頂端、質膜筏等細胞器有關(見圖5B)。MF參與肽酶活化劑活性、趨化因子活性等分子功能的調節(見圖5C)。KEGG結果與流體剪切應力及動脈粥樣硬化、病毒蛋白與細胞因子和細胞因子受體的相互作用、糖尿病并發癥中的AGE-RAGE信號通路、阿米巴病、NF-kappa B信號傳導途徑、瘧疾、卡波西肉瘤相關的皰疹病毒感染、軍團菌病、脂質和動脈硬化、幽門螺桿菌感染中的上皮細胞信號傳導有關(見圖5D)。

3討論

斑塊由免疫細胞、間充質細胞、脂質和細胞外基質組成,隨著病情的發展,斑塊會逐漸破壞血管的內部彈性層、中膜、外部彈性層和外膜[8]。巨噬細胞在AS斑塊穩定性方面有決定性作用[9]。有研究表明,巨噬細胞是動脈粥樣硬化斑塊中炎癥和代謝信號的關鍵整合者,它可通過巨胞飲作用、吞噬作用和清道夫受體介導脂蛋白的攝取和轉運,其內部的脂質含量通過增加Toll樣受體對其配體的敏感性和激活NLRP3炎性體來促進先天免疫反應和炎癥[10]。而易損斑塊具有脆弱的薄纖維帽、擴張的脂質核心、斑塊內出血、免疫激活、促炎介質(細胞因子、趨化因子、金屬蛋白酶)的產生增加,以及某些巨噬細胞亞型的強活性等特性[11-13]。因此,巨噬細胞可通過多種方式影響斑塊的穩定性。

本研究表明,黃連干預不同狀態動脈斑塊內巨噬細胞的成分為槲皮素(Quercetin)。槲皮素是一種黃酮類化合物,已被證明具有心血管保護作用和抗動脈粥樣硬化作用[15]。槲皮素可通過抑制活性氧(ROS)產生和激活PI3K/AKT信號通路來抑制高果糖喂養的C57BL/6小鼠的動脈粥樣硬化斑塊發展[15],也可明顯改善高脂肪飲食的APOE-/-小鼠的動脈粥樣硬化斑塊的面積、脂質積累水平,并增加了動脈粥樣硬化斑塊中的膠原纖維[16]。此外,槲皮素還可調節 MST1介導的RAW264.7細胞自噬,抑制氧化型低密度脂蛋白(ox-LDL)誘導的泡沫細胞形成[17]。這些證據表明,槲皮素不僅對AS的斑塊有改善作用,還對巨噬細胞有較好的調節作用。

PPI顯示,DPP4、HMOX1、CAV1和VCAM1是槲皮素調節斑塊內巨噬細胞的核心基因。其中二肽基肽酶4(DPP4)是炎癥和代謝的調節劑,可能與動脈粥樣硬化疾病的發展有關[18]。抑制DPP4可減少單核細胞在TNF-α和可溶性DPP4的作用下向動脈粥樣硬化斑塊遷移[19]。它還上調發揮抗炎作用的脂聯素表達[20]。HMOX1在動脈粥樣硬化中的高表達與鐵死亡的發生有關,并導致MMP釋放和M0巨噬細胞浸潤[21]。小窩蛋白-1(CAV1)是小窩細胞器的標記蛋白,可直接結合膽固醇,在小窩功能中起著復雜的作用[22]。CAV1具有促進腫瘤生長和遷移、脂質轉運和炎癥調節等多種生物學功能[23]。先前的研究確定CAV1是脂肪細胞中主要的質膜脂肪酸結合蛋白,與AS動脈斑塊的形成有關[24]。VCAM1是參與嗜酸性粒細胞、基底細胞、單核細胞和淋巴細胞黏附的細胞黏附分子,它使單核細胞與內皮細胞黏合,單核細胞進入內皮下[25]。不僅能加重體內的炎癥損傷,還能影響斑塊的狀態,促進AS的發生和發展[26]。因此,槲皮素調節DPP4、HMOX1、CAV1等基因有利于改善患者的斑塊穩定性。KEGG結果與流體剪切應力及動脈粥樣硬化、NF-kappa B信號傳導途徑、脂質和動脈硬化等信號傳導有關。易損AS斑塊是隨時間動態變化的不穩定結構。它們更常發生在頸動脈或冠狀動脈的分叉處等剪應力不均勻的狹窄區域[27-28],因此流體剪切應力會對已經生成的斑塊直接施加生物應力。NF-κB主要通過調節逆向膽固醇轉運參與膽固醇穩態和斑塊的炎癥反應[29]。故這些通路均對動脈斑塊穩定性和患者的炎癥反應高度相關。

綜上所述,本研究運用網絡藥理學和生物信息學的方法在一定程度上揭示了AS患者的穩定斑塊與破裂斑塊巨噬細胞的相關基因以及黃連發揮延緩或抑制這一生物學過程的功效作用機制。未來本課題組將持續關注這一學術領域,開展相關體內體外實驗,對這一結果進行驗證??傊?,黃連內部的槲皮素可能通過調節DPP4、HMOX1、CAV1等靶點影響斑塊內巨噬細胞的信號傳導途徑,進而干預斑塊穩定性。參考文獻[1] FAN J L, WATANABE T. Atherosclerosis:known and unknown[J].Pathol Int, 2022, 72(3):151-160.

[2] TABARES-GUEVARA J H, VILLA-PULGARIN J A, HERNANDEZ J C. Atherosclerosis:immunopathogenesis and strategies for immunotherapy[J].Immunotherapy, 2021, 13(14):1231-1244.

[3] KONG P, CUI Z Y, HUANG X F, et al. Inflammation and atherosclerosis:signaling pathways and therapeutic intervention[J].Signal Transduct Target Ther, 2022, 7(1):131.

[4] LIBBY P, BURING J E, BADIMON L, et al. Atherosclerosis[J].Nat Rev Dis Primers, 2019, 5(1):56.

[5] 趙立鳳,于紅紅,田維毅.中藥單體調控血管內皮細胞自噬干預動脈粥樣硬化的研究進展[J].中華中醫藥學刊,2021,39(11):117-120.

[6] NOGALES C, MAMDOUH Z M, LIST M, et al. Network pharmacology:curing causal mechanisms instead of treating symptoms[J].Trends Pharmacol Sci, 2022, 43(2):136-150.

[7] RU J L, LI P, WANG J N, et al. TCMSP: a database of systems harmacology for drug discoveryfrom herbal medicines[J].J Cheminformatics, 2014, 6:13.

[8] DING H J, WANG C G, MALKASIAN S, et al. Characterization of arterial plaque composition with dual energy computed tomography:a simulation study[J].Int J Cardiovasc Imaging, 2021, 37(1):331-341.

[9] MUSHENKOVA N V, SUMMERHILL V I, ZHANG D W, et al. Current advances in the diagnostic imaging of atherosclerosis:insights into the pathophysiology of vulnerable plaque[J].Int J Mol Sci, 2020, 21(8):2992.

[10] MOORE K J, SHEEDY F J, FISHER E A. Macrophages in atherosclerosis:a dynamic balance[J].Nat Rev Immunol, 2013, 13(10):709-721.

[11] KYRIAKIDIS K, ANTONIADIS P, CHOKSY S, et al. Comparative study of protein expression levels of five plaque biomarkers and relation with carotid plaque type classification in patients after carotid endarterectomy[J].Int J Vasc Med, 2018, 2018:1-8.

[12] PAPAIOANNOU T G, KALANTZIS C, KATSIANOS E, et al. Personalized assessment of the coronary atherosclerotic arteries by intravascular ultrasound imaging:hunting the vulnerable plaque[J].J Pers Med, 2019, 9(1):8.

[13] WANG F, LI T W, CONG X F, et al. Association between circulating big endothelin-1 and noncalcified or mixed coronary atherosclerotic plaques[J].Coron Artery Dis, 2019, 30(6):461-466.

[14] DUAN H, ZHANG Q, LIU J, et al. Suppression of apoptosis in vascular endothelial cell,the promising way for natural medicines to treat atherosclerosis[J].Pharmacol Res, 2021, 168:105599.

[15] LU X L, ZHAO C H, YAO X L, et al. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway[J].Biomed Pharmacother, 2017, 85:658-671.

[16] JIA Q L, CAO H, SHEN D Z, et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9,CD36,PPARγ,LXRα and ABCA1[J].Int J Mol Med, 2019, 44(6):893-902.

[17] CAO H, JIA Q L, YAN L, et al. Quercetin suppresses the progression of atherosclerosis by regulating MST1-mediated autophagy in ox-LDL-induced RAW264.7 macrophage foam cells[J].Int J Mol Sci, 2019,20(23):6093.

[18] DUAN L H, RAO X Q, XIA C, et al. The regulatory role of DPP4 in atherosclerotic disease[J].Cardiovasc Diabetol, 2017, 16(1):76.

[19] SHAH Z, KAMPFRATH T, DEIULIIS J A, et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis[J].Circulation,2011,124(21):2338-2349.

[20] BARBIERI M, MARFELLA R, ESPOSITO A, et al. Incretin treatment and atherosclerotic plaque stability:role of adiponectin/APPL1 signaling pathway[J].J Diabetes Complicat, 2017, 31(2):295-303.

[21] WU D Q, HU Q A, WANG Y Q, et al. Identification of HMOX1 as a critical ferroptosis-related gene in atherosclerosis[J].Front Cardiovasc Med, 2022, 9:833642.

[22] GOKANI S, BHATT L K. Caveolin-1:a promising therapeutic target for diverse diseases[J].Curr Mol Pharmacol, 2022, 15(5):701-715.

[23] RAUDENSKA M, GUMULEC J, BALVAN J, et al.Caveolin-1 in oncogenic metabolic symbiosis[J].Int J Cancer, 2020, 147(7):1793-1807.

[24] HOU K, LI S, ZHANG M,et al. Caveolin-1 in autophagy: a potential therapeutic target in atherosclerosis[J].Clin Chim Acta,2021,513:25-33.

[25] THAYSE K, KINDT N, LAURENT S, et al. VCAM-1 target in non-invasive imaging for the detection of atherosclerotic plaques[J].Biology, 2020, 9(11):368.

[26] TRONCOSO M F, ORTIZ-QUINTERO J, GARRIDO-MORENO V, et al. VCAM-1 as a predictor biomarker in cardiovascular disease[J].Biochim Biophys Acta BBA Mol Basis Dis, 2021, 1867(9):166170.

[27] CHIEN C S, LI J Y, CHIEN Y, et al. METTL3-dependent N6-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium[J].Proc Natl Acad Sci U S A,2021,118(7):e2025070118.

[28] BRYNIARSKI K L, WANG Z, FRACASSI F, et al. Three-dimensional fibrous cap structure of coronary lipid plaque―ST-elevation myocardial infarction vs.stable angina[J].Circ J, 2019, 83(6):1214-1219.

[29] SHI S, JI X, SHI J, et al. Andrographolide in atherosclerosis: integrating network pharmacology and in vitro pharmacological evaluation[J].Biosci Rep, 2022,42(7):BSR20212812.

(收稿日期:2022-12-01修回日期:2023-02-15)

(編輯:潘明志)

猜你喜歡
網絡藥理學動脈粥樣硬化黃連
黃連、黃連-生地配伍中5種生物堿在正常、抑郁大鼠中體內藥動學的比較
黃連解毒湯對SAM-P/8小鼠行為學作用及機制初探
基于網絡藥理學方法分析中藥臨床治療胸痹的作用機制
從網絡藥理學角度研究白芍治療類風濕關節炎的作用
基于網絡藥理學的沙棘總黃酮治療心肌缺血的作用機制研究
基于網絡藥理學分析丹參山楂組分配伍抗動脈粥樣硬化的作用機制研究
擴大的血管周圍間隙與腦小血管病變關系的臨床研究
山楂水煎液對高脂血癥大鼠早期動脈粥樣硬化形成過程的干預機制
黃連和大黃聯合頭孢他啶體內外抗菌作用
大黃黃連瀉心湯加味治療胃癌癌前病變30例
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合