?

脫脂對鍍鋅汽車板涂裝性能影響

2023-11-06 06:52龍袁郝玉林蔡寧周紀名姚士聰曹建平劉華賽李學濤楊建煒
表面技術 2023年10期
關鍵詞:電泳漆磷化脫脂

龍袁,郝玉林,蔡寧,周紀名,姚士聰,曹建平,劉華賽,李學濤,楊建煒

脫脂對鍍鋅汽車板涂裝性能影響

龍袁1,2,郝玉林1,蔡寧1,周紀名3,姚士聰1,曹建平1,劉華賽1,李學濤1,楊建煒1

(1.首鋼集團有限公司技術研究院,北京 100043;2.綠色可循環鋼鐵流程北京市重點實驗室,北京 100043;3.首鋼京唐鋼鐵聯合有限責任公司制造部,河北 唐山 063210)

研究脫脂影響鍍鋅鋼板磷化反應的機理及電泳漆膜性能。使用掃描電鏡、電化學工作站、X射線光電子能譜分析儀、成形試驗機和循環式腐蝕試驗機等設備研究了磷化膜形貌、表面元素、電化學性能以及電泳漆膜性能。脫脂不良時磷化膜在鍍鋅鋼板表面生長異常,導致磷化膜呈現為明暗相間的花斑狀;表面元素和材料在磷化液中的電化學性能說明磷化膜生長異常的原因是殘存油膜阻礙磷化反應進行,同時異常磷化膜相對于正常磷化膜在3.5% NaCl溶液中開路電位負、阻抗小、自腐蝕電流大,說明異常磷化膜耐蝕性能差,易腐蝕;電泳漆膜性能表明,脫脂不良對漆膜的劃格附著力影響小,評級為0級,但對電泳漆膜的杯突性能影響明顯,杯突高度為6 mm時,漆膜發生破裂;電泳耐蝕性能下降明顯,電泳漆膜擴蝕寬度從2.4 mm增加到3.9 mm。脫脂不良會導致鍍鋅板表面磷化膜質量異常,進而影響電泳耐蝕性能,在實際生產過程中,需要對脫脂工序有效管控,結合車身材料用油種類及油量及時調控參數,避免脫脂不良問題出現。

汽車板;脫脂;磷化;電泳;耐蝕

由于鋅可以作為犧牲陽極的材料保護鋼材不受腐蝕,所以熱浸鍍鋅鋼板和電鍍鍍鋅鋼板常用于高端汽車品牌外板零件[1-2]。為了延長車身使用壽命,汽車廠會對車身進行涂裝來增強車身耐蝕性能。涂裝主要包括磷化前處理、電泳和噴漆3個步驟,其中磷化前處理包括脫脂、表調和磷化3個工序。作為電泳的前道工序,磷化前處理十分重要,直接決定了漆膜的附著力和涂裝后的耐蝕性能[3-5]。

影響磷化膜性能的因素非常多,從前處理工藝本身到鋼鐵材料成分及表面性能都會直接影響磷化膜性能。Oh等[6]研究了Zn2+、Mn2+、Ni2+離子對鍍鋅板磷化膜耐蝕性能的影響,Mn2+、Ni2+離子對磷化膜耐蝕影響明顯,Mn2+濃度增加提升耐蝕性能,而Ni2+濃度增加降低耐蝕性能,Zn2+離子濃度增加對磷化膜耐蝕沒有明顯作用。Furuya等[7]研究了酸洗鋼板成分中V元素對磷化膜性能的影響,當V元素含量超過0.47%時,其氧化物容易與水反應,生成較多H+,抑制磷化反應,導致鋼板表面難以上膜。事實上,鋼板成分Cr、Mn、Si、Ti、Cu等元素超出一定含量[8-11]以及表面的氧化物[12-14]都會抑制磷化反應。Tsai等[15]研究表明Mg2+濃度增大,能夠細化磷化膜結晶尺寸,降低磷化膜孔隙率,從而提升鍍鋅板磷化膜耐蝕性能。鋼板表面粗糙度也會對磷化膜及相關轉化膜產生影響,相關研究表明:粗糙度在一定范圍內,Ra值越小,RPc值越大,能夠增加磷化時的活性形核點,降低磷化膜顆粒尺寸,促進磷化進程,提高磷化膜質量[16-17]。

以上的研究主要集中在磷化液成分及鋼鐵材料表面元素對材料磷化性能的影響,而針對磷化工序中的脫脂對磷化膜和電泳后的性能研究較少。因此本研究以脫脂工序為主,重點分析脫脂不良時,對影響磷化反應的機理、磷化膜耐蝕性以及電泳漆膜的附著力和耐蝕性能展開研究。

1 試驗

1.1 試驗材料

試驗材料選用工業化生產的熱浸鍍鋅鋼板CR4+Z,規格0.65 mm,涂覆某廠550型號防銹油,涂油量為0.5~0.9 g/m2,鍍層重量為雙面100 g/m2。表面粗糙度Ra(2.5)在0.6~1.0 μm,RPc在60~100 cm–1。

材料前處理在實驗室進行,電泳在汽車廠隨線完成。脫脂工藝參數:pH=12,游離堿11 pt,溫度50~55 ℃。脫脂時間分為2種:4 min(脫脂不良),5 min(脫脂正常);表調工藝:pH=10;磷化工藝:磷化液總酸22 pt,游離酸0.7 pt,促進劑3.0 pt,磷化溫度35~45 ℃,磷化時間120 s;電泳工藝:電壓200~350 V,灰分18.5%~21.5%,pH為6.0~6.6,烘干溫度180~210 ℃。實驗室前處理流程為:脫脂?水洗?水洗?表調?磷化?水洗?水洗。汽車廠前處理+電泳流程為:脫脂?水洗?水洗?表調?磷化?水洗?水洗?電泳?烘干。

1.2 試驗方法

1)使用日本電子公司JSM-7001F掃描電鏡分析鋼板表面及截面磷化膜形貌。

2)鋼板表面活性使用美國普林斯頓公司生產的PARSTAT2273型電化學工作站進行分析,測試介質為常溫磷化液或3.5% NaCl溶液,測量系統為三電極體系,鉑電極為輔助電極,飽和甘汞電極(SCE)為參比電極,研究試樣為工作電極(暴露面積為1 cm2)。

3)表面元素采用美國塞默飛世爾公司ESCALAB 250Xi型X射線光電子能譜分析儀進行分析,設備采用AlKα(1 486.6 eV)作為射線激發源,光斑直徑為650 μm,用C1s的結合能(284.8 eV)作為內標,對測得的譜峰進行校正。

4)按照《ISO 2409:2020 Paints and varnishes- Cross-cut test》標準,使用上?,F代環境工程技術有限公司QFH劃格器進行漆膜劃格測試,劃格間距為1 mm;

5)按照《ISO 1520:2006 Paints and varnishes- Cupping test》標準,使用德國ZWICK公司BUP1000型號成型試驗機進行漆膜杯突性能測試,沖頭形狀為直徑20 mm的半球形,沖頭速度為0.2 mm/s。

6)使用美國Q-Lab公司Q-FOG循環式腐蝕試驗機進行電泳漆膜耐蝕性能分析,采用的腐蝕標準為《ISO 11997-1-2017 Paints and varnishes-Determi-nation of resistance tocyclic corrosion conditions-Part 1: Wet (salt fog)/dry/humid》中的Cycle B腐蝕標準,漆面劃線破壞及擴蝕寬度測量分別采用《ISO17872: 2007 Paints and varnishes-Guidelines for the introdu-ction of scribe marks through coatings on metallic panels for corrosion testing》和《ISO 4628-8-2012 Paints and varnishes-Evaluation of degradation of coatings-Designation of quantity and size of defects, and of intensity of uniform changes in appearance-Part 8: Assessment of degree of delamination and corrosion around a scribe or other artificial defect》標準,加速腐蝕時間為10個周期,共計1 680 h。

2 結果及分析

2.1 磷化膜分析

CR4+Z在脫脂不良和正常脫脂條件下的磷化膜宏觀形貌如圖1所示,磷化膜的微觀形貌如圖2所示。材料脫脂不良時,材料表面水膜不連續,存在滴狀水流,如圖1a紅色箭頭指示處;材料脫脂正常時,表面水膜連續不破裂,如圖1b所示。材料脫脂不良和正常脫脂經過磷化處理后,呈現為不同的宏觀形貌,脫脂不良時,材料的磷化膜表現為花斑狀,明暗相間,如圖1c所示;脫脂正常時,材料的磷化膜均勻、致密、連續,呈灰色,表面無銹蝕、花斑,無大的磷化渣附著,也無嚴重掛灰,外觀質量良好,如圖1d所示。

圖1 材料脫脂和磷化膜宏觀照片

磷化膜的微觀形貌如圖2所示。圖2a、2b分別為圖1c中1和2位置的磷化膜電鏡圖,1位置處磷化膜為扁平化生長,平鋪在鋼板表面,2位置處磷化膜為團簇狀,少量磷化膜垂直于鋼板方向生長,大部分存在倒伏現象,近似于1位置處磷化膜為扁平化生長,圖2c為圖1d正常磷化膜的微觀形貌,整體為團簇狀,垂直于鋼板方向生長,倒伏少。從微觀形貌分析可知,磷化膜在鋼板表面存在狀態的差異是導致了磷化膜在宏觀外觀上存在區別的原因。磷化膜存在扁平生長和較多倒伏的狀態下,對光線的鏡面反射率較高,磷化膜外觀表現比較亮,而正常磷化膜對光線漫反射比例較高,外觀表現顏色較暗。

由圖3材料磷化處理后的截面圖像可見,鍍層的厚度為6~8mm,磷化膜存在扁平生長和較多倒伏的狀態下,磷化膜的厚度為0.5~1mm,磷化膜正常時,厚度在1~2mm,磷化膜異常處厚度明顯低于正常處。

按照《ISO 3892:2000 Conversion coatings on metallic materials-Determination of coating mass per unit area-Gravimetric methods》標準將磷化膜溶解去除,再進行元素的X射線光電子能譜分析,結果如圖4所示。磷化膜去除后,計算得到磷化膜異常時膜重為1.67 g/m2,磷化膜正常時膜重為2.79 g/m2,說明磷化膜異常時膜厚偏薄,與圖3的分析結果是一致的。材料表面主要以Zn和O元素為主,含有少量P和Al元素。因為鍍鋅鋅鍋中含有質量分數小于0.5%的Al,所以Al元素來自于Zn鍍層。脫脂好壞對磷化膜去除后材料表面元素種類影響較小。從P 2p結合能為134.2 eV[18],可以判斷P以磷酸鹽的形式存在于材料表面,Al 2p結合能為74.6 eV[19],說明Al元素以氧化物形式存在,而Zn 2p1/2及2p3/2的結合能分別為1 021.9 eV和1 045.0 eV,說明Zn在材料表面存在ZnO及ZnAl2O4[20]。由于磷酸鹽和金屬氧化物中都存在氧元素,結合鋅和鋁的氧化物及磷酸鹽中O元素的結合能分別為530.3 eV[21-22]和531.7 eV[18],分峰擬合后計算得到磷化膜異常處的金屬氧化物和磷酸鹽含量分別為39%和61%,磷化膜正常處的金屬氧化物和磷酸鹽含量分別為21%和79%。磷化膜異常處金屬氧化物含量明顯高于正常處,這說明脫脂不良時,材料表面存在的油膜阻礙了磷化液與鍍鋅層表面的反應,鍍鋅層表面的氧化物溶解減緩,從而阻礙鍍鋅層的溶解,導致Zn2+溶解量較少,抑制了磷化反應,從而導致磷化膜生長異常。

圖2 不同位置磷化膜微觀形貌

圖3 不同脫脂條件下的磷化膜截面圖

圖4 不同脫脂條件下磷化膜溶解后鋼板表面元素XPS結果

2.2 磷化膜電化學性能分析

鍍鋅鋼板在磷化液中的反應過程如式(1)~(4)[23]。磷化液中磷酸發生解離,生成H+,鍍鋅鋼板進入磷化液后,Zn與H+發生反應,形成Zn2+,同時消耗H+,使反應(4)正向進行,在鋼板表面形成磷化膜Zn3(PO4)2×4H2O。

通過電位-時間的測定,可以監測磷化膜的生長過程。圖5展示了在脫脂不良和脫脂正常的條件下,鍍鋅板經過表調之后在磷化液中的電位變化。明顯發現,在脫脂正常的條件下,鍍鋅板在磷化液中的開路電位分為4個階段[24-25],第Ⅰ階段(0~5 s)電位從初始值位置輕微升高,對應鍍鋅板表面Zn層初期溶解活化過程;由于溶解速度加快,在局部陽極區域產生的Zn(H2PO4)2濃度迅速增加而達到飽和,并在局部陰極溶解以不可逆的無定形形態沉積在Zn層表面,導致電位下降,即第Ⅱ階段磷化膜早期快速萌發和生長過程(5~25 s);隨著磷化膜在鋼板表面逐漸形成,磷化膜覆蓋率逐漸提高,Zn層裸露面積逐漸減少,鋅的溶解速度減慢,陽極過程逐漸減慢,導致電位逐漸上升,90 s時為反應平衡節點,即第Ⅲ階段(25~90 s);在磷化反應的最后第Ⅳ階段(>90 s),Zn層表面全部覆蓋磷化膜,同時抑制了陽極過程(Zn層溶解)和陰極過程(析氫反應),處于反應平衡階段,最終電位保持穩定。依據上述磷化膜的生長過程,將磷化時間定為120 s是相對合理的,一方面可以避免在90 s反應平衡節點附近磷化膜質量的波動,確保磷化膜質量,另一方面可以避免磷化時間過長導致涂裝生產效率下降。

圖5 鍍鋅板在磷化液中的開路電位

脫脂不良時,由于表面殘存油脂阻礙鍍層與磷化液的接觸,抑制了陽極反應,所以第Ⅰ、Ⅱ階段相對于脫脂正常時不明顯,第Ⅲ階段磷化膜生長速度也相對較慢,最后階段Ⅳ電位穩定時的電位也相對較負,說明脫脂不良時獲得的磷化膜質量相對較差,耐蝕性能弱。

為了進一步分析磷化膜的耐蝕性能,在3.5%的NaCl溶液中分析了不同脫脂條件下磷化膜的開路電位,阻抗和極化性能,結果如圖6及表1所示。脫脂不良和脫脂正常時磷化膜阻抗圖均為雙阻抗弧,脫脂正常時磷化膜阻抗為3.72×103W×cm2,脫脂異常時磷化膜阻抗為1.18×103W×cm2,正常磷化膜阻抗大于異常磷化膜阻抗;從開路電位和極化曲線分析可知,脫脂正常時磷化膜開路電位為–1.06 V,自腐蝕電流密度為7.94×10–6A×cm–2,脫脂異常時磷化膜開路電位為–1.10 V,自腐蝕電流密度為6.31×10–5A×cm–2,說明脫脂異常時的磷化膜容易發生腐蝕,異常的磷化膜腐蝕速率會比正常的磷化腐蝕速率快,因此脫脂不良時獲得的磷化膜耐蝕性能差,易腐蝕。

2.3 電泳漆膜性能分析

電泳涂裝是在電泳涂料膠體中,將具有導電性的被涂物作為陰極(或陽極),在電泳槽的兩側另設置與其對應的陽極(或陰極),在兩電極間通直流電,在直流電場作用下,帶電荷的涂料膠體粒子向工件移動,在被涂物表面上析出均一、絕緣、水不溶的涂膜的一種方法。電泳一共包括電解、電泳、電沉積和電滲4個物理化學作用。汽車廠目前主要使用的是陰極電泳,也就是白車身或者汽車零件作為陰極。陰極電泳涂料主要成分為帶正電荷的胺鹽,陰陽極電解反應及電沉積反應如式(5)~(7):

圖6 不同脫脂條件下的磷化膜在3.5%NaCl溶液中的開路電位、阻抗和極化曲線

表1 不同脫脂條件下的磷化膜在3.5%NaCl溶液中的開路電位、阻抗值和自腐蝕電流密度

Tab.1 Open circuit potential, impedance and self-corrosion current density of phosphating films in 3.5%NaCl solution under different degreasing conditions

磷化作為汽車板涂裝前處理工序,其主要目的是提高鋼板漆膜的附著力和膜下耐蝕性能。因此,以下內容將主要分析鍍鋅鋼板在不同脫脂工藝條件下獲得的磷化膜對電泳之后的漆膜性能和耐蝕性能的影響。

按照《ISO 2409:2020 Paints and varnishes-Cross- cut test》國際標準進行電泳漆膜的劃格實驗,結果如圖7所示。根據標準0~5級的評級分級,脫脂不良和脫脂正常時,劃格處的切割邊緣完全平滑,網格內沒有漆膜剝落,評級均為0級,這說明鋼板在一定程度脫脂不良條件下,對電泳漆膜劃格附著力的影響較小。

杯突實驗可以測試漆膜在變形后的碎裂或與金屬底材分離的程度,反映漆膜在基材上的附著力大小。漆膜的杯突性能按照《ISO 1520:2006 Paints and varnishes-Cupping test》國際標準進行測試。一般情況下,汽車廠對電泳板杯突的要求為:當杯突高度為6 mm時,漆膜不發生破裂即認為合格[26]。因此本研究杯突高度設置為6 mm。

圖7 電泳漆膜劃格實驗

如圖8所示,當杯突高度為6 mm時,脫脂不良電泳板漆膜發生破裂,而脫脂正常時,杯突6 mm高度時,漆膜完整未破裂,說明磷化膜異常會導致電泳板的杯突性能下降,同時也說明漆膜與基板的附著力發生下降。

電泳板耐蝕性能一般采用加速腐蝕實驗進行評估,結果表明脫脂不良時,電泳板單邊擴蝕寬度為3.9 mm;脫脂正常時,電泳板單邊擴蝕寬度為2.4 mm,如圖9所示。出現差別的原因是脫脂不良引起磷化膜膜重低,微觀形貌異常,導致其磷化膜本身耐蝕性能下降、電泳漆膜附著力下降,在膜下腐蝕過程中,漆膜破壞處的磷化膜優先發生腐蝕,產生的腐蝕產物體積膨脹,撐破漆膜,造成劃線處擴蝕寬度變大[27]。因此,脫脂不良會導致電泳板耐蝕性能明顯下降,不利于車身防腐,縮短車身壽命,若涉及關鍵結構件,甚至會危害行車安全。

在涂裝產線生產過程中,一旦發生脫脂不良的現象,如圖10a紅色圈內所示,就會影響到車身磷化膜外觀,出現明暗相間的花斑,如圖10b紅色圈內所示。出現此類問題時,若繼續進行電泳及后續噴漆,車身耐蝕性能難以保障,需要對車身花斑處打磨處理,重新進行前處理,確保車身電泳后的耐蝕性能。同時需要反查脫脂工藝是否出現不合理變動以及材料涂油狀態,確保脫脂正常,避免出現磷化膜花斑問題。

圖10 涂裝線脫脂不良照片及磷化膜外觀

3 結論

脫脂作為涂裝工序的第一步,對涂裝質量有決定性影響。通過以上研究發現:

1)鍍鋅板脫脂不良,油膜的殘留阻礙了鋅層表面與磷化液充分反應,抑制了磷化膜成膜,引起磷化膜偏平化生長,磷化膜生長異常是材料外觀上呈現花斑狀缺陷的根本原因。

2)磷化膜異常時,會直接影響電泳漆膜質量,造成電泳漆膜杯突性能和耐蝕性能下降。

3)在實際生產中,若發現磷化膜出現花斑狀態,需要對脫脂工藝或者材料的涂油種類和涂油量進行反查,從而解決脫脂不良問題。

[1] KANCHARLA H, MANDAL G K, SINGH S S, et al. Effect of Prior Copper-Coating on the Microstructural Development and Corrosion Behavior of Hot-Dip Galva-nized Mn Containing High Strength Steel Sheet[J]. Sur-face and Coatings Technology, 2022, 437: 128347.

[2] 李研, 李鐵軍, 滕華湘, 等. 熱鍍鋅汽車板波紋度的控制技術[J]. 金屬熱處理, 2019, 44(4): 207-210. LI Yan, LI Tie-jun, TENG Hua-xiang, et al. Control Tech-nology of Waviness on Galvanized Auto Sheet[J]. Heat Treatment of Metals, 2019, 44(4): 207-210.

[3] ZIMMERMANN D, MU?OZ A G, SCHULTZE J W. Microscopic Local Elements in the Phosphating Proce-ss[J]. Electrochimica Acta, 2003, 48(20-22): 3267-3277.

[4] JIANG L, VOLOVITCH P, WOLPERS M, et al. Acti-vation and Inhibition of Zn-Al and Zn-Al-Mg Coatings on Steel by Nitrate in Phosphoric Acid Solution[J]. Corrosion Science, 2012, 60: 256-264.

[5] NARAYANAN S. Surface Pretretament by Phosphate Conversion Coatings - a Review[J].Reviews on advanced materials science, 2005, 9(2):130-177.

[6] OH J E, KIM Y H. The Corrosion Resistance Chara-cteristics of Ni, Mn, and Zn Phosphates in Automotive Body Panel Coatings[J]. Journal of Industrial and Engi-neering Chemistry, 2012, 18(3): 1082-1087.

[7] FURUYA S, YAMAZAKI K, MASUOKA H, et al. Effects of Solid-Solute V on the Phosphatability of Hot- Rolled Steel Sheets[J]. ISIJ International, 2020, 60(11): 2512-2518.

[8] USUKI N, SAKOTA A, WAKANO S, et al. Effects of Ti and Mn Addition on the Surface State and Phosphatability of Cold Rolled Steel Sheets[J]. Tetsu-to-Hagane, 1991, 77(3): 398-405.

[9] AUGUSTSSON P E, OLEFJORD I, OLEFJORD G Y. The Influence of Annealing on the Phosphatability of Steel Sheets[J]. Materials and Corrosion, 1983, 34(11): 563-569.

[10] GHALI E I, POTVIN R J A. The Mechanism of Phos-phating of Steel[J]. Corrosion Science, 1972, 12(7): 583- 594.

[11] KIM H J. Variation of Phosphatability with Chemical Composition and Surface Roughness of Steel Sheet[J]. Surface Engineering, 1998, 14(3): 265-267.

[12] MASUOKA H, FURUYA S, TAKEYAMA H, et al. Relationship between Morphology of Mn Oxides Simu-lated by Ion Plating and Phosphatability of Mn-Added High-Strength Cold-Rolled Steel Sheets[J]. ISIJ Interna-tional, 2020, 60(11): 2519-2524.

[13] NOMURA M, HASHIMOTO I, KAMURA M, et al. Development of High Strength Cold-Rolled Steel-Sheets with Excellent Phosohatability[J]. KOBELCO TECHNO-LOGY REVIEW, 2008, 10(28):44-48.

[14] TEGEHALL P E, VANNERBERG N G. Nucleation and Formation of Zinc Phosphate Conversion Coating on Cold-Rolled Steel[J]. Corrosion Science, 1991, 32(5-6): 635-652.

[15] TSAI C Y, LIU J S, CHEN Pei-li, et al. Effect of Mg2+on the Microstructure and Corrosion Resistance of the Pho-sphate Conversion Coating on Hot-Dip Galvanized Sheet Steel[J]. Corrosion Science, 2010, 52(12): 3907-3916.

[16] KIM H Y, NOH Y T, JEON J H, et al. Effect of Surface Roughness on Crystal Size of Manganese Phosphate Coating of Carbon Steel[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(7): 4312-4317.

[17] 趙聯. ESP熱軋板的涂裝行為與涂裝性研究[D]. 武漢: 武漢理工大學, 2020. ZHAO Lian. Study on Coating Behaviors and Coating Properties of ESP Hot Rolled Sheet[D]. Wuhan: Wuhan University of Technology, 2020.

[18] DOBBELAERE T, MINJAUW M, AHMAD T, et al. Plasma-Enhanced Atomic Layer Deposition of Zinc Phos-phate[J]. Journal of Non-Crystalline Solids, 2016, 444: 43-48.

[19] ISLAM M S, SAKAIRI M. Corrosion Behavior of A6061 Aluminum Alloy in Cation Containing Aqueous Medi-um [J]. Corrosion Communications, 2022, 5: 39-48.

[20] ZHANG Li, YAN Jian-hui, ZHOU Min-jie, et al. Fabri-cation and Photocatalytic Properties of Spheres-in- Spheres ZnO/ZnAl2O4Composite Hollow Microsph-eres [J]. Applied Surface Science, 2013, 268: 237-245.

[21] Z?HR J, OSWALD S, TüRPE M, et al. Characterisation of Oxide and Hydroxide Layers on Technical Aluminum Materials Using XPS[J]. Vacuum, 2012, 86(9): 1216- 1219.

[22] MAR L G, TIMBRELL P Y, LAMB R N. An XPS Study of Zinc Oxide Thin Film Growth on Copper Using Zinc Acetate as a Precursor[J]. Thin Solid Films, 1993, 223(2): 341-347.

[23] 郝玉林, 蔡寧, 姚士聰, 等. 高強雙相鋼表面選擇性氧化行為對磷化性能的影響[J]. 表面技術, 2020, 49(8): 309-315, 341. HAO Yu-lin, CAI Ning, YAO Shi-cong, et al. Effect of Selective Oxidation Behavior of High Strength Dual- Phase Steel Surface on Phosphating Properties[J]. Surface Technology, 2020, 49(8): 309-315, 341.

[24] LIN B I, LU Jin-tang, KONG Gang, et al. Growth and Corrosion Resistance of Molybdate Modified Zinc Pho-sphate Conversion Coatings on Hot-Dip Galvanized Steel[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(4): 755-761.

[25] 馮立明, 管勇. 涂裝工藝學[M]. 北京: 化學工業出版社, 2017. FENG Li-ming, GUAN Yong. Painting Technology[M]. Beijing: Chemical Industry Press, 2017.

[26] 龍袁, 劉斌, 姚士聰, 等. 鋅鋁鎂鍍層鋼板前處理與電泳性能研究[J]. 電鍍與涂飾, 2021, 40(20): 1585-1590. LONG Yuan, LIU Bin, YAO Shi-cong, et al. Study on Pretreatment and Electrophoresis Performance of Zn-Al-Mg Alloy Coated Steel Sheet[J]. Electroplating & Finishing, 2021, 40(20): 1585-1590.

[27] AMIRUDIN A, THIERRY D. Corrosion Mechanisms of Phosphated Zinc Layers on Steel as Substrates for Automotive Coatings[J]. Progress in Organic Coatings, 1996, 28(1): 59-75.

Effect of Degreasing on Coating Performance of Galvanized Automobile Sheet

1,2,1,1,3,1,1,1,1,1

(1. Technology Research Institute of Shougang Group Co., Ltd., Beijing 100043, China; 2. Beijing Key Laboratory of Green Recyclable Process for Iron & Steel Production Technology, Beijing 100043, China; 3. Manufacturing Department, Shougang Jingtang United Iron and Steel Co., Ltd., Hebei Tangshan 063210, China)

Degreasing is one of the important processes of coating pretreatment. Its main function is to clean and remove oil stains on the surface of steel sheet, ensure the quality of subsequent phosphating process, and then ensure the film properties of steel sheet after electrophoretic coating, such as film adhesion and corrosion resistance. Since most of the previous studies focus on the composition of phosphating solution and the surface properties of steel sheet, there are few studies on degreasing. Therefore, the work aims to study the mechanism of the effect of degreasing process on the quality of phosphating film and the performance of electrophoretic film.

Hot-dip galvanized steel sheet (CR4+Z) was used in this study. Under laboratory conditions, the discontinuous water film on the surface of the steel sheet indicated poor degreasing when the steel sheet was degreased for 4 min. The results of electron microscopy of phosphating film showed that when the degreasing was poor, the phosphating film grew abnormally and appeared flat, resulting in the appearance of bright and dark patches of phosphating film. The cross-section results showed that the thickness of the flat phosphating film was 0.5~1 μm, which was obviously thinner. After removal of the phosphating film according to ISO 3892:2000, XPS results showed that metal oxides and phosphate mainly existed on the surface of the steel sheet, and the content of metal oxides on the surface of the steel sheet was 39% when the phosphating film was abnormal, which was significantly higher than that when the phosphating film was normal. According to the change of open circuit potential of the steel sheet in phosphating solution, the first, second and third stages of the phosphating reaction were obviously inhibited when the degreasing was not good, which reduced the production efficiency of Zn2+on the surface of the steel sheet, left more metal oxides, weakened the growth rate of the phosphating film, and resulted in the poor corrosion resistance of the phosphating film. The open circuit potential, impedance and polarization curves of phosphating films obtained under different degreasing states in 3.5% NaCl solution showed that the open circuit potential of phosphating films under abnormal degreasing condition was –1.10 V, which was negative to –1.06 V of normal phosphating films. The impedance of 1.18×103W×cm2was smaller than 3.72×103W×cm2of normal phosphating film and the self-corrosion current density of 6.31×10–5A×cm–2was larger than 7.94×10–6A×cm–2of normal phosphating film, indicating that abnormal phosphating film would lead to poor corrosion resistance and easy corrosion. The electrophoretic film properties showed that poor degreasing to a certain extent had little effect on the scratch adhesion of the film, which was rated as 0. However, it had a significant impact on the performance of the cupping of the electrophoretic paint film. When the cupping height was 6 mm, the paint film was broken, which could not meet the quality requirements of the automobile factory. The corrosion resistance of electrophoretic paint film decreased obviously, and the corrosion width of electrophoretic paint film increased from 2.4 mm to 3.9 mm.

In a word, poor degreasing will lead to the abnormal quality of phosphating film on the surface of galvanized sheet, which will affect the electrophoretic corrosion resistance. In the actual production process, it is necessary to effectively control degreasing process temperature, alkalinity, surfactant parameters and spray pressure, and timely control parameters based on the type and amount of oil used in body materials to avoid poor degreasing problems

automobile sheet; degreasing; phosphating; electrophoresis; corrosion resistance

2022-09-26;

2023-02-24

TG147

A

1001-3660(2023)10-0259-08

10.16490/j.cnki.issn.1001-3660.2023.10.021

2022-09-26;

2023-02-24

龍袁, 郝玉林, 蔡寧, 等. 脫脂對鍍鋅汽車板涂裝性能影響[J]. 表面技術, 2023, 52(10): 259-266.

LONG Yuan, HAO Yu-lin, CAI Ning, et al. Effect of Degreasing on Coating Performance of Galvanized Automobile Sheet[J]. Surface Techno-logy, 2023, 52(10): 259-266.

責任編輯:馬夢遙

猜你喜歡
電泳漆磷化脫脂
建筑結構鋼鋅鈣系磷化膜的結構與耐蝕性研究
陰極電泳漆混槽替代方案及實施
低脂/脫脂牛奶一定比全脂牛奶更健康嗎
汽車電泳漆膜的縮孔與針孔
低脂/脫脂牛奶一定比全脂牛奶更健康嗎
淺析影響釹鐵硼材料陰極電泳漆耐蝕性的因素
槍械黑色磷化工藝
AZ91D鎂合金磷化工藝的研究
陰極電泳涂裝中磷化膜的要求
常溫磷化工藝技術漫談
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合