?

惡性間葉腫瘤的間葉-上皮表型轉化研究進展*

2014-07-02 01:45楊吉龍杜曉玲王國文
中國腫瘤臨床 2014年24期
關鍵詞:肉瘤表型上皮

楊吉龍 杜曉玲 王國文 楊 蘊

惡性間葉腫瘤的間葉-上皮表型轉化研究進展*

楊吉龍①杜曉玲②王國文①楊 蘊①

相對于上皮性腫瘤的上皮-間葉表型轉化(epithelial to mesenchymal transition,EMT)及間葉-上皮表型轉化(mesenchymal to epithelial transition,MET)的研究,惡性間葉性腫瘤中MET相關研究較少。MET在分子水平上反映為上皮性標志物如E-鈣粘素E-cadherin的上調和間葉性標志物如波形蛋白Vimentin的下調,其過程涉及始動信號、轉錄因子調節、表面標志物的改變、信號通路改變等多個環節。本文概述了惡性間葉腫瘤中與MET緊密相關的TGF-β等始動因素、SNAI等關鍵轉錄因子、miRNA調節因素對重要細胞信號通路等影響及MET對腫瘤的演進及轉歸的影響等方面的研究,為針對MET的臨床應用奠定基礎。

肉瘤 間葉-上皮表型轉化 E-鈣粘素 靶向治療

細胞的上皮-間葉表型轉化(epithelial to mesenchymal transition,EMT)和間葉-上皮表型轉化(mesenchymal to epithelial transition,MET)在胚胎發育和器官形成方面發揮重要作用[1]。越來越多的證據表明MET在惡性腫瘤的演進中具有關鍵作用[2-4]。在上皮性腫瘤中EMT的上皮細胞喪失細胞之間的粘附分子,細胞表型發生了轉換、極性改變、細胞骨架重塑,在乳腺癌等惡性腫瘤的侵襲轉移中起關鍵作用且與腫瘤的預后不良相關[5-7]。肉瘤中MET研究較少,MET的臨床意義及其相關分子機制如始動因素、轉錄因子、調節因素、對細胞形態及功能的影響、對重要細胞信號通路的影響等問題尚需系統且深入的探討。同時,MET的啟動、發生、后續反應是一個復雜的通路,其中有多個位點、步驟、分子可能是潛在的治療靶點或有用的生物標記物。因此,對MET的深入了解有助于明確肉瘤的發病及演進機制,并有助于發現或篩選新的預防方法及特異性治療靶點。

1 MET

越來越多的證據表明與EMT相反的MET過程在惡性腫瘤的演進中起關鍵作用[2-4]。在惡性腫瘤中,可能存在兩種類型的MET且與腫瘤的演進相關:一種MET是癌細胞轉移過程中在遠隔部位形成轉移病灶時發生的表型轉變,另一種是肉瘤中間葉源性細胞向上皮性細胞的分化或者獲得上皮樣表型[8]。在第一種類型的MET中,MET促進了癌細胞在遠處轉移部位形成與原發病相似腫瘤的過程。在這個過程中,具有間葉表型特征的轉移性癌細胞克服了局部組織的多重障礙而重新獲得上皮樣表型[1,9]。有研究顯示在乳腺癌及膀胱癌等病變中,對比原發灶和轉移灶發現上皮標志物鈣黏著蛋白E-cadherin表達先缺失繼而上調,即EMT和MET過程的轉換[10-12]。

相對于上皮性腫瘤中MET的研究,第二種類型的MET即間葉腫瘤細胞出現上皮樣表型的報道較少。Yang等[13]在體外實驗發現軟骨肉瘤細胞系SW1353呈現出類似上皮組織的極性改變,表達E-cadherin、上皮橋粒斑蛋白和胞質緊密粘連蛋白ZO-1,這種改變與SW細胞系的c-Met原癌基因有關。在滑膜肉瘤中SYT-SSX1融合蛋白通過SNAI1和Slug(SNAI2)的調節可誘導MET[14]。平滑肌肉瘤中抑制Slug表達也可引起E-cadherin表達的顯著增加,同時細胞形態向圓形變化,細胞增殖、侵襲及遷移能力減弱,即發生MET[15]。Saulnier等[16]用體外實驗也證實脂肪間葉細胞經MET可分化為肝細胞樣細胞,形態和功能上類似肝細胞及間葉細胞表型,N-cadherin和Vimentin降低,E-cadherin表達升高,并認為和SNAI1和TWIST下調密切相關。

2 MET的分子標記

MET時細胞喪失運動性并重獲細胞之間的密切聯系,在分子水平上反映為上皮標志物的上調和間葉標志物的下調。典型的上皮細胞標志物如E-鈣粘蛋白、廣譜角蛋白Pan-CK、EMA、β-鈣粘蛋白、CD44和CD34等,間葉標志物包括波形蛋白Vimentin和神經鈣黏著蛋白N-cadherin、α-平滑肌肌動蛋白(α-SMA),結蛋白Desmin,MSA和其他特殊標記物如NSE,FN和SYN等。MET中最重要的標志物是E-cadherin,它是界定上皮細胞的標志之一,其編碼基因CDH1被公認為癌浸潤轉移抑制基因[17]。EMT時,E-cadherin表達下調,細胞連接及骨架改變引發細胞極性改變,進而促進癌細胞的浸潤和轉移[18]。E-cadherin表達下調可以視為EMT的原因和結果,也是EMT的分子標志。同樣的,在轉移灶中癌細胞再次表達E-cadherin是癌MET的重要標志[2]。N-鈣粘蛋白是一種跨膜糖蛋白,其表達導致E-鈣粘蛋白的表達下調從而增加癌細胞的運動以及遷移。波形蛋白Vimentin是一種通常表達在間充質來源的細胞Ⅲ型中間纖維,有報道顯示其表達涉及胚胎發育及傷口愈合及腫瘤的侵襲。因此,N-鈣粘蛋白和波形蛋白被認為是典型的間葉表型標志物[4]。需要強調的是,盡管肉瘤中有MET過程發生,間葉性腫瘤細胞獲得E-鈣粘蛋白和β-鈣粘蛋白等上皮樣表型標記的增加,但在多數肉瘤細胞中典型的間葉標志物如Vimentin等仍然占主導地位。

3 肉瘤中MET發生過程及其機制

作為EMT和MET的關鍵指標之一,E-cadherin的在腫瘤的進展中起關鍵作用,其功能喪失會增加腫瘤的侵襲性[2,4,14,19-21]。有文獻顯示TGF-β、AKT等信號通路異常、融合基因表達產物如SYT-SXX、小RNA如miR-30的調節等因素對MET有調節或者啟動作用[14,22-24]。在MET中,與E-cadherin轉錄有關的因素如若干鋅指同系物家族(SNAI1和Slug)、堿性螺旋-環-螺旋家族(E47和TWIST)、ZEB家族(ZEB1、ZEB2)等被認為是調節MET的關鍵分子[15]。轉錄因子SNAI、ZEB、E47及KLF8直接抑制E-Cadherin的轉錄,如SNAI1和Slug可與E-cad啟動子的E-box基序結合直接抑制E-cadherin的轉錄[25],而TWIST、Goosecoid、E2.2及FOXC2則間接抑制E-cadherin的轉錄[1]?;と饬鲋腥诤系鞍譙YT-SSX1和SYT-SSX2可以克服SNAI1/Slug介導的E-cadherin轉錄抑制,從而促進E-cadherin的表達而出現上皮樣分化[14,20]。因此,MET的機制可能是上行信號如TGF-β、SYT-SSX等因素誘導或者調節與E-鈣粘蛋白轉錄緊密相關的轉錄因子,增加E-鈣粘蛋白的表達,從而誘導細胞出現上皮樣表型。

4 肉瘤中MET的始動信號

肉瘤中MET發生的始動信號包括由生長因子受體如血小板衍生生長因子受體(PDGFR)、成纖維細胞生長因子受體(FGFR)、c-Met、轉化生長因子β-1(TGF-β1)、胰島素相關的生長因子1受體(IGF1R)等介導的生長信號等[3,6,26-28]。除了這些,MET的過程中其他幾個啟動信號已被證明如SYT-SSX融合蛋白、腎母細胞瘤蛋白WT1、骨形態發生蛋白7(BMP7)、WNT4、細胞骨架蛋白formin IV154-157、自分泌運動因子/磷酸葡萄糖異構酶(autocrine motility factor/ phosphoglucose isomerase,AMF/PGI)和Wnt受體低密度脂蛋白受體相關蛋白5(LRP5)等。

在滑膜肉瘤中融合蛋白SYT-SSX1和SYT-SSX2克服了SNAI1/Slug介導的E-cadherin轉錄抑制,從而誘導間葉細胞的上皮表型分化[14]。腎個體的發育是個很好描述MET的過程,這個過程中腎母細胞瘤蛋白WT1、骨形態發生蛋白7(BMP7)、WNT4和細胞骨架蛋白formin IV154-157等幾個基因是誘導MET的重要因素[1,29]。作為參與葡萄糖代謝一種多功能酶,AMF/PGI的沉默可導致人肺纖維肉瘤細胞出現MET且惡性度降低,抑制了AMF/PG的人骨肉瘤細胞系MG-63和小鼠骨肉瘤細胞系LM8出現上皮樣表型且有生長、運動和侵襲能力的下降[30]。LRP5在骨肉瘤中高表達且與相對較低的轉移率和無病生存率相關[27]??扇苄訪RP5(sLRP5)的轉染導致Saos-2骨肉瘤細胞中E-鈣粘蛋白顯著上調和N-鈣粘蛋白下調,且與SNAI1/Slug下調有關,增加的E-cadherin主要出現在細胞間接觸的邊界,與E-cadherin介導的抑制腫瘤侵襲和轉移相關聯[27]。

5 MET相關的轉錄因子

在EMT及MET過程中的關鍵分子包括生長因子如(TGF-β,Wnts)、轉錄因子(SNAIs,LEF,nuclear β-catenin)、細胞-細胞間的分子粘合分子(鈣黏著蛋白cadherins,連環蛋白catenins)和細胞-細胞外粘附基質(ECM)的粘附分子(整合素integrins,焦接觸蛋白focal contact proteins,細胞外基質蛋白)、細胞骨架調節劑(Rho家族)和胞外蛋白酶(基質金屬蛋白酶MMPs,纖維蛋白溶酶原活化劑PIAs)等[1-4,6,9,21,26-28]。這些分子里,轉錄因子的作用最強烈和直接[3,7,9,14,19,23,31-32]。MET主要涉及的轉錄因子包括SNAI1、Slug、E47、TWIST、ZEB1及ZEB2等。在上皮性惡性腫瘤的進展中,E-Cadherin不同于其他的抑癌基因,其缺失與再表達不是取決于不可逆轉的基因缺失或者突變,調節其表達的機制是可逆的[33]。轉錄因子SNAIs、ZEB、E47及KLF8直接抑制E-Cadherin的轉錄,而Twist、Goosecoid、E2.2及Foxc2間接抑制E-Cadherin轉錄[1]。其中SNAI1和Slug可與E-cad啟動子E-box基序結合直接抑制E-cad轉錄,活化的Akt通過GSK-3β磷酸化穩定核β-catenin,后者作為中介也可激活Slug,從而抑制E-cad表達。反之,則誘導MET發生[25]。SIP1也是針對E2盒上的E-Cadherin的啟動子的一種鋅指轉錄因子,這些轉錄因子參與上皮或間充質細胞分化過程[4,21,31]。

6 MET相關miRNA

雖然已經明確miR-200家族可以調節EMT,其他miRNA也參與了ETM及MET的調節[34]。如miR-138通過直接作用于波形蛋白mRNA、直接作用于ZEB和作為EZH2的表觀遺傳調節因子這三種不同的途徑調節EMT[35]。一些miRNA能夠直接調節E-cadherin的表達而調節MET,一些miRNA可以通過調節轉錄因子及MET相關信號通路進而調節E-cadherin的表達[36]。miRNA的些調節過程中有的需要初始或上游信號,而有的是獨立于上游信號。最重要的是miRNA的這些調節功能在腫瘤的進展過程中非常重要,因而可以作為潛在的治療靶點。

與MET相關的miRNA包括miR-302-367、miR-30、miR-9、miR-23b、miR-29c、miR-194及miR-101[8]。miRNA簇302-367作用于TGF-β受體2,促進E-Cadherin的表達,誘導多能干細胞的產生效率并促進間充質細胞到上皮細胞變化必要的集落形成[37]。miR-30通過直接靶向作用于SNAI1 mRNA的3'-UTR進而負性調節SNAI1的表達[38]。在黑色素瘤中miRNA-9通過抑制NF-κB1-SNAI1途徑上調E-Cadherin蛋白并誘導MET。miR-23bmiR-29cmiR-194通過恢復E-Cadherin和減少波形蛋白Vimentin表達而誘導MET[39]。miR-101導致內源性EZH2的降解和并恢復E-鈣粘蛋白的細胞膜定位[40]。

7 具有上皮樣表型改變的肉瘤

目前已經在滑膜肉瘤、平滑肌肉瘤等多個軟組織肉瘤中有報道顯示上皮細胞樣分化或者上皮樣表型的出現,且在這些腫瘤的進展和預后中有重要作用[4]。如在滑膜肉瘤中E-cadherin和β-catenin的表達降低和核β-連環蛋白的異常表達是滑膜肉瘤不良預后因素,同樣在中國滑膜肉瘤樣本中E-cadherin和β-catenin的表達與其上皮分化相關,E-鈣粘蛋白和β-catenin的表達減少提示其有潛在的高復發或轉移風險且預后較差。在人平滑肌肉瘤細胞系SK-LMS-1中抑制Slug表達可引起E-cadherin表達顯著增加,同時細胞形態向圓形變化,細胞增殖、侵襲及遷移能力減弱,即發生MET[15]。在人平滑肌肉瘤組織中,檢測到E-鈣粘蛋白、EMA及CK等上皮樣標記的表達,且與平滑肌肉瘤患者較長的生存期顯著相關[4]。上皮樣肉瘤為來源組織不明的罕見間葉腫瘤,腫瘤細胞顯示主要是上皮分化的多向分化,表型為上皮和間葉標記物的表達如細胞角蛋白,EMA,波形蛋白和CD34[41]。大多數上皮樣肉瘤強烈表達鈣粘素,這可能有助于形成他們的上皮樣外觀,但是由于缺乏E-鈣粘蛋白表達,這些腫瘤僅顯示了不完整的上皮細胞分化[42]。透明細胞肉瘤有時可能因顯示上皮樣外觀而被誤診為其他軟組織腫瘤如上皮樣平滑肌肉瘤及上皮樣肉瘤等[60],但其細胞角蛋白、EMA、結蛋白、肌特異性肌動蛋白(MSA)等標記是缺失的。透明細胞肉瘤和惡性黑色素瘤依靠免疫組化染色是很難區分的,這在一定程度上提示他們可能共享了上皮細胞的分化模式[43]。

在常見原發性骨惡性腫瘤如Ewing肉瘤/原始神經外胚層腫瘤(ES/PNET)、骨肉瘤、脊索瘤等病變中有報道顯示上皮樣表型改變。ES/PNET因經常表達細胞角蛋白CK而提示其有上皮細胞分化[44]。Schuetz等[44]研究了30例ES/PNETs結果發現,盡管E-鈣粘蛋白為陰性,但緊密連接的標記物如claudin-1、ZO-1和occludin等高表達,提示在ES/PNET中形成緊密連接,從而提示ES/PNET局部發生了上皮細胞分化。在骨肉瘤中上皮鈣粘蛋白標記物-11(CDH11)的表達及AMF/PGI干擾實驗的結果提示MET的存在,且與患者的存活顯著相關[45]。Niinaka等[30]報道了人類和小鼠的骨肉瘤細胞系中AMF/PGI的沉默誘導MET的發生,主要體現在E-鈣粘蛋白和細胞角蛋白表達上調和Vimentin的下調。脊索瘤是一種比較少見的骨腫瘤,據報道脊索瘤頻繁表達多種粘附分子和上皮細胞標記物如角蛋白、EMA、血管細胞粘附分子VCAM、CD44、N-鈣粘蛋白和E-鈣粘蛋白等,提示腫瘤細胞可能通過上皮分化特征性的細胞-細胞相互作用機制而生長[46-48]。此外,Saad和Collins表明脊索瘤的E-cadherin的表達與腫瘤復發、無病生存期和生存率顯著相關,可以預測兒童的脊索瘤的預后[49]。Triana等[50]報道在脊索瘤中降低E-Cadherin表達及提高N-Cadherin的表達可能會將其從侵襲性較低的腫瘤轉變為侵襲性更強的腫瘤表型。

8 肉瘤MET的臨床應用

在上皮性腫瘤中,MET多發在轉移灶的形成過程中且有重要的生物學意義,誘導MET即逆轉EMT對治療有顯著的影響。如臨床試驗中高表達E-Cadherin的非小細胞肺癌患者接受埃羅替尼靶向藥物治療效果比較好[1];組蛋白脫乙?;敢种苿﹙orinostat通過誘導頭頸癌細胞系KB和Hep-2發生MET,可增加靶向藥物吉非替尼的治療作用等[51]。乳腺癌MDA-MB-231細胞系、前列腺DU-145細胞系和肝細胞共同培養時細胞形態發生上皮樣改變及表達E-cadherin和E-cadherin蛋白陰性表達的細胞相比化療抗性明顯增高且有預后價值[52]。盡管Kase等[25]檢測331例Ⅰ~Ⅲ期肺癌患者的E-Cadherin和β-catenin表達發現E-Cadherin無獨立預后價值,但是β-catenin表達減少且和預后有顯著關系。Soltermann等[53]利用免疫組織化學觀察533例非小細胞肺癌MET改變,單變量分析顯示間葉標記骨膜蛋白periostin的表達和PFS下降顯著相關。

在間葉源性腫瘤中,MET臨床意義尚探討不多但已經顯示出其在靶向治療中的重要作用。Saulnier等[16]體外實驗證實脂肪間葉細胞經MET可分化為肝細胞樣細胞,而且具有成熟肝細胞一些特征,如富含環氧化物酶EPHX1和前列腺素受體PGER4,可以發揮藥物代謝功能,對于臨床有潛在意義。某些臨床證明發生MET的肉瘤患者,高表達E-cadherin較表達缺失者對于化療藥物更加敏感[1]。Slug等[4]發現轉錄因子是肉瘤MET過程中的重要調節因子,也是潛在的治療靶標,如神經母細胞瘤中下調Slug可增加伊馬替尼、依托泊苷、阿霉素等藥物誘導凋亡的靈敏度。此外,在放療治療中Slug缺失的細胞對放射所致的DNA損傷很敏感。所以,抑制Slug和其他轉錄因子,誘導MET可能會提高腫瘤對放化療的敏感性。

9 結論

間葉惡性腫瘤中MET在分子水平上反映為上皮性標志物如E-鈣粘素(E-cadherin)的上調和間葉性標志物如波形蛋白(Vimentin)的下調,其過程涉及始動信號、轉錄因子調節、表面標記的改變、miRNA的調節、信號通路改變等多個環節,并對腫瘤的演進及轉歸有非常重要的作用。明確MET相關機制并針對這一復雜過程中的特定環節進行干預,可能有一定的臨床應用前景。

1 Thiery JP,Acloque H,Huang RY,et al.Epithelial-mesenchymal transitions in development and disease[J].Cell,2009,139:871-890.

2 Wells A,Yates C,Shepard CR.E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas[J].Clin Exp Metastasis,2008, 25(6):621-628.

3 Hong KO,Kim JH,Hong JS,et al.Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells[J].J Exp Clin Cancer Res,2009,28:28.

4 Yang J,Eddy JA,Pan Y,et al.Integrated proteomics and genomics analysis reveals a novel mesenchymal to epithelial reverting transition in leiomyosarcoma through regulation of slug[J].Mol Cell Proteomics,2010,9(11):2405-2413.

5 Devarajan E,Song YH,Krishnappa S,et al.Epithelial-mesenchymal transition in breast cancer lines is mediated through PDGF-D released by tissue-resident stem cells[J].Int J Cancer 2012,131(5):1023-1031.

6 Kalluri R,Weinberg RA.The basics of epithelial-mesenchymal transition[J].J Clin Invest,2009,119(6):1420-1428.

7 Mani SA,Yang J,Brooks M,et al.Mesenchyme Forkhead 1 (FOXC2)plays a key role in metastasis and is associated with aggressive basal-like breast cancers[J].Proc Natl Acad Sci U S A, 2007,104(24):10069-10074.

8 Yang J,Du X,Wang G,et al.Mesenchymal to epithelial transition in sarcomas[J].Eur J Cancer,2014,50(3):593-601.

9 Elloul S,Vaksman O,Stavnes HT,et al.Mesenchymal-to-epithelial transition determinants as characteristics of ovarian carcinoma effusions[J].Clin Exp Metastasis,2010,27(3):161-172.

10 Chao YL,Shepard CR,Wells A.Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition [J].Mol Cancer,2010,9:179.

11 Aokage K,Ishii G,Ohtaki Y,et al.Dynamic molecular changes associated with epithelial-mesenchymal transition and subsequent mesenchymal-epithelial transition in the early phase of metastatic tumor formation[J].Int J Cancer,2011,128(7):1585-1595.

12 Chaffer CL,Brennan JP,Slavin JL,et al.Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis:role of fibroblast growth factor receptor-2[J].Cancer Res,2006,66(23):11271-11278.

13 Fitzgerald MP,Gourronc F,Teoh ML,et al.Human Chondrosarcoma Cells Acquire an Epithelial-Like Gene Expression Pattern via an Epigenetic Switch:Evidence for Mesenchymal-Epithelial Transition during Sarcomagenesis[J].Sarcoma 2011,2011:598218.

14 Saito T,Nagai M,Ladanyi M.SYT-SSX1 and SYT-SSX2 interfere with repression of E-cadherin by snail and slug:a potential mecha-nism for aberrant mesenchymal to epithelial transition in human synovial sarcoma[J].Cancer Res,2006,66(14):6919-6927.

15 Yang J,Eddy JA,Pan Y,et al.Integrated proteomics and genomics analysis reveals a novel mesenchymal to epithelial reverting transition in leiomyosarcoma through regulation of slug[J].Mol Cell Proteomics,2010,9(11):2405-2413.

16 Saulnier N,Piscaglia AC,Puglisi MA,et al.Molecular mechanisms underlying human adipose tissue-derived stromal cells differentiation into a hepatocyte-like phenotype[J].Dig Liver Dis,2010,42 (12):895-901.

17 Voulgari A,Pintzas A.Epithelial-mesenchymal transition in cancer metastasis:mechanisms,markers and strategies to overcome drug resistance in the clinic[J].Biochim Biophys Acta 2009,1796(2):75-90.

18 Li B,Zheng YW,Sano Y,et al.Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation [J].PLoS One,2011,6(2):e17092.

19 Saito T,Oda Y,Sugimachi K,et al.E-cadherin gene mutations frequently occur in synovial sarcoma as a determinant of histological features[J].Am J Pathol,2001,159(6):2117-2124.

20 Sato H,Hasegawa T,Abe Y,et al.Expression of E-cadherin in bone and soft tissue sarcomas:a possible role in epithelial differentiation[J].Hum Pathol,1999,30(11):1344-1349.

21 Zeisberg M,Neilson EG.Biomarkers for epithelial-mesenchymal transitions[J].J Clin Invest,2009,119(6):1429-1437.

22 Xu J,Lamouille S,Derynck R.TGF-beta-induced epithelial to mesenchymal transition[J].Cell Res,2009,19(2):156-172.

23 Saito T,Oda Y,Kawaguchi K,et al.E-cadherin mutation and Snail overexpression as alternative mechanisms of E-cadherin inactivation in synovial sarcoma[J].Oncogene,2004,23(53):8629-8638.

24 Danielson LS,Menendez S,Attolini CS,et al.A differentiation-based microRNA signature identifies leiomyosarcoma as a mesenchymal stem cell-related malignancy[J].Am J Pathol 2010, 177(2):908-917.

25 Bolos V,Peinado H,Perez-Moreno MA,et al.The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions:a comparison with Snail and E47 repressors[J].J Cell Sci,2003,116(Pt3):499-511.

26 Javle MM,Gibbs JF,Iwata KK,et al.Epithelial-mesenchymal transition(EMT)and activated extracellular signal-regulated kinase (p-Erk)in surgically resected pancreatic cancer[J].Ann Surg Oncol,2007,14(12):3527-3533.

27 Guo Y,Zi X,Koontz Z,et al.Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells[J].J Orthop Res,2007,25(7):964-971.

28 Zavadil J,Bottinger EP.TGF-beta and epithelial-to-mesenchymal transitions[J].Oncogene,2005,24(37):5764-5774.

29 Thiery JP.Epithelial-mesenchymal transitions in tumour progression[J].Nat Rev Cancer,2002,2(6):442-454.

30 Niinaka Y,Harada K,Fujimuro M,et al.Silencing of autocrine motility factor induces mesenchymal-to-epithelial transition and suppression of osteosarcoma pulmonary metastasis[J].Cancer Res, 2010(70):9483-9493.

31 Perez-Losada J,Sanchez-Martin M,Rodriguez-Garcia A,et al. Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway[J].Blood,2002,100(4):1274-1286.

32 Hajra KM,Chen DY,Fearon ER.The SLUG zinc-finger protein represses E-cadherin in breast cancer[J].Cancer Res,2002,62(6):1613-1618.

33 Tsuji T,Ibaragi S,Hu GF.Epithelial-mesenchymal transition and cell cooperativity in metastasis[J].Cancer Res,2009,69(18):7135-7139.

34 Xiong M,Jiang L,Zhou Y,et al.The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression[J].Am J Physiol Renal Physiol,2012,302(3):F369-379.

35 Liu X,Wang C,Chen Z,et al.MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines[J]. Biochem J,2011,440(1):23-31.

36 Liu S,Lu H,Liu A,et al.MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma[J].J Pathol,2012,226(1):61-72.

37 Liao B,Bao X,Liu L,et al.MicroRNA cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition[J].J Biol Chem,2011,286(19):17359-17364.

38 Kumarswamy R,Mudduluru G,Ceppi P,et al.MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting Snai1 and is downregulated in non-small cell lung cancer[J].Int J Cancer, 2012,130(9):2044-2053.

39 Dong P,Kaneuchi M,Watari H,et al.MicroRNA-194 inhibits epithelial to mesenchymal transition of endometrial cancer cells by targeting oncogene BMI-1[J].Mol Cancer,2011,10:99.

40 Carvalho J,van Grieken NG,Pereira PM,et al.Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 upregulation in intestinal gastric cancer[J].J Pathol,2012,228(1):31-44.

41 Armah HB,Parwani AV.Epithelioid sarcoma[J].Arch Pathol Lab Med,2009,133(5):814-819.

42 Smith ME,Brown JI,Fisher C.Epithelioid sarcoma:presence of vascular-endothelial cadherin and lack of epithelial cadherin[J].Histopathology,1998,33(5):425-431.

43 Swanson PE,Wick MR.Clear cell sarcoma.An immunohistochemical analysis of six cases and comparison with other epithelioid neoplasms of soft tissue[J].Arch Pathol Lab Med,1989,113(1):55-60.

44 Schuetz AN,Rubin BP,Goldblum JR,et al.Intercellular junctions in Ewing sarcoma/primitive neuroectodermal tumor:additional evidence of epithelial differentiation[J].Mod Pathol 2005,18(11):1403-1410.

45 Nakajima G,Patino-Garcia A,Bruheim S,et al.CDH11 expression is associated with survival in patients with osteosarcoma[J].Cancer Genomics Proteomics,2008,5(1):37-42.

46 Mori K,Chano T,Kushima R,et al.Expression of E-cadherin in chordomas:diagnostic marker and possible role of tumor cell affinity[J].Virchows Arch,2002,440(2):123-127.

47 Naka T,Oda Y,Iwamoto Y,et al.Immunohistochemical analysis of E-cadherin,alpha-catenin,beta-catenin,gamma-catenin,and neural cell adhesion molecule(NCAM)in chordoma[J].J Clin Pathol,2001,54(12):945-950.

48 Horiguchi H,Sano T,Qian ZR,et al.Expression of cell adhesion molecules in chordomas:an immunohistochemical study of 16 cases [J].Acta Neuropathol,2004,107(2):91-96.

49 Saad AG,Collins MH.Prognostic value of MIB-1,E-cadherin, and CD44 in pediatric chordomas[J].Pediatr Dev Pathol,2005,8 (3):362-368.

50 Triana A,Sen C,Wolfe D,et al.Cadherins and catenins in clival chordomas:correlation of expression with tumor aggressiveness[J]. Am J Surg Pathol,2005,29(11):1422-1434.

51 Bruzzese F,Leone A,Rocco M,et al.HDAC inhibitor vorinostat enhances the antitumor effect of gefitinib in squamous cell carcinoma of head and neck by modulating ErbB receptor expression and reverting EMT[J].J Cell Physiol,2011,226(9):2378-2390.

52 Tang D,Xu S,Zhang Q,et al.The expression and clinical significance of the androgen receptor and E-cadherin in triple-negative breast cancer[J].Med Oncol,2012,29(2):526-533.

53 Soltermann A,Tischler V,Arbogast S,et al.Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non-small cell lung cancer[J].Clin Cancer Res,2008,14(22):7430-7437.

(2014-09-10收稿)

(2014-12-04修回)

(本文編輯:鄭莉)

Mesenchymal to epithelial transition in malignant mesenchymal tumors

Jilong YANG1,Xiaoling DU2,Guowen WANG1,Yun YANG1

1Department of Bone and Soft Tissue Tumors,Tianjin Medical University Cancer Hospital and Institute,National Clinical Research Center of Cancer,Key Laboratory of Cancer Prevention and Therapy,Tianjin,Tianjin 300060,China;3Department of Diagnostics,Tianjin Medical University,Tianjin 300061,China

Jilong YANG;E-mail:yangjilong@tjmuch.com

Mesenchymal to epithelial transition(MET),whereby mesenchymal cells become more epithelial like in phenotype, was observed to occur during normal development and in cancers.Numerous investigations have been conducted on MET in carcinomas.In addition,accumulating evidence also suggests the critical function of MET in sarcomas.Integrated analyses reveal that MET may be an important biological and clinical process in sarcomas,and transcription factors such as Slug may also perform central functions in epithelial differentiation in several sarcomas such as leiomyo-sarcoma and synovial sarcoma.Given the scarcity of investigations and evidence,several important issues about MET,such as its molecular markers,signaling mechanisms,micro RNA regulations, and clinical significance,need to be clarified.In this article,we review several important questions about MET in sarcomas,including molecular markers,signaling mechanisms,regulation by miRNAs,and therapeutic implications.

sarcoma,mesenchymal to epithelial transition,E-cadherin,targeted therapy

10.3969/j.issn.1000-8179.20141559

①天津醫科大學腫瘤醫院骨與軟組織腫瘤科,國家腫瘤臨床研究中心,天津市腫瘤防治重點實驗室(天津市300060);②天津醫科大學診斷學教研室

*本文課題受國家自然科學基金項目(編號:81372872,81402215)資助

楊吉龍 yangjilong@tjmuch.com

楊吉龍 專業方向為骨與軟組織腫瘤。

E-mail:yanglilong@tjmuch.com

猜你喜歡
肉瘤表型上皮
肺原發未分化高級別多形性肉瘤1例
承德所選實生核桃資源果實表型性狀評價初報
miR-490-3p調控SW1990胰腺癌細胞上皮間充質轉化
體型表型與亞臨床動脈粥樣硬化有關
慢性阻塞性肺疾病急性加重期臨床表型及特征分析
原發性腎上腺平滑肌肉瘤1例
超聲誤診胸壁多形性脂肪肉瘤1例報道及文獻復習
土壤鹽堿對不同表型猴樟滲透調節物質的影響
50例面頸部鈣化上皮瘤誤診分析
卵巢上皮性癌組織中PITX2和β-catenin蛋白的表達
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合