?

脯氨酸代謝途徑在調控水稻phyB突變體干旱脅迫耐性中的作用

2014-08-20 10:16尹靜靜等
山東農業科學 2014年3期
關鍵詞:脯氨酸干旱鹽脅迫

尹靜靜等

摘要:本研究分析了水稻野生型和phyB突變體中脯氨酸代謝途徑關鍵基因的表達水平。結果顯示,干旱處理能夠誘導脯氨酸生物合成相關基因OsP5CS1和OsOAT的表達,抑制脯氨酸生物降解基因OsP5CDH的表達。且phyB突變體中OsP5CS1基因的表達水平明顯高于野生型,據此推測phyB負調控OsP5CS1基因的表達。為了分析OsP5CS1基因的高水平表達是否與phyB突變體較強的干旱脅迫耐性有關,本研究進一步培育了轉OsP5CS1基因煙草。離體葉片失水速率結果表明,轉基因煙草的失水速率小于野生型;鹽脅迫條件下,轉基因煙草的分化率明顯高于野生型。綜上所述,phyB對脯氨酸代謝途徑的調控是phyB突變體具有較強干旱脅迫耐性的重要因素之一。

關鍵詞:水稻;phyB突變體;脯氨酸;干旱;鹽脅迫

中圖分類號:Q786:Q945.79 文獻標識號:A 文章編號:1001-4942(2014)03-0001-04

AbstractThe expression levels of key genes involved in proline metabolic pathway were compared in rice wild type (WT) and phyB mutant. The results showed that dehydration treatment induced the expression of proline biosynthetic gene OsP5CS1 and OsOAT, but suppressed the expression of proline catabolic gene OsP5CDH. And the expression level of OsP5CS1 gene in phyB mutant was obviously higher than that in WT, which suggesting that phyB negatively regulated its expression. To explore the relation between high OsP5CS1 transcript level and stronger drought tolerance in phyB mutant, the OsP5CS1 transgenic tobacco was obtained. Water loss rate assays of detached leaves revealed that transgenic tobacco showed a slower water loss rate compared to non-transgenic tobacco. In addition, the leaf disk differentiation rate under high salinity of transgenic tobacco was higher than that of non-transgenic tobacco. These findings suggested that the regulation of phyB on proline metabolic pathway was one of the important factors contributing to stronger drought tolerance in phyB mutant.

Key wordsRice; phyB mutant; Proline; Drought; Salt stress

植物受到非生物脅迫后,能夠誘導許多基因的表達,其中一類基因編碼參與滲透調節物質合成和解毒作用的酶及轉運蛋白[1]。脯氨酸是一種重要的滲透調節物質,其在植物中的主要作用可分為兩部分:一是保持原生質與環境的滲透平衡[2],它可與胞內一些化合物形成聚合物,類似親水膠體,防止水分散失;二是保持膜結構的完整性[3]。脯氨酸與蛋白質相互作用能增加蛋白質的可溶性,減少可溶性蛋白的沉淀,增強蛋白質的水合作用。

植物體脯氨酸的合成有兩條途徑:谷氨酸途徑和鳥氨酸途徑[4]。谷氨酸途徑的初始底物是谷氨酸,在吡咯琳-5-羧酸合成酶[P5CS,Delta(1)-pyrroline-5-carboxylate synthetase]的催化下生成谷氨酸半醛(GSA),GSA在吡咯琳-5-羧酸還原酶 (P5CR)的催化下生成脯氨酸。研究表明,P5CS是脯氨酸合成途徑中起主要調控作用的關鍵酶[4],是整個反應的限速酶并受脯氨酸的反饋抑制[5]。吡咯琳-5-羧酸脫氫酶[P5CDH,Delta(1)-pyrroline-5-carboxylate dehydrogenase]催化GSA生成谷氨酸,參與脯氨酸的降解途徑。鳥氨酸途徑的底物是鳥氨酸,在鳥氨酸轉氨酶(OAT,Ornithine-δ-aminotransferase)的催化下生成GSA,從而參與脯氨酸的合成。在滲透脅迫和氮饑餓情況下,脯氨酸經由谷氨酸途徑合成占主導。

已有的研究表明,水稻光敏色素B(phyB)突變體具有較強的干旱脅迫耐性,生理機理分析結果表明,其具有較強的滲透調節能力,干旱條件下phyB突變體中脯氨酸含量高于野生型[6]。據此推測phyB影響脯氨酸代謝。為了分析phyB影響脯氨酸代謝及干旱脅迫耐性的機制,本研究比較了正常及干旱處理條件下野生型和phyB突變體中脯氨酸代謝相關基因的表達水平。此外,構建了OsP5CS1基因的過表達載體,獲得了轉基因煙草,并對其干旱和鹽脅迫耐性進行分析。

1材料與方法

1.1植物材料

本研究所用水稻材料(野生型和phyB突變體)為日本晴(Oryza sativa L. cv. Nipponbare)[7],所用煙草品種為SR(Nicotiana tabacum cv. Petit Havana SR)。

1.2水稻的干旱處理

野生型和phyB突變體水稻種子表面消毒后,播種于0.4%(W/V)的瓊脂培養基中,光照培養箱(寧波江南)中培養7 d后,移栽至溫室 (光照14 h,28℃;黑暗10 h,23℃) 土壤中繼續培養至六葉一心期。取第五葉在光照培養箱中(相對濕度60%,25℃,4 900 lx)失水處理4 h,取材保存于液氮中,用于分析脯氨酸代謝相關基因的表達模式。

1.3基因表達模式分析

按照RNAiso Plus(TaKaRa)說明書提取水稻RNA。利用RNase-free DNase(TaKaRa)除去RNA中的DNA,根據PrimeScript RT Enzyme Mix I(TaKaRa)說明書合成第一鏈。本研究所用基因在GenBank數據庫中的序列號、引物序列及擴增條件如表1所示。以ACTIN為內參基因。引物由上海英濰捷基生物有限公司合成。

2結果與分析

2.1干旱處理后水稻脯氨酸代謝相關基因表達模式分析

如圖1所示,正常條件下,OsP5CS1、OsP5CDH和OsOAT基因在野生型和phyB突變體中的表達水平無顯著差別。干旱處理4 h后,OsP5CS1基因在野生型中的表達略有提高,但在phyB突變體中的表達明顯提高。OsP5CDH基因的表達受干旱處理的抑制,且在phyB突變體中的抑制效果更明顯。干旱處理同樣誘導了OsOAT基因在野生型和phyB突變體中的表達。這些結果表明,干旱處理誘導脯氨酸合成途徑相關基因的表達,抑制降解途徑相關基因的表達,且phyB負調控干旱處理對OsP5CS1基因的誘導。

3討論

在本研究中,干旱脅迫誘導了脯氨酸合成基因OsP5CS1和OsOAT的表達,抑制了降解基因OsP5CDH的表達。這與已有的報道一致,OsP5CS1和OsOAT基因被干旱、高鹽等脅迫因素誘導[12,13]。關于干旱對OsP5CDH基因表達調控的研究尚未見報道。通過比較野生型和phyB突變體中脯氨酸代謝相關基因的表達水平,可以看出phyB負調控干旱對OsP5CS1基因的表達。phyB是水稻光敏色素家族成員,主要感受紅光[7,14,15]。ABA是一種重要的植物激素,在調節植物滲透脅迫反應中具有重要作用。已有研究表明,phyB突變體中ABA的含量以及ABA敏感性均高于野生型[16]。因此,phyB可能通過影響ABA途徑調控OsP5CS1基因的表達。除了ABA依賴途徑,脯氨酸的積累還受ABA非依賴途徑的調控[17],水稻phyB是否參與調控脯氨酸ABA非依賴途徑的累積還需要進一步研究。

通過分析OsP5CS1轉基因煙草的干旱和鹽脅迫耐性,初步發現過表達OsP5CS1基因能夠降低轉基因煙草離體葉片的失水速率并提高葉盤在鹽脅迫下的分化能力,據此推測OsP5CS1轉基因煙草具有較強的干旱脅迫和鹽脅迫耐性。因此,干旱處理后phyB突變體中OsP5CS1基因表達水平較高可能是phyB突變體具有較強干旱脅迫耐性的因素之一。

參考文獻:

[1]Bhatnagar-Mathur P, Vadez V, Sharma K K. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects[J]. Plant Cell Rep., 2008, 27(3):411-424.

[2]許祥明,葉和春,李國鳳.脯氨酸代謝與植物抗滲透脅迫的研究進展[J].植物學通報,2000, 17(6):536-542.

[3]Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis [J]. Plant Sci., 2004, 166: 941-948.

[4]Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants [J]. Plant J., 1993, 4 (2): 215-223.

[5]Hong Z, Lakkineni K, Zhang Z, et al. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress [J]. Plant Physiol., 2000, 122(4): 1129-1136.

[6]Liu J, Zhang F, Zhou J, et al. Phytochrome B control of total leaf area and stomatal density affects drought tolerance in rice [J]. Plant Mol. Biol., 2012, 78 (3):289-300.

[7]Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice [J]. Plant Cell, 2005, 17(12): 3311-3325.

[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.

[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.

[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.

[11]戴秀玉, 王憶琴, 楊波,等. 大腸桿菌海藻糖合成酶基因對提高煙草抗逆性能的研究 [J]. 微生物學報, 2001, 41(4): 427-431.

[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.

[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.

[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.

[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.

[16]顧建偉, 張方, 趙杰, 等.光敏色素B介導光信號影響水稻的脫落酸途徑 [J]. 科學通報, 2012, 57(25):2371-2379.

[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.

[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.

[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.

[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.

[11]戴秀玉, 王憶琴, 楊波,等. 大腸桿菌海藻糖合成酶基因對提高煙草抗逆性能的研究 [J]. 微生物學報, 2001, 41(4): 427-431.

[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.

[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.

[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.

[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.

[16]顧建偉, 張方, 趙杰, 等.光敏色素B介導光信號影響水稻的脫落酸途徑 [J]. 科學通報, 2012, 57(25):2371-2379.

[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.

[8]Fuse T, Sasaki T, Yano M. Ti-plasmid vectors useful for functional analysis of rice genes [J], Plant biotech., 2001, 18(3):219-222.

[9]Hood E E, Gelvin S B, Melchers L S, et al. New Agrobacterium helper plasmids for gene transfer to plants [J]. Transgenic Res., 1993(2):208-218.

[10]Horsch R B, Fry J E, Hoffmann N L, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231.

[11]戴秀玉, 王憶琴, 楊波,等. 大腸桿菌海藻糖合成酶基因對提高煙草抗逆性能的研究 [J]. 微生物學報, 2001, 41(4): 427-431.

[12]Igarashi Y, Yoshiba Y, Sanada Y, et al. Characterization of the gene for delta1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. [J]. Plant Mol. Biol., 1997, 33(5): 857-865.

[13]You J, Hu H, Xiong L. An ornithine δ-aminotransferase gene OsOAT confers drought and oxidative stress tolerance in rice [J]. Plant Sci., 2012, 197:59-69.

[14]Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene[J]. Nucleic Acids Res., 1989, 17(7):2865-2866.

[15]Gu J, Liu J, Xue Y, et al. Functions of phytochrome in rice growth and development [J]. Rice Sci., 2011, 18(3): 231-237.

[16]顧建偉, 張方, 趙杰, 等.光敏色素B介導光信號影響水稻的脫落酸途徑 [J]. 科學通報, 2012, 57(25):2371-2379.

[17]Hare P D, Cress W A, van Staden J. Proline synthesis and degradation: a model system for elucidating stress-related signal transduction [J]. J. Exp. Bot., 1999, 50: 413-434.

猜你喜歡
脯氨酸干旱鹽脅迫
低溫與GA3對大蒜氣生鱗莖可溶性蛋白質和脯氨酸含量的影響
水分脅迫對3個棗品種脯氨酸含量的影響
植物體內脯氨酸的代謝與調控
基于距平的白城地區干旱時間分布特征分析
臨夏地區干旱特征及干濕氣候區劃
外源NO對NaCl脅迫下高粱幼苗生理響應的調節
花生Clp家族成員的篩選、聚類和鹽脅迫響應分析
夏季高溫干旱時節高山蔬菜種植管理策略
基于多源衛星遙感的長江流域旱情監測研究
干旱脅迫對不同玉米品種幼苗生理特性的影響
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合