?

導向葉片結構對氣液旋流器性能的影響研究

2014-10-31 02:48黃龍鄧松圣陳志
化工與醫藥工程 2014年2期
關鍵詞:切向速度導葉旋流器

黃龍 鄧松圣 陳志

(1.后勤工程學院,重慶 401311;2.中國石油集團工程設計有限公司西南分公司,成都 610041)

由于旋流分離器能產生相當于幾十上百倍重力加速度的離心力場[1],效率較高,所以,相比于重力式分離器,旋流分離器近年來越來越受到重視[2]。與常規的切入式水力旋流器不同,導葉式旋流器是以軸向為入口,靠導向葉片改變流體方向形成旋流,壓降更低,處理量更大,結構也更加緊湊[3],對入口速度的依賴也更小。某新型導葉式旋流器用作天然氣重力分離器的入口初分離裝置,導向葉片是旋流器的唯一旋轉加速部件,其結構直接決定著旋流器的流場分布,對旋流器的性能有著重要影響[4],有必要對其進行深入研究。

本文利用計算流體力學軟件,采用預測精度較高的雷諾應力模型及DPM模型[5]對某新型軸流導葉式旋流器內部流場進行了數值計算,探索了導向葉片結構參數對旋流器速度、壓降及分離效率的影響。

1 模型建立

該旋流器豎直安裝,氣液混合物從入口軸向進入,流經內筒體時流道面積減小,速度增大,然后經過導葉產生旋轉,液體被甩向筒壁,從分水口處進入分水罩,從液相出口流出,氣體經過彎管改變方向后進入重力式分離器。具體的尺寸為:外筒直徑do=100 mm,內筒直徑di=70 mm,長度L=200 mm,內筒體上、下引導錐長度L1=300 mm,分水口寬度Lf=5 mm,分水罩直徑df=160 mm,導葉的數目為8葉,主要結構參數有導葉末端與水平面的夾角即出口角α和導葉從入口端到出口端的扭轉角度β,如圖1所示。

通過Solidworks三維建模后導入Gambit,劃分區域后采用六面體與四面體形成混合網格。模擬采用實際工況下的天然氣介質,密度為82.09 kg/m3,黏度為1.32×10-5Pa·s,離散相為水,液相體積分數約為3%。湍流模型采用精度較高的RSM模型,入口邊界為速度入口,根據日處理量20×104Nm3/d計算平均速度,出口按充分發展來處理,壁面為無滑移邊界條件,設定分流比為3%;多相模型采用DPM模型,液滴從入口處均勻入射,進入分水罩底部則被捕集分離。

2 導葉參數對旋流器性能影響分析

2.1 導葉出口角的影響

導葉出口角α(見圖1)直接規定了氣液混合流體流出導葉時的流動方向,對流場影響較大。圖2、圖3分別為不同入射角度下分離區(葉片下緣30 mm處)軸向速度和切向速度沿徑向變化曲線。

圖2 不同導葉出口角下分離區軸向速度曲線

圖3 不同導葉出口角下分離區切向速度曲線

可以看到,軸流導葉式旋流器的切向速度和軸向速度都保持較為嚴格的對稱,不存在傳統切向入口旋流器的偏心紊動現象[6],這有利于離散相的平穩分離,是軸流式旋流器的一大優勢所在。從圖2可以看出,軸向速度基本保持不變,這是由于α角并未改變流道過流面積,而流量不變,故軸向速度也不變。設葉片出口處的氣體速度為V0,分離區內氣體的軸向、切向速度分別為Va、Vt,則有下列關系式:

Va相同,當α角越小時V0越大,Vt也就越大,這從圖3可以明顯看出。由于α是銳角,故切向速度明顯大于軸向速度,這有利于離心分離。

圖4為不同導葉出口角時的分離效率曲線,可以看見,隨著α角的減小,切向速度增大,使液滴所受離心力增大,而軸向速度不變,液滴受到的向下的氣流曳力也較小,所以,分離效率也逐步提高,但是提高的效果在減弱,當出口角減小到25°以下時,對分離效率(特別是15μm以上的較大液滴)的提高效果已經不明顯,曲線趨于一致。并且從圖5可以看到,出口角減小還會使旋流器壓降直線上升,增大旋流器的能量損耗。所以,旋流器分離器導葉出口角度保持在23°~25°時較為合適,這樣可以提高分離效率,同時減少資源的浪費和壓力的無謂損失。

圖4 不同導葉出口角下分離效率對比

圖5 導葉出口角對壓降的影響

2.2 導葉扭轉角的影響

導葉扭轉角度β是葉片的另一重要參數,和導葉出口角一樣,改變β角不會對軸向速度造成影響,如圖6所示。而對于切向速度,增大β相當于在同樣的流道長度內使氣流偏轉更大的角度,自然會造成分離區切向速度的增大,如圖7所示??梢钥吹?,隨著導葉扭轉角的增大,分離區切向速度基本保持正比增加,并且增大幅度較改變α角要大。

圖6 不同導葉扭轉角下分離區軸向速度曲線

圖7 不同導葉扭轉角下分離區切向速度曲線

切向速度的增大會提高旋流器的分離效率,如圖8所示??梢钥吹?,導葉扭轉角對分離效率的提高效果較為明顯,除了10μm以下的液滴由于受紊流和氣流夾帶影響大,提升效果不明顯外,其他粒徑液滴都有5%~10%的提升,直至效率接近100%。

圖8 不同導葉扭轉角效率曲線

但是同時,切向速度的增大也會導致旋轉流體與筒壁間的摩阻損失加劇,增大旋流器的能量損耗,從圖9可以看出,壓降與β角的增大呈線性關系,β角每增大5°,壓降增大900Pa左右。此外,由于該旋流器是用于重力分離預處理,過高的切向速度會導致旋流器出口處氣流的紊亂,不利于后續的沉降分離。所以,對于葉片扭轉角度,建議可以適當增大以提高效率,但不宜過大。

圖9 導葉扭轉角對壓降的影響

3 結論

3.1 軸流導葉式旋流器速度分布對稱,消除了偏心紊動,有利于離散相的平穩分離。

3.2 導葉出口角對軸向速度無影響,減小導葉出口角能加大切向速度從而提高分離效率,但是提高效率逐漸減弱而能量損耗增加,故導葉出口角保持在23°~25°為宜。

3.3 導葉扭轉角也不影響軸向速度,切向速度與導葉扭轉角成正比,增大導葉扭轉角可以提高效率,同時壓降也直線增加,建議可以適當提高導葉扭轉角,但不宜過大。

[1] 林存瑛.天然氣礦場集輸[M].北京:石油工業出版社,1997.

[2] 褚良銀,陳文梅.旋流分離理論[M].北京:冶金工業出版社,2002.

[3] 丁旭明,王振波,金有海.兩種入口結構旋流器性能對比試驗研究[J].化工機械,2005,32(2):69-71,87.

[4] 王振波,馬藝,金有海.導葉式旋流器內油滴的聚結破碎及影響因素[J].化工學報2011,62(2):399-406.

[5] 韓占忠.FLUENT——流體工程仿真計算實例與分析[M].北京:北京理工大學出版社,2009.

[6] 宋健斐,魏耀東,時銘顯.蝸殼式旋風分離器氣相流場的非軸對稱特性的模擬[J].化工學報,2005,56(8):1398-1402.

猜你喜歡
切向速度導葉旋流器
重介質旋流器選煤技術在我國的創新發展與應用
旋風分離器內氣相旋轉流不穩定性的實驗研究
雙級徑向旋流器對燃燒性能的影響
燒嘴旋流器優化設計計算
瀑布溝水電站機組導葉安裝立面間隙調整方法優化
新工藝在貫流式機組導葉間隙調整的應用
雙旋流耦合式旋流反應器內切向速度分布研究
壓氣機導葉用GTD222合金鑄造技術研究
簡單數學關系在大型船舶操縱中的 應用
固液分離旋流器壁面磨損的數值模擬
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合