?

ICP-MS測定飲用水源水中鋅的不確定度評定方法

2015-06-08 01:46潘穎瑜佛山市南海區環境保護監測站廣東佛山528200
化工管理 2015年24期
關鍵詞:移液管重復性水樣

潘穎瑜 (佛山市南海區環境保護監測站,廣東 佛山 528200)

潘佰其 (佛山市南海區西樵鎮環境保護辦公室,廣東 佛山 528200)

測量不確定度能如實反映測定結果的置信度和準確度[1]。利用電感耦合等離子體質譜法(ICP-MS)測定飲用水源中的金屬元素的應用越來越廣泛[2-4]。本文依據國家計量技術規范《測量不確定度評定與表示》(JJF 1059-2012)[5]對ICP-MS測定飲用水源水中鋅含量的不確定度進行了分析和評定。

1 實驗部分

1.1 主要儀器和試劑

儀器:Agilant 7700X ICP-MS美國安捷倫科技有限公司。試劑:ICP-MS多元素混合標準溶液10mg/L (安捷倫科技 (中國)有限公司);硝酸(優級純);超純水(電阻率為18.3MΩ.cm)。

1.2 方法步驟

飲用水源水中鋅的液體樣品經霧化后由載氣載入電感耦合等離子體中,樣品經過去溶劑化、原子化、離子化后進行入質譜檢測器,通過篩選不同質荷比離子分析計數,以鋅離子的每秒計數CPS與濃度成正比繪制標準曲線,從而計算樣品中的鋅含量。

1.3 儀器工作參數

ICP-MS儀器工作參數:霧化器(Ar)流量0.80L/min,輔助氣(Ar)流量0.80L/min,RF功率1500W,采樣錐孔徑1.0mm,截取錐孔徑0.4mm,總采集時間30s,重復次數3次;在線內標。

2 數學模型

測量的數學模型為:

式中:y為儀器響應值;a為校準曲線的截距;b為校準曲線的斜率;Cx為試樣中Zn的濃度(ug/L)。根據校準曲線計算求得水樣中鋅的實際濃度(ug/L):

式中:C為水樣中鋅的實際濃度,f為稀釋倍數,u為不確定度。

3 飲用水源中鋅含量的不確定度評定

3.1不確定度的來源分析

ICP-MS測定飲用水源水中鋅含量的不確定度的來源包括:標準儲備液引入的不確定度u(ρ)、標準溶液配制的引入不確定度u(f)、水樣稀釋引入的不確定度u(Cs0)、標準曲線擬合產生的不確定度u(cal)以及重復性測量的不確定度u(x)。

3.1.1 標準儲備液的不確定度

鋅標準儲備液濃度為10mg/L,其擴展不確定度U(k=2)為0.04mg/L,計算得標準溶液純度的相對不確定度為:

3.1.2 配制標準溶液的不確定度

10mg/L的鋅標準溶液用1mL移液管移取1.0mL到20mL2%的稀硝酸中,經過稱量計算得到濃度467.75ug/L的鋅標準中間溶液。因此,配制標準溶液的不確定度來源于稀釋使用的移液管和稱量使用的天平。

3.1.2.1 移液管引入的不確定度

1mL移液管的示值允許誤差為±0.007mL。實驗室溫度的最大允許變化范圍為±5℃,水的膨脹系數(2.1×10-4/℃)大大超過玻璃器具的膨脹系數(9.75×10-6/℃),因此可忽略玻璃器具體積變化所引起的不確定度,按均勻分布計算k=3,移液管標準不確定度分量的情況見表1。

表1 配制標準溶液過程中移液管不確定度計算Table1 Uncertainty Calculation of Solution Movement Tube in the Process of Preparation of Standard Solution

3.1.2.2 稱量引入的不確定度

由稱量引入的不確定度主要來自天平,萬分之一天平最大允許偏差為0.3mg,重復性偏差0.1mg,按均勻分布計算k=3,天平標準不確定度分量的情況見表2。

表2 配制標準溶液過程中稱量不確定度計算Table2 Uncertainty Calculation of weighing in the Process of Preparation of Standard Solution

標準溶液稀釋過程由移液管和稱量引入的綜合不確定度為:

3.1.3 水樣稀釋引入的不確定度

取10.0mL鋅水樣定容到50.0mL容量瓶,其不確定度來源于10mL移液管和50mL容量瓶。10.0mL移液管和50.0mL容量瓶的最大允許誤差分別為±0.020mL和±0.05mL,按均勻分布計算k=,各標準不確定度分量的情況見表3。

表3 水樣稀釋過程中不確定度分量計算Table3 Calculation of Uncertainty Components in the Process of smple dilution

由表3可知,水樣稀釋過程產生的標準不確定度為:

3.1.4 標準曲線擬合產生的不確定

以1%硝酸為介質,通過稱量配制含量為0.0、5.9170、10.846、49.454、100.36、467.75ug/L的鋅標準曲線系列,其均值為=105.72ng,采用最小二乘法對標準溶液含量(x)和CPS響應值(y)進行線性回歸,得到線性方程y=ax+b=5534.7x+19120.6,數據計算見4。本試驗對樣品重復測定了10次,通過計算得到樣品鋅的平均濃度為593.39ug/L,校準曲線擬合帶來的標準不確定度為:

剩余標準差Se,其公式為:

將樣品溶液測定的次數(p=10);標準溶液測定的總次數(n=5);標準溶液均值(=105.72ug/L);樣品溶液均值(x=593.39ug/L);標準曲線斜率(b=5534.7)代入式中:

3.1.5 結果重復性產生的不確定度

ICP-MS在測定過程中有波動,對樣品進行了10次獨立性重復測試,其測定結果=593.39ug/L,標準偏差為SD=3.05,則算

3.2 不確定度的合成

根據各分量得到合成相對不確定度為:

3.3 擴展不確定度及結果報告

3.3.1 擴展不確定度

根據《化學分析中不確定度的評估指南》[6],在化學分析結果不確定度的評定中置信概率為95%時,取包含因子k=2,則擴展不確定度為:

該樣品中鋅的含量表示為:593.39±5.70ug/L,包含因子k=2。

4 結語

4.1 通過測定ICP-MS測定飲用水源水中鋅的不確定度可以得出,影響因素有標準物質及其配制、樣品的稀釋、標準系列的配制、校準曲線、樣品重復性測量等,主要因素是標準溶液的配制,其次是重復性試驗。

4.2 通過測量ICP-MS測定飲用水源水中鋅不確定度的評定,確保結果的準確性,能夠確保檢測數據的質量。

[1]葛福玲,陳前芳.原子熒光法測定水中砷含量的不確定度評定[J].中國環境監測,2012,28(4):127-130.

[2]劉冬靜.ICP-MS測定武漢水源水及飲用水中的鈾[J],環境科學與技術,2010,(S1):263-264.

[3]姚琳,王志偉.ICP-MS測定飲用水源中的鉬、鈷、鈹、銻、鎳、鋇、釩、鈦和鉈等9種特定項目[J],光譜實驗室,2011,28(4):1852-1855.

[4]辛曉東,胡芳,張承曉等.高效液相色譜-電感耦合等離子體質譜法測水中不同形態砷,中國環境監測,2014,30(6):159-162.

[5]國家質量監督檢驗檢疫總局.測量不確定度評定與表示(JJF1059-2012)[S].北京:中國計量出版社,2012.

[6]中國合格評定國家認可委員會.化學分析中不確定度的評估指南[M].北京:中國計量出版社,2006.

猜你喜歡
移液管重復性水樣
化學分析方法重復性限和再現性限的確定
高職分析化學實驗教學微課的設計與制作
HC油田N138區注入水配伍性研究
我國相關標準水樣總α、總β放射性分析方法應用中存在的問題及應對
平行水樣分配器在環境監測中的應用
水樣童年
論重復性供述排除規則
海上時移地震中多道匹配的觀測系統重復性研究
“分子間有間隙”實驗的改進和反思
化工檢驗中玻璃儀器的規范操作與使用
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合