?

2型豬鏈球菌中國強毒株及其covR基因突變株的蛋白質組學研究

2016-07-29 07:55李先富王長軍潘秀珍
中國人獸共患病學報 2016年5期
關鍵詞:丙酮酸脫氫酶毒力

倪 華,張 劍,鄭 峰,胡 丹,李先富,王長軍,潘秀珍

?

2型豬鏈球菌中國強毒株及其covR基因突變株的蛋白質組學研究

倪華1,2,張劍1,2,鄭峰2,胡丹2,李先富2,王長軍2,潘秀珍1,2

1.南京師范大學生命科學學院,南京210023;2.南京軍區軍事醫學研究所,南京210002

摘要:目的通過比較2型豬鏈球菌中國強毒株05ZYh13及其covR基因突變株△covR蛋白表達譜差異,質譜鑒定差異表達蛋白,分析CovR在蛋白表達調控中的作用。方法首先將05ZYh13和△covR在THB培養基中培養至對數期,然后裂解細菌制備蛋白樣品。第一向等電聚焦電泳在ph1~10的IPG膠條上完成后進行SDS-PAGE電泳,電泳膠經掃描分析后選取蛋白點進行質譜鑒定。結果05ZYh13和△covR全菌蛋白裂解液經二維電泳分別得到559和491個蛋白點,經比對發現兩菌株蛋白表達量差異3倍以上蛋白點40個,經質譜鑒定出15個蛋白,主要涉及細胞代謝的酶類如谷氨酸脫氫酶、腺苷酸激酶、PTS系統成分等,以及分子伴侶蛋白如GroEL和Dnak等;電泳分離得到△covR特異蛋白點124個,質譜鑒定出15個,主要為參與細胞糖代謝過程中的酶,如磷酸甘油酸激酶、甘油醛-3-磷酸脫氫酶、丙酮酸激酶等;質譜鑒定05ZYh13特異表達蛋白5個。結論鑒定05ZYh13和△covR差異表達蛋白35個,部分蛋白涉及細菌毒力、宿主細胞粘附、細胞分裂等生命過程,同時蛋白分子伴侶在△covR中的表達變化說明CovR的調控可能發生在蛋白修飾水平,為研究CovR在調控細菌毒力中的作用和分子機制奠定基礎。

摘要:目的通過比較2型豬鏈球菌中國強毒株05ZYh13及其covR基因突變株△covR蛋白表達譜差異,質譜鑒定差異表達蛋白,分析CovR在蛋白表達調控中的作用。方法首先將05ZYh13和△covR在THB培養基中培養至對數期,然后裂解細菌制備蛋白樣品。第一向等電聚焦電泳在ph1~10的IPG膠條上完成后進行SDS-PAGE電泳,電泳膠經掃描分析后選取蛋白點進行質譜鑒定。結果05ZYh13和△covR全菌蛋白裂解液經二維電泳分別得到559和491個蛋白點,經比對發現兩菌株蛋白表達量差異3倍以上蛋白點40個,經質譜鑒定出15個蛋白,主要涉及細胞代謝的酶類如谷氨酸脫氫酶、腺苷酸激酶、PTS系統成分等,以及分子伴侶蛋白如GroEL和Dnak等;電泳分離得到△covR特異蛋白點124個,質譜鑒定出15個,主要為參與細胞糖代謝過程中的酶,如磷酸甘油酸激酶、甘油醛-3-磷酸脫氫酶、丙酮酸激酶等;質譜鑒定05ZYh13特異表達蛋白5個。結論鑒定05ZYh13和△covR差異表達蛋白35個,部分蛋白涉及細菌毒力、宿主細胞粘附、細胞分裂等生命過程,同時蛋白分子伴侶在△covR中的表達變化說明CovR的調控可能發生在蛋白修飾水平,為研究CovR在調控細菌毒力中的作用和分子機制奠定基礎。

關鍵詞:2型豬鏈球菌;毒力調控因子CovR;二維電泳;蛋白質組

2型豬鏈球菌(Streptococcussuisserotype 2,S.suis2)是一種世界性廣泛分布的人獸共患病病原菌[1-3]。

細菌致病過程是與宿主細胞相互作用的復雜過程,依靠復雜而精密的信號系統感受、傳導和響應外界環境變化,進而調節相應的基因表達以作出適應性反應[4]。二元信號轉導系統(two-component signal transduction system,TCS),是細菌中普遍存在的一種跨膜信號轉導系統[5-6]。

1材料與方法

1.1材料

1.1.1菌株與培養條件05ZYh13本實驗室保存[12];△covR本實驗室構建[11]。將05ZYh13和△covR菌株凍存菌分別接種于5%羊血哥倫比亞血平板,挑單菌落于THB(Todd-Hewitt Broth)液體培養基在37 ℃搖床震蕩培養至平臺期,1%比例轉接至THB后培養至對數晚期;△covR菌株THB培養基中加入100 μg/mL鹽酸壯觀霉素。

1.1.2儀器和試劑水化緩沖液:8 mol/L脲,2% CHAPS,0.2% Bio-Lyte 4/7,50 mMDTT,0.01%溴酚藍;平衡緩沖液:6 mol/L脲,2% SDS,20%甘油,375 mM Tris-HCl pH 8.8,含2% DTT或者2.5%碘乙酸銨;IPG干膠條(Ready Strip TMIPG Strip, ph1~10,17 cm)、蛋白定量試劑盒、CHAPS(Bio-Rad);等電聚焦儀、垂直板電泳儀、蛋白轉印系統(Bio-Rad);掃描儀Powerlook 2100XL;質譜儀4700型MALDI-TOF/MS。

1.2實驗方法

1.2.1全菌蛋白的制備05ZYh13和△covR培養至穩定生長期,6 000 g離心15 min收集菌體。菌體在液氮中研磨后加入蛋白裂解液1 mL/100 mg,蛋白樣品制成勻漿液后超聲破碎5 min,10 ℃下40 000g離心30 min,取上清,分裝后于-80 ℃凍存。改良Bradford 法測定蛋白含量。

1.2.2二維電泳及凝膠染色將05ZYh13和△covR蛋白樣品各取500 μg溶解于400 μL水化緩沖液中,蛋白樣載入17 cm IPG膠條后進行等電聚焦電泳,50 V,20 ℃主動水化12 h,S1 250 V 30 min,S2 1 000 V 1 h,S3 10 000 V 5 h,S4 10 000 V 60 000伏時聚焦,S5 500 V 任意時間。聚焦完成后的膠條分別用DTT和碘乙酸銨平衡緩沖液平衡15 min,10%的聚丙烯酰胺凝膠分離蛋白。每個蛋白樣品均平行進行3次。

1.2.3差異點分析及質譜鑒定TYPHOON SCANNE掃膠后用Image Master4.01進行圖像分析,獲取蛋白質點位置坐標和表達量等信息。以05ZYh13作為對照,分析△covR蛋白表達譜,統計有或無差異點以及蛋白表達Ratio≥3 的蛋白點,SPSS12.0 進行統計學分析。MALDI-TOF/MS獲得候選蛋白的肽質量指紋圖譜(Peptide Mass Fingerprint, PMF),Mascot軟件將PMF數據在NCBI非冗余蛋白數據庫進行比對搜索,搜索參數(搜索類型:PMF;消化酶:胰蛋白酶;固定化修飾:Carbamidomethyl;可變修飾:Oxidation;質量值:單一同位素;肽質量偏差:±100 ppm;Max missed cleavages: 1)。Mowse分值的概率P評價搜索結果的質量,分值大于51表明差異有統計學意義(P<0.05)。

2結果

2.1二維電泳結果05ZYh13和△covR菌株全菌蛋白經二維電泳分離后蛋白點多集中于pp~7,分子量多集中于30~70 kD,等電點(pI)多在3~6 之間,結果見圖1。

圖1 05ZYh13與突變株△covR全菌蛋白二維電泳圖譜Fig.1 Two-dimensional gel map of proteins from 05ZYh13 and △covR

2.2凝膠圖像分析結果對二維凝膠電泳結果進行掃膠比較分析,結果發現05ZYh13分離得到559個蛋白點,△covR菌株分離得到491個蛋白點,其共有的匹配蛋白點數367個。對367個匹配蛋白點表達量變化分析發現,3倍以上差異蛋白點共40個(圖2),其中15個蛋白點表達下調,25個蛋白點表達上調。對未匹配蛋白點分析發現,△covR特異表達蛋白點124個(圖3),05ZYh13特異蛋白點192個(圖4)。

注:綠色圈表示ΔcovR較05ZYh13菌株3倍以上差異蛋白點,紅色箭頭表示質譜鑒定蛋白點

Note: The green circles represent more than 3 ratios changed proteins of 05ZYh13 and △covRstrains. The red arrow represent identified proteins by mass spectrometry

圖205ZYh13與△covR菌株差異表達蛋白點分析圖

Fig.2Differentially expressed proteins analysis of 05ZYh13 and △covR

注:綠色圈表示△covR特異蛋白點,藍色箭頭表示質譜鑒定蛋白點

Note: The green circles represent specific proteins of △covRstrain. The blue arrow represent identified proteins by mass spectrometry

圖3△covR菌株特異蛋白點分析圖

Fig.3Specific expressed proteins of △covRmutant strain

注:綠色圈表示05ZYh13菌株特異蛋白點,粉色箭頭指示質譜鑒定蛋白點Note: The green circles represent specific proteins of 05ZYh13 strain. The pink arrow represent identified proteins by mass spectrometry 圖4 05ZYh13菌株特異蛋白點分析圖Fig.4 Specific expressed proteins of 05ZYh13 strain

2.3質譜鑒定結果

05ZYh13和△covR差異表達蛋白MALDI-TOF/MS質譜鑒定35個蛋白質,其中3倍以上差異表達蛋白15個,△covR菌株7個蛋白下調表達,8個蛋白上調表達。其中NADPH依賴的谷氨酸脫氫酶上調表達9.29倍,蛋白點Spot43是一未知功能蛋白,上調9倍;另外分子伴侶GroEL和DnaK分別上調表達5.59倍和6.78倍,在核苷酸代謝過程中具有重要作用的腺苷酸激酶上調表達3.13倍。在下調表達蛋白中50S核糖體蛋白L10下調7.79倍,下調變化最大;糖代謝相關酶6-磷酸果糖激酶和乳酸脫氫酶分別下調4.17、4.65倍;細胞壁合成密切相關的N-乙酰葡萄糖胺磷酸轉移酶下調表達3.36倍。

質譜鑒定△covR菌株特異蛋白15個,主要是涉及代謝過程中的酶和物質轉運過程。如在糖代謝過程中的甘油醛-3-磷酸脫氫酶、磷酸甘油酸激酶、磷酸甘油酸變位酶、丙酮酸激酶都是糖酵解途徑中重要的催化酶;Spot99蛋白點是3-酮乙酰-ACP還原酶,該酶是脂肪酸合酶的重要成分之一,催化脂肪酸合成;Spot5蛋白點是尿嘧啶DNA糖基化酶催化含尿嘧啶的單鏈和雙鏈DNA釋放游離尿嘧啶,Spot36蛋白點是脫氧核糖醛縮酶,能夠催化5-磷酸-2-脫氧-D-核糖分解成3-磷酸-D-甘油醛和乙醛,并可催化其逆反應,這兩個酶都是參與核苷酸代謝過程的重要酶類;Spot36蛋白點是二氫吡啶二羧酸還原酶,Spot312蛋白點是二氫碟酸合酶,二者都與氨基酸代謝過程緊密聯系;另外支鏈氨基酸轉運ATP酶和ABC型精氨酸轉運子都是物質轉運相關蛋白;鑒定的蛋白中還發現了一些結構蛋白如30S核糖體蛋白,膜錨定脂蛋白等。對05ZYh13特異蛋白點進行質譜鑒定共得到5個對應蛋白,分別是跨膜蛋白、核糖體蛋白、翻譯延伸因子、葡萄糖-1-磷酸胸腺嘧啶轉移酶以及丙酮酸脫氫酶。結果見表1。

表105ZYh13與△covR菌株差異蛋白點質譜鑒定結果

Tab.1Mass spectrum identification results of differentiated proteins from 05ZYh13 and △covR strains

Spotno.Gino.No.of05ZYH33geneProteinfunctionannotationTheoreticalMr/pIExperimentalMr/pIMascotscoreFoldchangesCOGΔcovR較05ZYH33表達差異3倍以上蛋白Morethan3ratiosdifferentialproteinsbetween05ZYH33andΔcovR15Gi:81177339SSU05_0252NAD(P)H-dependentglu-tamatedehydrogenase48780/5.3949119/5.77789.29Metabolism21Gi:500942565SSU05_18033-ketoacyl-ACPreductase25588/5.4821063/5.11984.35Metabolism40Gi:500275857SSU05_098450SRibosomalproteinL1018580/6.6725074/4.87118-7.79Informationstor-ageandprocessing43Gi:500941448SSU05_1092Hypotheticalprotein7400/6.298363/6.05589.00uncharacterized115Gi:145690806SSU05_0148ChaperoninGroEL23200/4.7435658/4.60665.59Cellularproces-sesandsignaling125Gi:223897437SSU05_0506PeptidaseU3246953/5.0436419/4.79533.36Cellularproces-sesandsignaling161Gi:500274274SSU05_0300ChaperoneproteindnaK64787/4.6238564/4.80576.78Cellularproces-sesandsignaling180Gi:489026222SSU05_0091Adenylatekinase23763/4.8839981/4.59683.13Metabolism317Gi:637064337SSU05_1076Lactatedehydrogenase35400/5.0553084/4.88161-4.65Metabolism334Gi:500942541SSU05_1778PTSmannosetransportersubunitIIAB35310/4.9556013/4.671313.94Metabolism344Gi:500274979SSU05_0543ATP-dependent6-phospho-fructokinase35526/5.5155816/5.40240-4.17Metabolism365Gi:145691966SSU05_1298dTDP-glucose4,6-de-hydratase44617/5.9058844/5.28156-6.62Metabolism476Gi:500941609SSU05_1172F0F1ATPsynthasesub-unitbeta51976/4.9670296/4.59256-3.03Metabolism478Gi:656224244SSU05_0852Serinehydroxymethyl-transferas45590/5.6570358/5.61200-3.56Metabolism495Gi:500942369SSU05_1854N-acetylglucosamine-1-phosphateuridyltransferase50075/5.8473783/5.5558-3.36MetabolismΔcovR菌株特異蛋白Specificexpressedproteinsby△covRmutantstrain5Gi:489025217SSU05_1460Uracil-DNAglycosylase22039/9.317203/4.2652Informationstor-ageandprocessing24Gi:500942332SSU05_1543ABC-typebranched-chainaminoacidtransportsys-tems,ATPasecomponent25533/5.6121742/5.4457Metabolism26Gi:500943265SSU05_2067ArginineABCtransporterATP-bindingprotein27119/5.6421934/4.97117Metabolism36Gi:489024864SSU05_1085Deoxyribose-phosphateal-dolase23188/4.5924100/6.11105Metabolism44Gi:146318482SSU05_0828Dihydrodipicolinatereduc-tase27349/5.0025185/5.9795Metabolism

注:Score分數大于51具有統計學意義,P<0.05

Note: More than 51 scores showed the data has significant differences.P<0.05

3討論

病原菌在致病過程由多種致病因子共同參與,如莢膜多糖、溶血素、胞外因子、溶菌酶釋放蛋白等,也包括一些生長及代謝相關的相互作用因子[4]。本文對CovR基因缺失株與中國強毒株05ZYh13蛋白質譜的比較分析后,用MADLI-TOF-MS方法鑒定出35個差異表達蛋白。為進一步研究毒力負調控因子CovR在調控蛋白表達的分子機制奠定基礎。

糖酵解是生物代謝的重要部分,能夠為細胞提供能量,參與該過程的很多酶類定位于鏈球菌或其它細菌表面[13-14]。其中甘油醛-3-磷酸脫氫酶(GAPDH)、磷酸甘油酸激酶、磷酸甘油醛變位酶、丙糖磷酸異構酶和烯醇化酶(Enolase)除參與糖代謝過程外,還具有纖溶酶/纖溶酶原蛋白結合能力,能夠增加細菌對組織的侵入能力[15]。Brassard等[16]克隆并純化獲得S.suis2的GAPDH重組蛋白,并證明其與宿主細胞的粘附相關。Quessy等[17]構建S.suis2的gapdh基因缺陷株,發現GAPDH表達缺失株對宿主氣管表皮細胞的粘附能力降低。另外Tsugaw等[18]對類志賀氏菌的研究發現GroEL能增強細菌對宿主細胞的粘附。Singh等[19]對金黃色葡萄球菌的研究發現DnaK表達缺陷導致,細菌合成生物被膜減少,對宿主細胞的粘附減弱。本研究發現GAPDH(Spot63)、磷酸甘油酸激酶(Spot57)、磷酸甘油醛變位酶(Spot208)、GroEL(Spot115)和DnaK(Spot161)在△covR中表達均明顯增加,此類與粘附作用相關蛋白表達的增加可能與△covR菌株對宿主細胞的粘附增強有關。

丙酮酸激酶(Spot59),其同源蛋白在肺炎鏈球菌中與毒力密切相關[20],Burall等[21]在綿羊病原菌Chlamydiaabortus的研究中發現,當丙酮酸激酶表達缺陷時該菌毒力減弱。Wang等[22]在S.suis2二元信號系統VirR/VirS的蛋白質組研究發現,△virRS菌株丙酮酸激酶表達下調1.7倍。蛋白點Spot15是SSU05_0252基因編碼的NADPH依賴的谷氨酸脫氫酶(NAD(P)H-dependent glutamate dehydrogenase, GDH),該蛋白位于S.suis2的細胞表面,能夠刺激機體產生高滴度的抗體,作為一個毒力蛋白已經引起廣泛關注[23]。GDH在△covR菌株中上調9.29倍,丙酮酸激酶為特異性表達蛋白,提示CovR可能通過調節GDH和丙酮酸激酶的表達而影響細菌毒力,然而CovR與GDH和丙酮酸激酶的調控關系仍需要進一步研究證實。

PTS是一個多蛋白系統,在許多細菌的糖代謝過程中起關鍵作用,參與細菌代謝和翻譯過程的調節。在S.mutans[24]和L.monocytogenes[25]病原菌中PTS甘露糖轉運子亞單位IIAB在碳代謝抑制和毒力基因下調中承擔重要作用。另外腺苷酸激酶(Adk)可能也參與細菌致病過程,在肺炎鏈球菌中SpAdk為肺炎鏈球菌生長必須基因,其細胞內ATP水平隨SpAdk增加成比例增加,SpAdk影響細胞內能荷穩態,其突變體導致細胞分裂發生缺陷[26]。在鼠疫耶爾森氏菌的研究中,AKyp的突變導致細菌毒力顯著下降[27]。在本研究中PTS甘露糖轉運子亞單位IIAB(Spot334)和Adk(Spot180)在△covR菌株中的表達分別上調表達3.94和3.13倍,但CovR是否對這兩個蛋白具有調控作用仍需進一步研究。

本文對S.suis2中國強毒株05ZYh13與△covR菌株蛋白質譜比較鑒定了35個差異表達蛋白,結果表明CovR可能通過對細胞代謝過程中關鍵酶如GAPDH、磷酸甘油酸激酶、磷酸甘油醛變位酶、GDH、丙酮酸激酶以及分子伴侶蛋白GroEL和DnaK等多方面的表達調控,從而影響細菌的毒力及致病性。但是由于本研究采用全菌蛋白裂解法制備樣品,所制樣品中多為胞漿蛋白,而胞膜蛋白含量低、缺乏分泌蛋白。因此未鑒定出莢膜多糖、溶血素(Sylisin)、溶菌酶釋放蛋白(MRP)、胞外因子(EF)以及血清渾濁因子(OFS)等分泌蛋白或胞膜蛋白類的S.suis2毒力因子;另外由于質譜鑒定蛋白點偏少,也可能造成一些差異表達的毒力因子未被發現。后續課題組將分別制備細菌分泌蛋白、胞膜蛋白和胞漿蛋白樣品,從而獲得△covR菌株更全面的蛋白表達信息,為進一步研究CovR調控S.suis2毒力的分子機制奠定基礎。

參考文獻:

[1] Feng Y, Zhang H, Wu Z, et al.StreptococcussuisInfection: an emerging/reemerging challenge of bacterial infectious diseases?[J]. Virulence, 2014, 5(4): 477-497.DOI:10.4161/yiru.28595.

[2] Pan Z, Ma J, Dong W, et al. Novel variant serotype ofStreptococcussuisisolated from piglets with meningitis[J]. Appl Environm Microbiol, 2014, 81(3): 976-985. DOI: 10.1128/AEM.02962-14.

[3] Gottschalk M, Xu J, Calzas C, et al.Streptococcussuis: a new emerging or an old neglected zoonotic pathogen?[J]. Future Microbiol, 2010, 5(3): 371-391. DOI: 10.2217/fmb.10.2.

[4] Calva E, Oropeza R. Two-component signal transduction systems, environmental signals, and virulence[J]. Microbial Ecol, 2006, 51(2): 166-176.

[5] Han H, Liu C, Wang Q, et al. The two-component system Ihk/irr contributes to the virulence ofStreptococcussuisserotype 2 strain 05ZYh13 through alteration of the bacterial cell metabolism[J]. Microbiology, 2012, 158(7): 1852-1866. DOI: 10.1099/mic.0.057448-0.

[6] Li J, Chen T, Yang Z, et al. The two-component regulatory system ciarh contributes to the virulence ofStreptococcussuis2[J]. Vet Microbiol, 2011, 148(1): 99-104. DOI: 10.1016/j.vetmic.2010.08.005.

[7] Mitrophanov AY, Churchward G, Borodovsky M. Control ofStreptococcuspyogenesvirulence: modeling of the CovR/S signal transduction system[J]. J Theoret Biol, 2007, 246(1): 113-128.

[8] Jiang SM, Cieslewicz MJ, Kasper DL, et al. Regulation of virulence by a two-component system in Group BStreptococcus[J]. J Bacteriol, 2005, 187(3): 13-1105.

[9] Dmitriev A, Mohapatra SS, Chong P, et al. CovR-controlled global regulation of gene expression inStreptococcusmutans[J]. PLoS One, 2011, 6(5): e20127. DOI: 10.1371/journal.pone.0020127.

[10] Trihn M, Ge X, Dobson A, et al. Two-component system response regulators involved in virulence ofStreptococcuspneumoniaeTIGR4 in infective endocarditis[J]. PLoS One, 2013, 8(1): e54320. DOI: 10.1371/journal.pone.0054320.

[11] Pan XZ, Ge JC, Li M, et al. The orphan response regulator CovR: a globally negative modulator of virulence inStreptococcussuisserotype2[J]. J Bacteriol, 2009, 191(8): 2601-2612. DOI: 10.1128/JB.01309-08.

[12] Chen C, Tang J, Dong W, et al. A glimpse of Streptococcal toxic shock syndrome from comparative genomics ofS.suis2 Chinese isolates[J]. PLoS One 2007,2(3): e315.

[13] Jones MN, Holt RG. Cloning and characterization of an α-enolase of the oral pathogen streptococcus mutans that binds human plasminogen[J]. Biochem Biophysic Res Communicat, 2007, 364(4): 924-929.

[14] Hughes MJ, Moore JC, Lane JD, et al. Identification of major outer surface proteins ofStreptococcusagalactiae[J]. Infect Immun, 2002, 70(3): 1254-1259.

[15] Kinnby B, Booth NA, Svensater G. Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions[J]. Microbiology, 2008, 154(Pt 3): 924-931. DOI: 10.1099/mic.0.2007/013235-0.

[16] Brassard J, Gottschalk M, QuessyS.Cloningand purification of theStreptococcussuisserotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin[J]. Vet Microbiol, 2004, 102(1/2): 87-94.

[17] Brassard J, Gottschalk M, QuessyS.Decreaseof the adhesion ofStreptococcussuisserotype 2 mutants to embryonic bovine tracheal cells and porcine tracheal rings[J]. Canad J Vet Research, 2001, 65(3): 156-160.

[18] Tsugawa H, Ito H, Ohshima M, et al. Cell adherence-promoted activity of Plesiomonas shigelloides groEL[J]. J Med Microbiol, 2007, 56(1): 23-29.

[19] Singh VK, Syring M, Singh A, et al. An insight into the significance of the Dnak heat shock system inStaphylococcusaureus[J]. Int J Med Microbiol, 2012, 302(6): 242-252. DOI: 10.1016/j.ijmm.2012.05.001.

[20] Yesilkaya H, Spissu F, Carvalho SM, et al. Pyruvate formate lyase is required for pneumococcal fermentative metabolism and virulence[J]. Infect Immun, 2009, 77(12): 5418-5427. DOI: 10.1128/IAI.00178-09.

[21] Burall LS, Rodolakis A, Rekiki A, et al. Genomic analysis of an attenuatedChlamydiaabortuslive vaccine strain reveals defects in central metabolism and surface proteins[J]. Infect Immun, 2009, 77(9): 4161-4167. DOI: 10.1128/IAI.00189-09.

[22] Wang H, Shen X, Zhao Y, et al. Identification and proteome analysis of the two-component VirR/virS system in epidemicStreptococcussuisserotype 2[J]. FEMS Microbiol Lett, 2012, 333(2): 160-168. DOI: 10.1111/j.1574-6968.2012.02611.x.

[23] Silva LM, Baums CG, Rehm T, et al. Virulence-associated gene profiling ofStreptococcussuisisolates by PCR[J]. Vet Microbiol, 2006, 115(1/3): 117-127.

[24] Abranches J, Candella MM, Wen ZT, et al. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence inStreptococcusmutans[J]. J Bacteriol, 2006, 188(11): 3748-3756.

[25] Vu-Khac H, Miller KW. Regulation of mannose phosphotransferase system permease and virulence gene expression inListeriamonocytogenesby the EII(t)Man transporter[J]. Appl Environm Microbiol, 2009, 75(21): 6671-6678. DOI: 10.1128/AEM.01104-09.

[26] Thach TT, Luong TT, Lee S, et al. Adenylate kinase fromStreptococcuspneumoniaeis essential for growth through its catalytic activity[J]. FEBS Open Bio, 2014, 4(1): 672-682. DOI: 10.1016/j.fob.2014.07.002.

[27] Munier-Lehmann H, Chenal-Francisque V, Ionescu M, et al. Relationship between bacterial virulence and nucleotide metabolism: a mutation in the adenylate kinase gene rendersYersiniapestisavirulent[J]. Biochem J, 2003, 373(2): 515-522.

DOI:10.3969/j.issn.1002-2694.2016.05.001

通訊作者:潘秀珍,Email:panxiuzhen_2004@163.com

中圖分類號:R378

文獻標識碼:A

文章編號:1002-2694(2016)05-417-07

Corresponding author:Pan xiu-zhen, Email: panxiuzhen_2004@163.com

收稿日期:2015-12-16修回日期:2016-03-18

Comparative proteomic research between theStreptococcussuisserotype 2 Chinese highly virulent strain and thecovRisogenic mutant

NI Hua1,2,ZHANG Jian1,2, ZHENG Feng2, HU Dan2,LI Xian-fu2, WANG Chang-jun2, PAN Xiu-zhen1,2

(1.CollegeofLifeSciences,NanjingNormalUniversity,Nanjing210023,China;2.InstituteofMilitaryMedicalSciences,NanjingCommand,Nanjing210002,China)

Abstract:In order to search for the virulence factor regulated by CovR, the proteomics of the whole-cell protein were compared between Streptococcus suis serotype 2 wild strain 05ZYh13 and an isogenic mutant strain △covR by two-dimensional gel electrophoresis. The 05ZYh13 and △covR were cultured in Todd-Hewitt Broth medium then the whole-cell proteins sample were extracted. The 2-DE gel was conducted using the ph1-10 IPG strip for the first dimension IEF and followed by SDS-PAGE. After electrophoresis, the gels were stained and analyzed. Results showed that the 05ZYh13 and △covR had 559 and 491 protein spots respectively. Compared with the 05ZYh13, the mutant strain had 40 proteins more than 3 folds changed which identified 15 proteins by mass spectrum. Those proteins major involved in cell metabolic enzymes, such as adenylate kinase, glutamate dehydrogenase and PTS system components, etc., as well as molecular chaperone proteins GroEL and Dnak. The △covR had about 124 specific protein spots in which 15 proteins were identified by mass spectrum. Those proteins were participate in the cell process of sugar metabolism, such as phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase, etc. Beside of those 5 specific proteins of 05ZYh13 was identified by mass spectrum. Appraisement of 35 differentially expressed proteins involved in bacterial virulence, host cell adhesion and cell division, etc., and the molecular chaperone up-regulated expression showed that the regulation may be occurred in the profile of protein modification. These results provided better understanding on pathogenic mechanisms of Streptococcus suis type 2 at the level of protein expression.

Key words:Streptococcus suis serotype 2; CovR; two-dimensional gel electrophoresis; proteome Funded by the National Natural Science Foundation of China (Nos. 81571965 and 81471920), the Natural Science Foundation of Jiangsu Province (No. BK20151091) and the 333 Engineering Science Foundation of Jiangsu Province (No. BRA2014363)

國家自然科學基金(Nos. 81571965, 81471920)、江蘇省自然科學基金(No. BK20151091)和江蘇省333工程科研資助項目(BRA2014363)聯合資助

猜你喜歡
丙酮酸脫氫酶毒力
3-溴丙酮酸磷脂復合物納米乳的制備及其對乳腺癌MCF-7細胞的抑制作用
丙酮酸鈉藥理作用及其臨床應用前景研究進展
傳說中的快速解酒方法有效嗎?
酒量是可以練出來的?
乳酸脫氫酶對膿毒癥患者預后的評估價值
乳酸催化轉化丙酮酸溶液中乳酸與丙酮酸絡合萃取分離技術研究
申嗪霉素和咪唑菌酮復配對幾種病害的室內毒力測定研究
阿維菌素與螺螨酯對沾化冬棗截形葉螨的毒力篩選及田間防效研究
血流感染肺炎克雷伯菌pLVPK毒力質粒的分布及與耐藥的關系
膳食補充劑丙酮酸鈣的合成工藝研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合