?

玉米抗禾谷鐮刀菌的轉錄組分析

2016-08-27 04:01劉永杰馬傳禹馬雪娜徐明良
作物學報 2016年8期
關鍵詞:禾谷抗病鐮刀

劉永杰 馬傳禹 馬雪娜 徐明良

中國農業大學國家玉米改良中心, 北京100193

玉米抗禾谷鐮刀菌的轉錄組分析

劉永杰 馬傳禹 馬雪娜 徐明良*

中國農業大學國家玉米改良中心, 北京100193

赤霉菌莖腐病是由禾谷鐮刀菌(Fusarium graminearum, 有性態, Gibberella zeae)引起的一類土傳性病害, 嚴重危害玉米的產量和品質。本研究依據玉米第10和第1染色體上的2個抗莖腐病QTL, qRfg1和qRfg2、培育近等基因系NIL-R (2個QTL位點均為抗病等位基因)和NIL-S (2個QTL位點均為感病等位基因)。在成株期和幼苗期接種禾谷鐮刀菌, 兩近等基因系的抗性差異均顯著。用2個近等基因系的幼根接種禾谷鐮刀菌, 進行轉錄組分析研究。結果表明, 與NIL-S相比, NIL-R在接種禾谷鐮刀菌后, 乙烯(ethylene, ET)合成、信號途徑基因, 病程相關蛋白、脫氧雪腐鐮刀菌烯醇毒素(deoxynivalenol, DON)解毒基因等呈現特異上調表達。與NIL-S相比, 有1170個基因在NIL-R對照組中表達量較高, 其中水楊酸(salicylic acid, SA)、茉莉酸(jasmonic acid, JA)和乙烯合成和信號介導途徑以及苯丙烷合成途徑中的基因顯著富集; 接種禾谷鐮刀菌6 h或18 h后, 病程相關蛋白、激素JA和ET合成基因、DON解毒基因在NIL-R中表達量較高。

玉米; 莖腐??; 轉錄組; 抗性; JA/ET; 苯丙烷

玉米莖腐病, 又稱莖基腐病, 是一類危害嚴重的土傳性病害, 降低玉米的產量和品質。莖腐病由多種病原菌通過根系或莖基部傷口單獨或復合侵染玉米所致, 其中包括腐霉菌、炭疽菌和鐮刀菌等。赤霉菌莖腐病是由禾谷鐮刀菌(Fusarium graminearum, 有性態Gibberella zeae)引起[1]。該病原菌還可引起玉米穗腐?。?], 小麥[3]和大麥[4]赤霉病。此外,禾谷鐮刀菌還可以侵染水稻[5]和擬南芥[6]。

禾谷鐮刀菌是鐮刀屬致病菌的一種, 該類病菌分泌的脫氧雪腐鐮刀菌烯醇毒素(deoxynivalenol,DON), 嚴重危害人畜的健康; 美國食品藥品委員會規定實用面粉中該毒素的含量不能超過1 μg g-1[7]。DON對細胞功能的影響在動物中研究較為深入, 有報道稱DON可與60S核糖體亞基結合來抑制蛋白質的合成, 進而激活細胞衰亡程序導致細胞死亡[8-10]。植物中, DON可體外抑制小麥核糖體中蛋白的合成[11]。DON并非病原菌生長必需, 但有報道稱該毒素影響病原菌致病性, DON可作為一種有毒因子參與到病原菌侵染寄主的過程中[10]。與野生型相比, 毒性合成基因tri-5突變株在侵染小麥和玉米時致病力減弱[12-14];DON不僅可引起細胞內過氧化氫的積累以至于引起細胞程序化死亡, 還可以激活抗性響應基因病程相關蛋白(PR)的表達[15]。寄主細胞可通過誘導毒素降解基因或毒素轉運基因的表達來降解毒素或將毒素轉運出胞質[16]。小麥抗赤霉病 QTL-Fhb1可能編碼一種DON-葡糖基轉移酶(DON-glucosyltransferase,DOGT)或者能夠調節該轉移酶的蛋白[17]。有報道指出UDP-葡糖基轉移酶(UDP-glucosyltransferases, UGTs)和ABC轉運蛋白(ABC transporters)能夠降低DON的毒性[17-18]。DON或鐮刀菌接種的寄主中都會誘導產生解毒蛋白如谷胱甘肽 S-轉移酶(glutathione S-transferases, GSTs)、多藥抗性蛋白 multidrug resistance protein (MRP)、MATE efflux family proteins、重金屬轉運蛋白(heavy metal transport/detoxification proteins)、多向耐藥性蛋白(pleiotropic drug resistance,PDR)、PDR類 ABC轉運蛋白(PDR type ABC transporters)等[19-21]。

Kruger等[22]將禾谷鐮刀菌接種到小麥穎殼后發現 312個基因差異表達, 其中包括編碼苯丙烷代謝途徑的酶類、氧化還原過程酶類、GSTs、PR蛋白和其他抗性或逆境相關的蛋白的基因; Boddu等[20]利用DON接種大麥后發現被誘導的主要為PR蛋白基因、氧化脅迫相關基因、苯丙烷類合成酶。Zhu等[23]以 F. oxysporum接種擬南芥后發現多種植物激素,茉莉酸(jasmonic acid, JA)、乙烯(ethylene, ET)、水楊酸(salicylic acid, SA)、生長素(auxin)及信號傳導途徑基因都被誘導。Lanubile等[24]利用 Fusarium verticillioides接種穗腐病抗性不同的玉米后發現, 編碼PR蛋白、苯丙烷代謝途徑酶類的基因、氧化脅迫相關基因、ET信號途徑的基因在抗病和感病材料中都被誘導, JA信號途徑在抗病材料CO441中被誘導。

盡管目前對莖腐病的研究較多, 多個抗莖腐病QTL和基因都被定位, 但莖腐病的抗病機制仍不是很清楚。本研究利用不同抗性水平的近等基因系接種禾谷鐮刀菌后進行轉錄組測序, 試圖揭示玉米對禾谷鐮刀菌的抗性機制, 對于研究寄主和病原菌互作, 加速莖腐病抗性育種進程具有重要意義。

1 材料與方法

1.1 玉米材料

早期研究中, 本實驗室利用抗病自交系 1145和感病自交系Y331配制回交群體定位了2個抗莖腐病QTL, qRfg1和qRfg2, 抗病等位基因均來自1145。在高世代回交群體中, 分別挑選帶有最短 qRfg1 (0.7 Mb)和qRfg2 (4 Mb)抗病區段的二個重組個體, 雜交后自交, 得到近等基因系NIL-R (qRfg1++/qRfg2++)和NIL-S (qRfg1--/qRfg2--)。利用GoldenGate 3KSNP (Illumina, San Diego, CA, USA)對2個NIL的基因組進行檢測, 發現二者 99%以上的遺傳背景和輪回親本Y331一致。從2個近等基因系各取80粒種子進行發苗。種子經滅菌的ddH2O浸泡12 h后用70%的酒精消毒5 min。用滅菌的ddH2O沖洗一次, 再用10%的次氯酸鈉(NaClO)浸泡30 min, 浸泡過程中每隔10 min搖晃一次, 再用滅菌的 ddH2O沖洗 3次后轉置20%的多菌靈(carbendazol)溶液中浸泡 12 h, 用滅菌的 ddH2O沖洗干凈后放入滅菌的發芽盒中。將發芽盒于16 h光照/8 h黑暗, 溫度為(27±1)℃的光照培養箱中培養。待玉米根長到6~8 cm長時接種禾谷鐮刀菌孢子液。

1.2 孢子液培養和接菌

利用綠豆培養基(mung bean medium)培養禾谷鐮刀菌, 獲取孢子液[25]。首先將禾谷鐮刀菌在PDA培養基上擴繁, 待菌絲長滿整個培養基時, 將整個PDA培養基接種到綠豆培養基中, 將綠豆培養基在180轉 min-1的轉速下暗培養7 d, 整個過程保持25℃的恒定溫度。用紗布將綠豆培養基過濾, 去除菌絲、孢子囊和PDA培養基; 然后將過濾液在4℃離心機中以7500 × g的速度離心15 min后去除上清液;得到的孢子經滅菌的ddH2O懸浮混勻后, 濃度調至1×107個 mL-1, 于4℃冰箱保存備用。在轉速為50×g的搖床上, 將玉米根在孢子液中浸泡 1 h, , 以保證孢子液懸??; 再將接種后的玉米幼根轉移至(27±1)℃, 16 h光照/8 h黑暗的恒溫培養箱中培養。

1.3 總RNA提取

接種后0 h (將玉米幼根在孢子液中浸泡后立即取出)、6 h和18 h取樣, 每個樣品由10根玉米幼根組成, 設 2個生物學重復。立刻將樣品用液氮冷凍并轉移至-70℃保存備用。按照 TRIzol試劑盒(Invitrogen公司, 美國)說明書提取玉米幼根總RNA,并用RNeasy Mini試劑盒(Qiagen公司, 荷蘭)處理。用Nanodrop分光光度計和1%瓊脂糖凝膠檢測所提取總RNA的濃度和質量。將所得的RNA樣品用于轉錄組測序。

1.4 轉錄組測序

測序所用 RNA由貝瑞和康公司進行測序文庫的構建并利用Illumina HiSeq 2000平臺對12個樣品的cDNA文庫測序。測序所得的原始序列(raw reads)經過質量處理(去除短片段和低質量片段)后得到高質量clean reads。

1.5 轉錄組數據分析

利用Tophat 2.0.7將得到的clean reads與B73玉米基因組比對[26], 只保留能夠特異比對到玉米基因組的片段用于后續分析。利用FPKM (Fragments Per Kilobase of exon model per Million mapped reads)計算基因的表達量, 隨后用DEseq進行差異基因的篩選[27]。篩選條件為兩基因之間的P-value/FDR < 0.05, Foldchange > 1。根據玉米基因組注釋基因, 對于玉米中無功能注釋信息的基因, 通過Blast2Go比對擬南芥數據庫進行注釋[28]。將所得差異基因進行Gene Ontology (GO)分析[29]。

1.6 熒光定量PCR

熒光定量PCR中用到的cDNA是利用M-MLV 第1鏈合成試劑盒(Invitrogen, 美國)合成。熒光定量PCR用到的染料為SYBR Green II (TaKaRa, 日本),儀器為Roter-Gene 6000 (Corbett Research, 悉尼, 澳大利亞)。PCR過程中以玉米GADPH作為內參基因,以2-ΔΔCt方法計算基因的相對表達量, 每個基因設2個生物學重復。熒光定量 PCR中用到的引物均用Primer 3.0設計, 所選基因及引物序列見表1。

表1 Real-time qRT-PCR分析中所用引物序列信息Table 1 Primers used in real-time qRT-PCR analysis

2 結果與分析

2.1 表型鑒定

在成株期和幼苗期, 分別評價 NIL-R和 NIL-S對禾谷鐮刀菌的抗性。與NIL-S相比, NIL-R在2個時期均可顯著提高玉米對禾谷鐮刀菌的抗性(圖1)。

圖1 玉米在成株期和幼苗期對禾谷鐮刀菌的抗性Fig. 1 Disease resistance against F. graminearum at seedling and mature stages.

2.2 轉錄組測序質量及reads的比對

轉錄組測序后, 2個NIL共得到175 570 000個reads, 平均每個樣品中reads數為29 261 667。對每個樣品 reads進行質量檢測, 各樣品的 Q30均值為94.6, Q20均值為86.1。所有樣品的2個生物學重復之間的皮爾森系數高于0.96。利用Tophat 2.0.7將所得reads與B73基因組參考序列比對, 共131 170 000 個 reads可比對到 B73基因組上, 平均每個樣品有21 861 667個; 114 640 000個 reads可特異比對到B73基因組上, 平均每個樣品有19 106 667個。

2.3 熒光定量PCR

在NIL-R和NIL-S中選取15個差異表達的基因,利用實時熒光定量PCR檢測禾谷鐮刀菌接種后0 h、6 h和18 h基因的表達情況。如圖2, 兩平臺數據間的皮爾森相關系數為 0.78, 說明了 RNAseq數據的可靠性, 可進行禾谷鐮刀菌接種后的轉錄組分析。

2.4 接種禾谷鐮刀菌后 NIL-R和 NIL-S中基因的差異表達

接種禾谷鐮刀菌后, 對NIL-R和NIL-S中基因的表達進行分析, 共檢測到5583個基因差異表達(圖3)。與對照組相比, 接種后6 h, 1495個基因在NIL-R中差異表達, 其中940個上調表達, 555個下調表達;NIL-S中有2964個基因差異表達, 其中1455個上調表達, 1509個下調表達。接種后18 h, NIL-R中有1846個基因差異表達, 其中 1317個上調表達, 529個下調表達; NIL-S中有 3856個基因差異表達, 其中2018個上調表達, 1838個下調表達。

圖2 Real-time qRT-PCR分析驗證實驗Fig. 2 Validation of DEGs by qRT-PCR

圖3 接種禾谷鐮刀菌后, NIL-R和NIL-S中差異表達的基因Fig. 3 The expression pattern of differentially expressed genes in NIL-R and NIL-S during infection of F. graminearum

接種后6 h, NIL-R和NIL-S中共有的差異基因1067個, NIL-R特有差異基因428個, NIL-S特有差異基因 1897個; 接種后 18 h, 共有差異表達基因1267個, NIL-R特有的579個, NIL-S特有的2589個(圖4-A)。分析共有差異表達基因后發現, 接種后6 h,NIL-R和NIL-S有669個基因上調表達, 390個基因下調表達, 5個基因在NIL-R中上調而在NIL-S中下調表達, 3個基因在NIL-R中下調而在NIL-S中上調表達; 接種后18 h, NIL-R和NIL-S共有的差異表達基因中, 949個上調表達, 304個下調表達, 9個基因在NIL-R中上調而在NIL-S中下調表達, 5個基因在NIL-R中下調而在 NIL-S中上調表達。NIL-R和NIL-S共有差異表達基因中, 上調表達的基因多于下調表達的基因(圖4-B)。

圖4 接種禾谷鐮刀菌后NIL-R和NIL-S中差異表達基因的維恩圖Fig. 4 Veen diagrams of all the differentially expressed genes (DEGs) in the resistant NIL-R and susceptible NIL-S after inoculation of F. graminearum

2.5 NIL-R特異上調表達的抗病相關基因

接種后6 h, NIL-R中特有的428個差異基因中,上調表達的266個, 下調表達的162個; 接種后18 h,NIL-R中特有的579個差異基因中, 上調表達的359個, 下調表達的220個。為研究NIL-R對禾谷鐮刀菌的抗性響應, 對NIL-R中2個時間點特有上調表達的基因進行分析。接種后6 h, NIL-R中多種和抗病相關的基因特有上調表達(表2), 包括編碼ET合成酶(1-aminocyclopropane-1-carboxylate oxidase 1,ACO)和乙烯信號途徑中 ethylene-responsive factorlike protein 1 (ERF1)、EIN3-binding F-box protein 1 (EBF1)、ETHYLENE-INSENSITIVE3-like 1 (EIL1),病程相關蛋白 PR4、索馬甜蛋白(putative thaumatin domain family protein)、germin-like protein 2 fragment (GLP2 fragment)、脂轉運蛋白(lipid-transfer protein, LTP)及其他抗性相關蛋白GST23、過氧化物酶(peroxidase 16, POD16)、LRR激酶(leucine-rich repeat protein kinase family protein)的基因。

接種后18 h, NIL-R中有359個基因特有上調表達, 其中包括編碼解毒蛋白 ABC類轉運蛋白(ABC-2 type transporter family protein)、重金屬轉運蛋白(MATE efflux family protein), 及編碼病程相關蛋白(PR1、PR4), 編碼激酶類基因和苯丙烷代謝途徑中合成木質素的羥基肉桂酰輔酶A奎尼羥基肉桂轉移酶(hydroxycinnamoyl-CoA hikimate/quinate hydroxycinnamoyl transferase, HCT)的基因等(表3)。

表2 接種后6 h, NIL-R中特異上調表達的抗病相關基因Table 2 Disease resistance genes specifically up-regulated in NIL-R at 6 hai

表3 接種后18 h, NIL-R中特異上調表達的抗病相關基因Table 3 Disease resistance genes specifically up-regulated in NIL-R at 18 hai

(續表3)

接種后 6 h, 5個基因(GRMZM2G429000、GRMZM5G805132、GRMZM2G456217、GRMZM5 G847744、GRMZM2G576460)在NIL-R中上調而在NIL-S中下調表達。其中 GRMZM2G429000和GRMZM5G805132編碼赤霉素響應蛋白 2 (Gibberellin responsive 2, GAR2)。

接種后 18 h, 9個基因(GRMZM5G884819、GRMZM2G084583、GRMZM2G392148、GRMZM2 G155216、GRMZM2G353753、AC207722.2_FG009、AC190623.3_FG001、GRMZM2G081239、GRMZM2 G092427)在NIL-R中上調而在NIL-S中下調表達。其中 GRMZM2G084583編碼 Typical P-type R2R3 Myb protein fragment, GRMZM2G081239 編碼NOD26-like membrane integral protein, 5個基因編碼光吸收有關蛋白, 2個為功能未知蛋白。

2.6 NIL-R和NIL-S間差異表達的基因

接種后0 h, 2958個基因在NIL-R和NIL-S間差異表達, 其中 1170個基因在 NIL-R中表達量較高,1788個基因在NIL-S中表達量較高(圖5)。接種后6 h, 431個基因在NIL-R和NIL-S間差異表達, 其中83個基因在 NIL-R中表達量較高, 348個基因在NIL-S中表達量較高。接種后18 h時, 1292個基因在NIL-R和NIL-S間差異表達, 其中291個基因在NIL-R中表達量較高, 1001個基因在NIL-S中表達量較高(圖5)。兩近等基因系之間差異表達的基因在0 h最多, 接種后6 h最少。

圖5 NIL-R和NIL-S間差異表達的基因Fig. 5 Differentially expressed genes between NIL-R and NIL-S

2.7 NIL-R 通過組成型高表達抗性相關基因抵御禾谷鐮刀菌入侵

對NIL-R和NIL-S在接種后0 h的差異表達基因進行分析, 獲得二者間的本底差異。對 NIL-R中表達量較高的1170個基因進行GO分析, 功能歸為3類, 即生物學過程(biological process)、分子功能(molecular function)和細胞組分(cellular component)。就生物學過程中富集的go term而言, 和抗病有關的go term在1170個基因中顯著富集(FDR < 0.05)。植物激素JA、SA和ET相關的生物學過程的基因顯著富集, 這些基因參與JA合成、響應和信號介導途徑,ET合成、響應過程, SA合成、響應和信號介導途徑以及SA介導的系統獲得性抗性(SAR)。JA合成途徑中編碼12-氧-植物二烯酸還原酶(12-oxophytodienoic acid reductase, OPR3)和脂氧化酶(lipooxygenase, LOX)的基因, JA 信號途徑中的JAZ1、JAZ3、JAZ10等基因在NIL-R中表達量較高。乙烯合成酶, 如ACC、ACO31、ACS2 (Acc synthase 2)、ACS7, 乙烯信號途徑基因, 如2個ERF-1 (Ethylene responsive element binding factor 1)、1個ERF4 在 NIL-R中高表達。此外, 次生代謝有關的生物學過程, 如苯丙烷代謝途徑、肉桂酸、香豆酸、植物抗毒素合成途徑在NIL-R本底表達量較高的基因中顯著富集(圖6)。編碼苯丙烷代謝途徑的關鍵酶苯丙氨酸解氨酶(PHE ammonia lyase 1, PAL1)、PAL2的基因, 編碼肉桂酸-乙醇脫氫酶(cinnamyl-alcohol dehydrogenase, CAD)、木質素合成酶HCT的基因在NIL-R中表達量較高。由此表明, NIL-R可以通過抗病相關基因的組成型高表達, 預先儲存大量的抗病次生代謝產物來抵抗病原菌的入侵。

圖6 NIL-R對照組中表達量較高基因的GO功能分析Fig. 6 GO analysis of genes more abundant in NIL-R control samples

2.8 禾谷鐮刀菌侵染后 NIL-R與 NIL-S之間差異表達的抗性相關基因

NIL-R可以通過抗病相關基因的組成型高表達,阻礙病原菌入侵來提高抗性。此外, 抗、感近等基因系在接種6 h和18 h后有大量差異表達的抗性相關基因。接種后6 h, 在NIL-R中表達量較高的抗病相關基因主要編碼類黃酮醇合成酶(flavonol synthase-like protein)、transmembrane BAX inhibitor motif-containing protein 4 (TMBIM 4)、LTP、germin-like protein (GLP) subfamily 1 member 11、過氧化物酶(peroxidase R15, POD R15)、LRR蛋白激酶(leucine-rich repeat protein kinase family protein)、CDPK 相關激酶(CDPK-related kinase 1, CRK1;CDPK-related kinase 3, CRK3)等蛋白的基因(表4)。

表4 接種后6 h, NIL-R中高表達的抗病相關基因Table 4 Disease resistance genes more abundant in NIL-R at 6 hai

接種18 h后, 在NIL-R中表達量較高的抗病相關基因包括ET合成相關基因ACO、ACO1, JA合成基因 LOX10, 編碼多種激酶, 如 CRK1、BAK1 (BRI1-associated receptor kinase 1)、富含半胱氨酸受體激酶 10 (cysteine-rich RECEPTOR-like protein kinase 10, CRK10)、LRR激酶、細胞壁相關激酶(wall-associated kinase 2, WAK2)、LRR受體激酶(LRR-RLK family protein)的基因, 編碼木質素合成關鍵酶HCT、解毒蛋白PDR1、多藥抗性相關蛋白2 (multidrug resistance associated protein 2, MDR2)、POD R15的基因等(表5)。

3 討論

禾谷鐮刀菌是一類危害嚴重的病原菌, 它可以侵染大麥、小麥、玉米等多種禾谷類作物。禾谷鐮刀菌屬半活體營養型病原菌, 其特點為病原菌侵入寄主后先以活體營養型存活, 當寄主出現局部組織壞死和菌絲大量繁殖后, 病原菌再以壞死營養型在寄主組織內繁殖。SA、JA/ET在植物與病原菌的互作中發揮重要作用; SA主要介導對活體營養型和半活體營養型病原菌的抗性; JA/ET主要針對壞死營養型病原菌的入侵[30]。

JA可正向調節由禾谷鐮刀菌引起的小麥赤霉病的抗性[16]。Xiao等指出, JA合成酶AOS和OPR3在抗、感赤霉病小麥中都被誘導, 而JA信號途徑中的COI1和JAZ只在抗病材料中被誘導, 因此JA可正向調控小麥對F. graminearum的抗性[31]。ET合成基因只在感病小麥中被誘導, 抗性小麥可通過抑制ET信號途徑而提高抗性, 故 ET可負向調控小麥對 F. graminearum的抗性[31]。而有報道指出, ET合成基因ACO在抗性材料中被誘導, 故ET也可正向調控小麥對 F. graminearum 的抗性[32-33]。本研究中,JA/ET合成和信號途徑相關基因在接種后0 h、18 h 的NIL-R中表達水平較高; 且ET合成基因ACO, ET信號途徑中的基因ERF、EBF1、EIL1在接種后6 h 的NIL-R中特異上調表達, 說明本研究中JA/ET合成和信號途徑可正向調控玉米對F. graminearum的抗性。

次生代謝產物在植物的生物和非生物脅迫中發揮重要作用。苯丙烷代謝途徑可產生木質素、黃酮類、植物抗毒素等多種次生代謝產物[34]。PAL是苯丙烷代謝途徑的關鍵酶, 可以催化苯丙氨酸向肉桂酸的轉化, 肉桂酸經 C4H轉化為香豆酸, 隨后經4CL轉化為4-?;?輔酶A。4-?;?輔酶A可經CAD 和HCT轉化為木質素, 也可經CHS和FLS轉化為黃酮醇。多個報道指出, 鐮刀屬病原菌侵染可誘導PAL的表達[19,22,24]。用 F. verticillioides接種不同穗腐病抗性玉米發現, 與感病材料相比, 3個PAL基因在抗性材料中被較高水平的誘導, 2個PAL在抗性材料中本底表達水平較高; 此外木質素合成相關基因Caffeoyl-o-methyltransferase 1 (COMT1)在未接種的抗性材料中表達量較高[24]。Ye等[35]研究表明, 接種后 6 h, 抗病近等基因系玉米幼根表皮侵入的 F. graminearum菌絲少于感病近等基因系, 此結果表明與感病近等基因系相比, 抗性材料可抑制病原菌入侵。苯丙烷代謝途徑產物酚類在抗莖腐病玉米近等基因系[35]和抗赤霉病小麥材料[36]中含量較高, 而酚類物質可與細胞壁共價結合, 致使病原菌侵染位置細胞壁壞死而抵抗病原菌入侵; 此外, 木質素積累可使玉米根部外皮組織加厚, 進一步抑制病原菌的入侵[35]。接種F. culmorum后, 2個抗病小麥品種中木質素積累量較感病小麥品種中高[22]。本研究的NIL-R中高表達的基因在苯丙烷合成途徑中顯著富集; 此外還包括肉桂酸、香豆酸、植物抗毒素等次生代謝產物合成途徑。多個苯丙烷代謝途徑的關鍵基因, 如PAL1、PAL2、CAD、HCT等在接種后0 h 的NIL-R中表達量較高。結果表明, 苯丙烷代謝途徑可通過組成型抗性提高玉米對禾谷鐮刀菌的抗性。

表5 接種后18 h, NIL-R中高表達的抗病相關基因Table 5 Disease resistance genes more abundant in NIL-R at 18 hai

禾谷鐮刀菌可分泌DON, 該毒素可作為有毒因子參與到病原菌侵染寄主的過程中[10]。DON并非病原菌生長必需, 但有報道稱毒素影響病原菌致病性。與野生型相比, 毒性合成基因tri-5突變株在侵染小麥時致病力減弱[12-13]。研究報道, 動物中DON可與60S核糖體亞基結合來抑制蛋白質的合成進而激活細胞衰亡程序導致細胞死亡[8-10]。DON可體外抑制小麥核糖體中蛋白的合成[11]。所以有研究認為,DON可通過抑制寄主體內抗性蛋白的合成來延緩或抑制寄主的抗性。此外, DON不僅可引起細胞內過氧化氫的積累引起細胞程序化死亡, 還可以激活抗性響應基因病程相關蛋白的表達[15]。寄主細胞可通過誘導毒素降解蛋白的合成降解毒素或毒素轉運蛋白的合成將毒素轉運出胞質[15]。接種后 18 h, 編碼ABC-transport family protein、Heavy metal transport protein、MATE efflux family protein的基因在NIL-R中特異上調表達。PDR1、MRD2在接種后18 h的NIL-R中表達量較高。故NIL-R可通過誘導毒素降解或轉運基因的表達而降低毒素對寄主細胞的毒性, 抑制F. graminearum的進一步入侵。

RLK是一類位于質膜上的受體激酶, 它可被病原菌的相關分子模式PAMP或MAMP識別, 而激活下游的PTI抗性反應。FLS2是一類位于質膜的LRR型受體激酶, 該激酶可識別細菌的鞭毛蛋白而提供對細菌的抗性; BAK1是一類LRR型受體激酶, 它可通過調節BRI1參與到FLS2調節的PTI反應中[37]。本研究中多種RLK基因在接種后18 h的NIL-R中特異上調表達。BAK1基因在接種后18 h的NIL-R中表達量較高。說明 PTI免疫反應在玉米抵抗禾谷鐮刀菌侵染的過程中發揮重要作用。

4 結論

與NIL-S相比, NIL-R可能主要依賴本底高表達抗性相關基因(如JA/ET合成和信號途徑相關基因、苯丙烷代謝途徑合成基因)來抵抗病原菌的入侵; 病原菌入侵后, 編碼病程相關蛋白(PR)、木質素合成、DON降解或轉運等基因的高表達限制病原菌的進一步擴展和繁殖; 此外, 編碼受體激酶的基因在NIL-R中的高表達說明了 PTI免疫反應在玉米抵抗禾谷鐮刀菌侵染的過程中也發揮了重要作用。

References

[1] Yang Q, Yin G M, Guo Y L, Zhang D F, Chen S J, Xu M L. A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet, 2010, 121: 673-687

[2] Ali M L, Taylor J H, Jie L, Sun G L, William M, Kasha K J, Reid L M, Pauls K P. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome, 2005, 48: 521-533

[3] Schweiger W, Steiner B, Ametz C, Siegwart G, Wiesenberger G,Berthiller F, Lemmens M, Jia H Y, Adam G, Muehlbauer G J. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs. Ifa-5A,identifies novel candidate genes. Mol Plant Pathol, 2013, 14:772-785

[4] Boddu J, Cho S, Kruger W M, Muehlbauer G J. Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant-Microbe Interact, 2006, 19: 407-417

[5] Goswami R S, Kistler H C. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology, 2005, 95: 1397-1404

[6] Urban M, Daniels S, Mott E, Hammond-Kosack K. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J, 2002, 32:961-973

[7] McMullen M, Jones R, Gallenberg D. Scab of wheat and barley:a re-emerging disease of devastating impact. Plant Dis, 1997, 81:1340-1348

[8] Rocha O, Ansari K, Doohan F M. Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam,2005, 22: 369-378

[9] Pestka J J, Zhou H R, Moon Y, Chung Y J. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett, 2004, 153:61-73

[10] Pestka J J. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins, 2010,2: 1300-1317

[11] Miller J D, Ewen M A. Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars Frontana and Casavant. Nat Toxins, 1997, 5: 234-237

[12] Desjardins A E, Proctor R H, Bai G H, McCormick S P, Shaner G,Buechley G, Hohn T M. Reduced virulence of trichothecenenonproducing mutants of Gibberella zeae in wheat field tests. Mol Plant-Microbe Interact, 1996, 9: 775-781

[13] Langevin F, Eudes F, Comeau A. Effect of trichothecenes produced by Fusarium graminearum during Fusarium head blight development in six cereal species. Eur J Plant Pathol,2004, 110: 735-746

[14] Harris L, Desjardins A E, Plattner R, Nicholson P, Butler G,Young J, Weston G, Proctor R, Hohn T. Possible role of trichothecene mycotoxins in virulence of Fusarium graminearum on maize. Plant Dis, 1999, 83: 954-960

[15] Desmond O J, Manners J M, Stephens A E, Maclean D J, Schenk P M, Gardiner D M, Munn A M, Kazan K. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production,programmed cell death and defence responses in wheat. Mol Plant Pathol, 2008, 9: 435-445

[16] Jia H Y, Cho S, Muehlbauer G J. Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blightresistant and -susceptible alleles. Mol Plant-Microbe Interact,2009, 22: 1366-1378

[17] Poppenberger B, Berthiller F, Lucyshyn D, Sieberer T,Schuhmacher R, Krska R, Kuchler K, Glossl J, Luschnig C,Adam G. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J Biol Chem, 2003, 278: 47905-47914

[18] Muhitch M J, McCormick S P, Alexander N J, Hohn T M. Transgenic expression of the TRI101 or PDR5 gene increases resistance of tobacco to the phytotoxic effects of the trichothecene 4,15-diacetoxyscirpenol. Plant Sci, 2000, 157:201-207

[19] Boddu J, Cho S, Muehlbauer G J. Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant-Microbe Interact, 2007, 20: 1364-1375

[20] Gardiner S A, Boddu J, Berthiller F, Hametner C, Stupar R M,Adam G, Muehlbauer G J. Transcriptome analysis of the barleydeoxynivalenol interaction: evidence for a role of glutathione in deoxynivalenol detoxification. Mol Plant-Microbe Interact, 2010,23: 962-976

[21] Schweiger W, Boddu J, Shin S, Poppenberger B, Berthiller F,Lemmens M, Muehlbauer G J, Adam G. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol Plant-Microbe Interact, 2010, 23: 977-986

[22] Kruger W M, Pritsch C, Chao S, Muehlbauer G J. Functional and comparative bioinformatic analysis of expressed genes from wheat spikes infected with Fusarium graminearum. MolPlant-Microbe Interact, 2002, 15: 445-455

[23] Zhu Q H, Stephen S, Kazan K, Jin G, Fan L, Taylor J, Dennis E S,Helliwell C A, Wang M B. Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene, 2013, 512: 259-266

[24] Lanubile A, Ferrarini A, Maschietto V, Delledonne M, Marocco A,Bellin D. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics, 2014, 15: 710

[25] Buerstmayr H, Steiner B, Lemmens M, Ruckenbauer P. Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci, 2000, 40: 1012-1018

[26] Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R,Pimentel H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012, 7: 562-578

[27] Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol, 2010, 11: R106

[28] Conesa A, G?tz S, García-Gómez J M, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005,21: 3674-3676

[29] Ashburner M, Ball C A, Blake J A, Botstein D, Butler H, Cherry J M, Davis A P, Dolinski K, Dwight S S, Eppig J T. Gene Ontology: tool for the unification of biology. Nat Genet, 2000, 25:25-29

[30] Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci, 2013, 4: 7

[31] Xiao J, Jin X H, Jia X P, Wang H Y, Cao A Z, Zhao W P, Pei H Y,Xue Z K, He L Q, Chen Q G, Wang X. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 2013, 14: 197

[32] Li G L, Yen Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Sci, 2008,48: 1888-1896

[33] Ding L N, Xu H B, Yi H Y, Yang L M, Kong Z X, Zhang L X,Xue S L, Jia H Y, Ma Z Q. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PloS One, 2011, 6: e19008

[34] Steiner B, Kurz H, Lemmens M, Buerstmayr H. Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet, 2009, 118: 753-764

[35] Ye J R, Guo Y L, Zhang D F, Zhang N, Wang C, Xu M L. Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to Gibberella stalk rot in maize. Mol Plant-Microbe Interact, 2013, 26: 1417-1428

[36] Hamzehzarghani H, Kushalappa A C, Dion Y, Rioux S, Comeau A, Yaylayan V, Marshall W D, Mather D E. Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against Fusarium head blight. Physiol Mol Plant Pathol, 2005, 66: 119-133

[37] Chinchilla D, Zipfel C, Robatzek S, Kemmerling B,Nürnberger T, Jones J D, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature, 2007, 448: 497-500

Transcriptional Analysis of Maize Resistance against Fusarium graminearum

LIU Yong-Jie, MA Chuan-Yu, MA Xue-Na, and XU Ming-Liang*
National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China

Gibberella stalk rot, caused by Fusarium graminearum (teleomorph, Gibberella zeae), is one of the most devastating soil-borne diseases in maize. It seriously decreases maize yield and quality. Molecular mapping led to the identification of two QTLs, qRfg1 and qRfg2, on chromosomes 10 and 1 respectively, conferring resistance to Gibberella stalk rot. In order to characterize the defense mechanism of maize against F. graminearum, NIL-R with resistant alleles at both QTLs and NIL-S with the susceptible alleles at both QTLs were generated and used in transcriptome analysis. After inoculation of young seedling roots of both NILs with the F. graminearum spores, the inoculated roots were sampled at 0, 6, and 18 hours after inoculation (hai) for transcriptome analysis using RNAseq. The basal difference was achieved by the comparison between control samples. In total,2958 genes were differentially expressed between control samples of NIL-R and NIL-S, among which 1170 genes were more abundant in NIL-R. GO analysis revealed that genes involved in biological processes related to JA/ET and SA biosynthesis, JA/ET mediated signaling pathway and SA mediated signaling pathway were significantly enriched. Phenylpropanoid biosynthesis process was enriched in the genes more abundant in NIL-R and genes encoding enzymes involved in phenylpropanoid biosynthesis like PAL, 4CL2, CAD, and HCT were more abundant in NIL-R. There were 431 genes differentially expressed between NIL-R and NIL-S at 6 hai, among which 83 genes were more abundant in NIL-R. Genes encoding pathogenesis-related (PR) proteins like lipid-transfer protein and germin-like protein were more abundant in NIL-R. Among the 1292 genes differentially expressed between NIL-R and NIL-S. At 18 hai, 291 genes were more abundant in NIL-R. Genes involved in ET biosynthesis like ACO and JA biosynthesis like LOX were more abundant in NIL-R. Genes involved in DON detoxification like PDR1 and MDR2 were more abundant in NIL-R. After inoculation with F. graminearum, 428 genes were exclusively up-regulated in NIL-R at 6 hai compared with control. Genes involved in ET biosynthesis and ET-mediated signaling pathway like ACO, ERF, EBF1, and EIL1 and pathogenesis-related genes like PR1, OSM34, and germin-like protein were exclusively up-regulated in NIL-R. At 18 hai, 359 genes were exclusively up-regulated in NIL-R compared with control. Pathogenesis-related genes like PR1, PR4, and genes encodingthe transporters of DON out of cytoplasm like ABC transport family protein, heavy metal transport protein and MATE efflux family protein were exclusively up-regulated in NIL-R. All these results indicate that NIL-R can increase the resistance of maize to F. graminearum by the constitutive resistance characterized by the higher expression of genes related to defense responses. Genes involved in defense responses exclusively up-regulated in NIL-R and higher expression level of disease resistance genes in NIL-R at 6 and 18 hai may restrict the pathogen invasion after infection. The phenylpropanoid biosynthesis pathway and DON-detoxification proteins identified in this study are important for the resistance against F. graminearum infection.

Maize; Stalk rot; Transcriptome; Resistance; JA/ET; Phenylpropanoid

10.3724/SP.J.1006.2016.01122

本研究由引進國際先進農業科學技術計劃(948計劃)項目(2003-Q04)資助。
This study was supported by the Program of Introducing International Super Agricultural Science and Technology (948 Program) (2011-G15).*

(Corresponding author): 徐明良, E-mail: mxu@cau.edu.cn, Tel: 010-62733166

聯系方式: E-mail: liu_yongj@126.com
Received(

): 2016-01-11; Accepted(接受日期): 2016-05-09; Published online(網絡出版日期): 2016-05-30.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160530.0905.008.html

猜你喜歡
禾谷抗病鐮刀
西北農林科技大學在絲狀植物病原真菌研究中取得新進展
我國小麥基因組編輯抗病育種取得突破
郁南平臺鎮歡慶禾谷誕
但憶城內杏花天
酷蟲學校再遇鐮刀幫(一)
bZIP轉錄因子在植物激素介導的抗病抗逆途徑中的作用
葡萄新品種 優質又抗病
利用熒光定量PCR檢測禾谷絲核菌的相對生物量
一把鐮刀
鐮刀與鐵錘
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合