?

巴丹吉林沙漠石英δ18O值及其物源意義

2017-02-10 10:13付旭東
沉積學報 2017年1期
關鍵詞:巴丹吉林沙漠物源粒級

付旭東

河南大學環境與規劃學院,河南開封 475004

巴丹吉林沙漠石英δ18O值及其物源意義

付旭東

河南大學環境與規劃學院,河南開封 475004

巴丹吉林沙漠是世界上沙丘最高大的沙漠,其沙源研究對認識沙漠形成、高大沙山發育和防沙治沙工程有重要意義。石英是沙漠沉積物中常見的礦物,其氧同位素值可示蹤物源。采集沙漠西北部、東部、東南部高大沙山、丘間低地與湖泊以及雅布賴山前的表層沉積物,測定了樣品不同粒級的石英δ18O值。結果表明:①石英δ18O值隨粒級減小有增大趨勢,同一樣品不同粒級石英δ18O值存在較大差異,相同粒級石英δ18O值也有變化。②石英δ18O值介于9.4‰ ~19.3‰,均值為13.3‰ (n=55);其中沙丘沙的石英δ18O值介于9.5‰ ~16.6‰,均值為12.9 ‰ (n=39);湖相沉積物的石英δ18O值介于9.4‰ ~19.3‰,均值為14.2‰ (n=16)。③區域內,<16 μm粒級的石英δ18O值與16~64 μm、125~154 μm、200~250 μm、>300 μm粒級的石英δ18O值都存在顯著差異,但200~250 μm與>300 μm粒級的石英δ18O值沒有顯著差異;經區域對比,巴丹吉林沙漠<16 μm粒級的石英δ18O值與柴達木盆地沙漠、蒙古戈壁風成沉積物<16 μm石英δ18O值無顯著差異,但巴丹吉林沙漠16~64 μm粒級的石英δ18O值與蒙古戈壁風成沉積物16~64 μm石英δ18O值存在顯著差異;這似乎暗示研究區的細顆粒物質可能是遠源的。巴丹吉林沙漠沉積物的石英δ18O值位于火成巖石英、砂巖和變質巖石英δ18O值分布閾值內,受區域地質條件、物源混合、粒級效應等因素的影響,砂粒級的石英δ18O值所指示的母巖成份特征與祁連山區巖石的巖性有較好吻合。

巴丹吉林沙漠;沙源;石英;氧同位素

沙源是沙漠形成的物質基礎[1-2],對其研究不僅有助于認識沙漠的形成演變,而且在防沙治沙工程上也有重要實踐意義[3]。巴丹吉林沙漠是地球上沙丘最高大的沙漠[4-5],中國第二大流動沙漠[3]。一直以來,對該沙漠沙源的認識存在不同觀點[1,6-15],可能的物源包括沙漠西北部弱水(額濟納)的河流沖積物和沖積-湖積物、北部的戈壁、殘山丘陵和湖相沉積、東南部雅布賴山的基巖風化物、沙漠下伏的紅色砂巖和河湖相沉積層。盡管不同學者對哪幾類沙源占主導存在分歧,但多數觀點都是基于沙漠物源近源性提出的,并未提及沙漠物源的遠源性。但J?kel[10]卻認為沙源主要來自弱水下游的沖洪積扇,它們是祁連山地的基巖風化剝蝕后由水流沿黑河搬運至河流末端的產物,蒙古戈壁阿爾泰山也是沙漠的物源地之一。這些觀點都是基于野外調查、沉積物粒度或重礦物分析,結合地質地貌資料推論得出的。

近10多年來,隨著巖礦化學分析和定年技術的日臻成熟,一些地球化學方法被逐漸引入到中國沙漠的物源研究中[16-19]。石英是沉積物中常見的礦物,其氧同位素組成可示蹤物源[20],它在追蹤陸地粉塵、黃土高原風成沉積、北太平洋深海沉積和澳大利亞沙漠物源的研究中都有較好的應用[21]。中國沙漠沉積物的石英氧同位素研究也有一些數據報道[21-25],但這些研究多側重于粉砂粒級或砂粒級的測試分析,對石英氧同位素值與其粒級關系以及它們可能的物源指示意義研究報道尚不多。

以世界上沙丘最高大的巴丹吉林沙漠為研究區,探討該沙漠沉積物的石英氧同位素與其粒級關系;影響石英氧同位素值的主要因素;結合區域地質資料分析該沙漠可能的物源。

1 研究區與方法

1.1 研究區概況

巴丹吉林沙漠位于內蒙古阿拉善荒漠西部,北鄰拐子湖,南達合黎山、北大山、龍首山,東至宗乃山、雅布賴山,西抵額濟納河(弱水)東岸的古魯乃湖(圖1)。面積約5.2×104km2,是中國第二大沙漠[26]。地勢總的變化趨勢是南高北低,東高西低[3]。年平均氣溫9.5℃~10.3℃,1月平均氣溫-10℃~-20℃,7月平均溫度23℃~26℃;年降水量由東南向西北減少,東南部100 mm左右,西北部不足40 mm;年蒸發潛力>2 500 mm[3,27-28]。終年盛行西北風和西風,年平均風速2.8~4.6 m/s,由東南向西北逐漸加強,年大風日數40~60天[5,28-29]。區域內地表水系匱乏,僅沙漠西緣的額濟納河有較大的地表徑流,其余均為雨季形成的暫時性流水。高大沙山密集分布,約占沙漠總面積的61%,主要集中在沙漠中部,相對高度一般為200~300 m,最高可達500 m左右[5,30-31]。

1.2 沉積物取樣與分析方法

1.2.1 沉積物取樣與粒級選擇

采集巴丹吉林沙漠西北部、東部、東南部高大沙山、丘間地及湖泊、雅布賴山前沙丘的風成沙樣品(圖1、表1)。在自然條件下風干后,用篩析法對A1、B1、C1樣品做粒度分析。篩孔直徑依次為1 000 μm、500 μm、300 μm、150 μm、90 μm、53 μm、38 μm,將篩析后分級的樣品留存備用;靜水沉降法提取小于38 μm樣品中38~20 μm、<20 μm的顆粒。結合研究區已有的沉積物粒度分析資料[14-15,32]和風沙運動物理規律[33],其余樣品用篩析法僅選取125~154 μm和200~250 μm的粒級。

1.2.2 沉積物中石英的分離與氧同位素測定

稱取分粒級后的沉積物2 g放入瑪瑙研缽,研磨至<200目;加入過量H2O2和稀HCl除去沉積物中的有機質、碳酸鹽和鐵氧化物等,清洗烘干;然后用焦硫酸鈉熔融—氟硅酸浸泡法[34-36]將沉積物中的石英顆粒單獨分離,經X射線衍射檢驗石英純度>95%;用BrF5法提取石英中的氧[37],純化后的氧被轉化為CO2,其氧同位素比值用Finnigan MAT 252質譜儀測定。氧同位素分析結果以δ18O值表示:δ18O=(18O/16O樣品-18O/16O標準)/ (18O/16O標準)×1 000,以相對于國際標準(SMOW)報道[38]。質譜儀的測量精度為±0.3‰,樣品實驗誤差為±0.3 ‰,實驗所用的標準石英為NBS-28,其δ18O平均值為9.6 ‰。

1.3 數據分析

沉積物中石英氧同位素數據的統計分析、均值的非參數檢驗(Cruskal-Wallis秩和檢驗),均在SPSS 20.0軟件上運行,統計檢驗顯著水平P<0.05。

2 結果

2.1 石英δ18O值與粒級關系

巴丹吉林沙漠沉積物樣品中石英δ18O值與其粒級關系顯示:石英δ18O值隨粒級的減小有增大趨勢(圖2,3,4);同一樣品中不同粒級石英δ18O值的差別很大,最大相差9.9‰ (圖2);相同粒級的石英δ18O值也有一定的差異(0.4‰~4.3‰),如圖2和圖3。

結合巴丹吉林沙漠已有風成沉積物的石英δ18O值數據[25],進行區域內不同粒級的比較。均值的非參數檢驗(Cruskal-Wallis秩和檢驗)顯示(圖4):>300 μm和250~200 μm粒級的石英δ18O值沒有顯著差異(P>0.05),但這2個粒級(>300 μm和250~200 μm)與154~125 μm、64~16 μm、<16 μm粒級的石英δ18O值存在顯著差異(P<0.05);154~125 μm、64~16 μm、<16 μm粒級的石英δ18O值也存在顯著差異(P<0.05)。

圖1 巴丹吉林沙漠采樣點示意圖(Google Earth Image)Fig.1 Schematic map of the Badain Jaran Desert and the localities sampled for this study (adapted from Google Earth Image)

表1 巴丹吉林沙漠表層沉積物采樣位置

圖2 巴丹吉林沙漠沉積物樣品中石英δ18O值與粒級關系Fig.2 Relationship between the δ18O values and grain size for quartz extracted from sediments in the Badain Jaran Desert

2.2 石英δ18O值的區域特征

巴丹吉林沙漠沙丘沙和湖相沉積物不同粒級的石英δ18O值測定結果顯示(圖2,3):它們的δ18O值介于9.4‰ ~19.3‰,均值為13.3‰ (n=55);其中沙丘沙的石英δ18O值介于9.5‰ ~16.6‰,均值為12.9‰(n=39);湖相沉積物的石英δ18O值介于9.4‰ ~19.3‰,均值為14.2 ‰ (n=16)??傮w上,沙丘沙的石英δ18O值變化范圍小,湖相沉積物的石英δ18O值變化范圍較大,它們的δ18O值都位于火成巖、砂巖和變質巖的石英δ18O值分布閾值內[39]。

為便于石英δ18O值的區域對比,以<16 μm和16~64 μm為界整合已有中國沙漠石英δ18O值數據[21,25]。均值的非參數檢驗(Cruskal-Wallis秩和檢驗)顯示(圖5):巴丹吉林沙漠沉積物粗粉砂(16~64 μm)的石英δ18O值與柴達木盆地沙漠粗粉砂的石英δ18O值沒有顯著性差異(圖5a,P>0.05),但它們與蒙古戈壁、塔克拉瑪干沙漠粗粉砂的石英δ18O值存在顯著差異(P<0.001);巴丹吉林沙漠沉積物<16 μm組份的石英δ18O值與柴達木盆地沙漠、蒙古戈壁沉積物<16 μm粒級的石英δ18O值沒有顯著差異(圖5b,P>0.05),但它們與塔克拉瑪干沙漠沉積物<16 μm粒級的石英δ18O值存在顯著差異(P<0.01)??傮w上,現有的中國沙漠石英δ18O值數據分析顯示,塔克拉瑪干沙漠粉砂(<64 μm)粒級的石英δ18O值在中國西部沙漠區內是最大的(圖5)。

圖3 巴丹吉林沙漠不同區域細砂粒級沉積物的石英δ18O值與粒級關系Fig.3 Relationship between the δ18O values and grain size for quartz extracted from fine sand in the Badain Jaran Desert

圖4 巴丹吉林沙漠不同粒級沉積物中石英δ18O值及均值比較Fig.4 Comparison of the δ18O values in different size fractions for quartz extracted from sediments in the Badain Jaran Desert

3 討論與結論

3.1 影響巴丹吉林沙漠石英δ18O值的因素

巴丹吉林沙漠沙丘沙和湖相沉積物的石英δ18O值隨粒級減小呈現增大趨勢(圖2,3),這與中國北方沙漠/沙地沉積物中石英δ18O值與其粒級呈現的結果一致[23,25]。黃土高原各地馬蘭黃土的石英δ18O值隨粒級減小也有增大趨勢[40-41]。

巴丹吉林沙漠沉積物的石英δ18O值(9.4‰ ~19.3‰)位于火成巖石英、砂巖和變質巖石英δ18O值的分布值域內[39],同一樣品中不同粒級的石英δ18O值存在較大差異,相同粒級的石英δ18O值也有變化(圖2,3)。主要影響因素有:①區域地質條件的制約。從大的地貌范圍看,巴丹吉林沙漠在地勢上相對于周圍山地是一個低洼的地貌區,周圍山地的風化剝蝕產物借助風或水的作用,會將某些粒級的顆粒物質搬運至地勢低洼區沉積。這樣就造成周圍山地巖石的類型組成在區域上決定著沙漠沉積物的石英δ18O值特征。②物質來源復雜但經過風的長期混合。沙漠腹地310 m的鉆孔資料表明該沙漠至少在1.1 Ma前已形成[42];多種成因的母巖風化產物,在風力分選下,經過漫長的地質過程,細顆粒物質被搬離開物源地混合,粗顆粒物質則被近距離混合,這可以導致不同成因和來源的石英具有相同粒級,同一樣品不同粒級的石英δ18O值存在較大差異。③取樣和沉積物中石英單獨分離實驗過程的影響。由于取樣數量有限,沉積物中石英δ18O值與其粒級呈現的關系還需進一步驗證,同時還需結合單顆粒石英氧同位素分析技術和年代學手段才能厘清影響石英δ18O值的因素。

圖5 中國西北沙漠細顆粒沉積物石英δ18O值的均值比較Fig.5 Comparison of the quartz δ18O values of fine-grained sediments from northwestern deserts in China

3.2 石英δ18O值對巴丹吉林沙漠物源的指示

“就地起沙”和“外地來沙”一直是中國沙漠沙源的爭議點[19]。在中國沙漠大規模野外調查基礎上,結合古地理和地質地貌資料,朱震達等[1]將中國沙漠沙源按成因歸為4種類型(河流沖積物、沖積—湖積物、洪積—沖積物和基巖風化的殘積、坡積物),具有近源性。此后,各個沙漠沉積物的粒度、重礦物、石英釋光靈敏度、元素和同位素地球化學、鋯石形態及U-Pb年齡分析也支持該觀點[19]。

巴丹吉林沙漠地表沙丘沙中含有的細顆粒組份(粉沙黏土)很低[14-15],但其區域第四紀地層中含有大量的細顆粒物質[32,42-43]。在巴丹吉林沙漠區域內,<16 μm粒級的石英δ18O值與16~64 μm、125~154 μm、200~250 μm、>300 μm粒級的石英δ18O值都存在顯著差異,但200~250 μm與>300 μm粒級的石英δ18O值沒有顯著差異(圖4);區域對比顯示,巴丹吉林沙漠<16 μm粒級的石英δ18O值與柴達木盆地沙漠、蒙古戈壁風成沉積物<16 μm石英δ18O值無顯著差異(圖5b),但研究區16~64 μm粒級的石英δ18O值與蒙古戈壁16~64 μm石英δ18O值存在顯著差異(圖5a);這似乎暗示巴丹吉林沙漠中細顆粒物質(<16 μm)可能具有遠源性。風沙運動物理學規律[33,44]和中國黃土多年的研究[45]表明,<16 μm的顆??梢栽诳諝庵凶鬟h距離的搬運,蒙古戈壁位于巴丹吉林沙漠的上風向處,該地區內<16 μm的顆粒完全可以順風搬運至地勢相對低洼的巴丹吉林沙漠沉積。這一類型的物源既未在前人有關沙漠物源的研究中提及[19],也不屬于朱震達等[1]提出的中國沙漠沙源的4種成因類型。若其他示蹤方法能驗證,這將是對中國沙漠物源類型的一個重要補充,對中國北方地區防治沙塵暴有一定意義。

巴丹吉林沙漠地表沙丘沙的粒度主要集中于細砂和中砂[14-15],該粒級的石英δ18O值介于9.5‰ ~14.9‰,均值為12.4‰(n=33,圖4);相同粒級的石英δ18O值存在差異(圖3,4)。石英是沙漠沉積物中主要礦物[1],這表明巴丹吉林沙漠眾數粒級顆粒物的母巖是由火成巖、砂巖和變質巖組成的[39],且砂巖和變質巖所占比例應大于火成巖的比例,并經過了風力的長期分選和混合。巴丹吉林沙漠東緣的宗乃山、東南緣的雅布賴山、南緣的合黎山、北大山及龍首山、西緣的馬鬃山、北部的薩爾扎山、阿爾騰山等山地出露有大面積各期的火成巖[46],理論上由這些山地風化剝蝕后產生的沉積物石英δ18O值應該位于10.0‰左右[39],這顯然與研究區大量實測的沉積物石英δ18O值不吻合(圖2,3);細砂和中砂粒級的顆粒物在風力作用下常以蠕移和躍移方式在地表移動[33,44];這意味著僅由毗鄰巴丹吉林沙漠周圍的火成巖山地風化剝蝕產物所提供的近源顆粒物不足以維系沙漠沉積物的物源供給,研究區應有數量巨大的外源沉積物輸入,且母巖以砂巖和變質巖占主導,這樣才能平衡近源顆粒物的低石英δ18O值。區域地質資料顯示[46],巴丹吉林沙漠南部的祁連山區出露有大面積不同時期的變質巖(如板巖、千枚巖、片麻巖等)和砂巖,這些巖石風化剝蝕產生的碎屑沉積物沿著黑河源源不斷地輸入到沙漠的西北緣(圖1),為巴丹吉林沙漠提供了大量的河湖相沉積物;這些沉積物與沙漠近源沉積物經過風的長期分選和混合后,就能基本吻合目前研究區沉積物的石英δ18O值特征(圖2,3)。J?kel[10]通過大量野外考察和區域地貌分析也認為祁連山區是巴丹吉林沙漠主要的間接物源地。祁連山區、河西走廊、黑河沿岸以及沙漠周邊地區的沉積物粒度分析[47-53]顯示:沿祁連山→河流→戈壁灘→沙漠斷面,沉積物的中值粒徑和分選系數呈現逐漸增大的趨勢,偏度逐步向負偏發展;祁連山地的冰水沉積物、沖積—洪積物沿河流向地勢低洼的額濟納盆地搬運趨勢明顯。黑河下游河漫灘沉積物中的碎屑鋯石U-Pb年齡[54]也顯示這些碎屑沉積物幾乎全部源于中、北祁連山地塊。

石英氧同位素示蹤物源有一定局限性,如存在同值異源現象、石英δ18O值沒有年齡標記等問題。在今后的物源研究中,需要增加沙漠區域內的樣品數量,采集祁連山區以及沙漠周邊山區可能源區的母巖樣品,結合其他示蹤方法(如Sr-Nd同位素和鋯石U-Pb年齡),進行細致的對比研究,繼續深入地探討該問題。

致謝 感謝楊小平研究員對本項工作給予的支持和幫助,感謝新疆大學資源與環境學院張峰博士提供部分實驗數據以及河南大學環境與規劃學院王清利副教授建設性的討論,感謝本文審稿人提出寶貴評審意見和有益建議,在此深表謝忱。

References)

[1] 朱震達,吳正,劉恕,等. 中國沙漠概論[M]. 北京:科學出版社,1980.[Zhu Zhenda, Wu Zheng, Liu Shu, et al. An Outline of Chinese Deserts[M]. Beijing: Science Press, 1980.]

[2] Thomas D S G, Wiggs G F S. Aeolian system responses to global change: challenges of scale, process and temporal integration[J]. Earth Surface Processes and Landforms, 2008, 33(9): 1396-1418.

[3] 吳正. 中國沙漠及其治理[M]. 北京:科學出版社,2009. [Wu Zheng. Sandy Deserts and Its Control in China[M]. Beijing: Science Press, 2009.]

[4] Breed C S, Fryberger S G, Andrews S, et al. Regional studies of sand seas using Landsat (ERTS) imagery[M]//McKee E D. A Study of Global Sand Seas: Geological Survey Professional Paper, 1052. Washington: United States Geological Survey, 1979: 305-397.

[5] Dong Zhibao, Qian Guangqiang, Lv Ping, et al. Investigation of the sand sea with the tallest dunes on Earth: China's Badain Jaran sand sea[J]. Earth-Science Reviews, 2013, 120: 20-39.

[6] 樓桐茂. 甘肅民勤至巴丹吉林廟間沙漠成因及其改造利用[J]. 治沙研究,1962(3):90-95. [Lou Tongmao. The formation and utilization of the desert between Minqin and Badain Monastery[J]. Research of Desert Control, 1962(3): 90-95.]

[7] 于守忠,李博,蔡蔚祺,等. 內蒙古西部戈壁及巴丹吉林沙漠考察[J]. 治沙研究,1962(3):96-108. [Yu Shouzhong, Li Bo, Cai Weiqi, et al. An expedition to the Gobi and Badain Jaran Desert in the western Inner Mongolia[J]. Research of Desert Control, 1962(3): 96-108.]

[8] 孫培善,孫德欽. 內蒙高原西部水文地質初步研究[J]. 治沙研究,1964(6):245-317. [Sun Peishan, Sun Deqin. The hydrological geology of the western Inner Mongolia[J]. Research of Desert Control, 1964(6): 245-317.]

[9] 譚見安. 內蒙古阿拉善荒漠的地方類型[J]. 地理集刊,1964(8):1-31. [Tan Jian’an. The types of deserts in the Alashan Plateau, Inner Mongolia[J]. Geographical Collections, 1964(8): 1-31.]

[10] J?kel D. The Badain Jaran desert: its origin and development[J]. Geowissenschaften, 1996, 14(7/8): 272-274.

[11] Yang Xiaoping. Landscape evolution and precipitation changes in the Badain Jaran desert during the last 30000 years[J]. Chinese Science Bulletin, 2000, 45(11): 1042-1047.

[12] 閆滿存,王光謙,李保生,等. 巴丹吉林沙漠高大沙山的形成發育研究[J]. 地理學報,2001,56(1):83-91. [Yan Mancun, Wang Guangqian, Li Baosheng, et al. Formation and growth of high megadunes in Badain Jaran Desert[J]. Acta Geographica Sinica, 2001, 56(1): 83-91.]

[13] Mischke S. New evidence for origin of Badain Jaran Desert of Inner Mongolia from granulometry and thermoluminescence dating[J]. Journal of Palaeogeography, 2005, 7(1): 79-97.

[14] 錢廣強,董治寶,羅萬銀,等. 巴丹吉林沙漠地表沉積物粒度特征及區域差異[J]. 中國沙漠,2011,31(6):1357-1364. [Qian Guangqiang, Dong Zhibao, Luo Wanyin, et al. Grain size characteristics and spatial variation of surface sediments in the Badain Jaran Desert[J]. Journal of Desert Research, 2011, 31(6): 1357-1364.]

[15] 寧凱,李卓侖,王乃昂,等. 巴丹吉林沙漠地表風積砂粒度空間分布及其環境意義[J]. 中國沙漠,2013,33(3):642-648. [Ning Kai, Li Zhuolun, Wang Nai’ang, et al. Spatial characteristics of grain size and its environmental implication in the Badain Jaran Desert[J]. Journal of Desert Research, 2013, 33(3): 642-648.]

[16] Chen Jun, Li Gaojun. Geochemical studies on the source region of Asian dust[J]. Science China Earth Sciences, 2011, 54(9): 1279-1301.

[17] Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78: 355-368.

[18] Rao Wenbo, Tan Hongbin, Chen Jun, et al. Nd-Sr isotope geochemistry of fine-grained sands in the basin-type deserts, West China: implications for the source mechanism and atmospheric transport[J]. Geomorphology, 2015, 246: 458-471.

[19] 付旭東,王巖松. 中國沙漠物源研究:回顧與展望[J]. 沉積學報,2015,33(6):1063-1073. [Fu Xudong, Wang Yansong. Provenance studies of Chinese deserts: review and outlook[J]. Acta Sedimentologica Sinica, 2015, 33(6): 1063-1073.]

[20] Aléon J, Chaussidon M, Marty B, et al. Oxygen isotopes in single micrometer-sized quartz grains: tracing the source of Saharan dust over long-distance atmospheric transport[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3351-3365.

[21] 張峰,付旭東. 塔克拉瑪干沙漠石英氧同位素與粒級關系的研究[J]. 地質論評,2016,62(1):73-82. [Zhang Feng, Fu Xudong. Relationships between oxygen isotope compositions of quartz and grain size from dune sands and fluvial-lacustrine sediments in the Taklimakan Desert[J]. Geological Review, 2016, 62(1): 73-82.]

[22] Ishii T, Isobe I, Mizuno K, et al. Study of the formation processes and sedimentary environment of surface geological features in desertic areas of China, with special reference to the characteristics and origin of eolian sediments[J]. Bulletin of the Geological Survey of Japan, 1995, 46: 651-685.

[23] 付旭東,楊小平. 中國北方沙漠石英δ18O值的初步測定與分析[J]. 第四紀研究,2004,24(2):243. [Fu Xudong, Yang Xiaoping. δ18O in the quartz grains of desert sand in northern China[J]. Quaternary Sciences, 2004, 24(2): 243.]

[24] Yang Xiaoping, Zhang Feng, Fu Xudong, et al. Oxygen isotopic compositions of quartz in the sand seas and sandy lands of northern China and their implications for understanding the provenances of aeolian sands[J]. Geomorphology, 2008, 102(2): 278-285.

[25] Yan Yan, Sun Youbin, Chen Hongyun, et al. Oxygen isotope signatures of quartz from major Asian dust sources: implications for changes in the provenance of Chinese loess[J]. Geochimica et Cosmochimica Acta, 2014, 139: 399-410.

[26] 朱金峰,王乃昂,陳紅寶,等. 基于遙感的巴丹吉林沙漠范圍與面積分析[J]. 地理科學進展,2010,29(9):1087-1094. [Zhu Jinfeng, Wang Nai’ang, Chen Hongbao, et al. Study on the boundary and the area of Badain Jaran Desert based on remote sensing imagery[J]. Progress in Geography, 2010, 29(9): 1087-1094.]

[27] 馬寧,王乃昂,朱金峰,等. 巴丹吉林沙漠周邊地區近50a來氣候變化特征[J]. 中國沙漠,2011,31(6):1541-1547. [Ma Ning, Wang Nai’ang, Zhu Jinfeng, et al. Climate change around the Badain Jaran Desert in recent 50 years[J]. Journal of Desert Research, 2011, 31(6): 1541-1547.]

[28] 張克存,姚正毅,安志山,等. 巴丹吉林沙漠及其毗鄰地區降水特征及風沙環境分析[J]. 中國沙漠,2012,32(6):1507-1511. [Zhang Kecun, Yao Zhengyi, An Zhishan, et al. Wind-blown sand environment and precipitation over the Badain Jaran Desert and its adjacent regions[J]. Journal of Desert Research, 2012, 32(6): 1507-1511.]

[29] Zhang Zhengcai, Dong Zhibao, Li Chunxiao. Wind regime and sand transport in China’s Badain Jaran Desert[J]. Aeolian Research, 2015, 17: 1-13.

[30] Dong Zhibao, Qian Guangqiang, Luo Wanyin, et al. Geomorphological hierarchies for complex mega-dunes and their implications for mega-dune evolution in the Badain Jaran Desert[J]. Geomorphology, 2009, 106(3/4): 180-185.

[31] Yang Xiaoping, Scuderi L, Liu Tao, et al. Formation of the highest sand dunes on Earth[J]. Geomorphology, 2011, 135(1/2): 108-116.

[32] 郭峰,孫東懷,王飛,等. 巴丹吉林沙漠地層序列的粒度分布及其組分成因分析[J]. 海洋地質與第四紀地質,2014,34(1):165-173. [Guo Feng, Sun Donghuai, Wang Fei, et al. Grain-size distribution pattern of the depositional sequence in central Badain Jaran Desert and its genetic interpretation[J]. Marine Geology & Quaternary Geology, 2014, 34(1): 165-173.]

[33] 吳正. 風沙地貌與治沙工程學[M]. 北京:科學出版社,2003. [Wu Zheng. Geomorphology of Wind-Drift Sands and Their Controlled Engineering[M]. Beijing: Science Press, 2003.]

[34] Syers J K, Chapman S L, Jackson M L, et al. Quartz isolation from rocks, sediments and soils for determination of oxygen isotopes composition[J]. Geochimica et Cosmochimica Acta, 1968, 32(9): 1022-1025.

[35] Sridhar K, Jackson M L, Clayton R N. Quartz oxygen isotopic stability in relation to isolation from sediments and diversity of source[J]. Soil Science Society of America Journal, 1975, 39(6): 1209-1213.

[36] Jackson M L, Sayin M, Clayton R N. Hexafluorosilicic acid reagent modification for quartz isolation[J]. Soil Science Society of America Journal, 1976, 40(6): 958-960.

[37] Clayton R N, Mayeda T K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochimica et Cosmochimica Acta, 1963, 27(1): 43-52.

[38] Craig H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters[J]. Science, 1961, 133(3467): 1833-1834.

[39] Savin S M, Epstein S. The oxygen isotopic compositions of coarse grained sedimentary rocks and minerals[J]. Geochimica et Cosmochimica Acta, 1970, 34(3): 323-329.

[40] Gu Z Y, Liu T S, Zheng S H. A preliminary study on quartz oxygen isotope in Chinese Loess and soils[M]//Liu Tungsheng. Aspects of Loess Research. Beijing: China Ocean Press, 1987: 291-301.

[41] Hou Shengshan, Yang Shiling, Sun Jimin, et al. Oxygen isotope compositions of quartz grains (4-16 μm) from Chinese eolian deposits and their implications for provenance[J]. Science in China Series D: Earth Sciences, 2003, 46(10): 1003-1011.

[42] Wang Fei, Sun Donghuai, Chen Fahu, et al. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 139-158.

[43] 蔡厚維. 巴丹吉林地區第四紀地層劃分的探討[J]. 甘肅地質,1986(3):142-153. [Cai Houwei. The tentative probe of stratigraphical division of Quaternary period in Badanjilin region[J]. Gansu Geology, 1986(3): 142-153.]

[44] Pye K, Tsoar H. Aeolian Sand and Sand Dunes[M]. Berlin: Springer-Verlag, 2009.

[45] 劉東生. 黃土與環境[M]. 北京:科學出版社,1985. [Liu Tungsheng. Loess and the Environment[M]. Beijing: Science Press, 1985.]

[46] 李廷棟,耿樹方,范本賢,等. 中國西部及鄰區地質圖(1:250萬)[M]. 北京:地質出版社,2006. [Li Tingdong, Geng Shufang, Fan Benxian, et al. Geological Map of Western China and Adjacent Areas[M]. Beijing: Geological Publishing House, 2006.]

[47] 張志高,張宏亮,劉青利,等. 河西走廊不同類型地表沉積物粒度研究[J]. 人民黃河,2015,37(7):95-100. [Zhang Zhigao, Zhang Hongliang, Liu Qingli, et al. Particle size analysis of surface sediments and its significance in Hexi Corridor of China[J]. Yellow River, 2015, 37(7): 95-100.]

[48] 王立強. 河西走廊及其毗鄰地區地表沉積與亞洲粉塵源區示蹤[D]. 蘭州:蘭州大學,2011. [Wang Liqiang. Surface deposits in the Hexi Corridor and its adjacent areas and implications for provenance of Asian dust[D]. Lanzhou: Lanzhou University, 2011.]

[49] Nottebaum V, Lehmkuhl F, Stauch G, et al. Regional grain size variations in aeolian sediments along the transition between Tibetan highlands and northwestern Chinese deserts-the influence of geomorphological settings on aeolian transport pathways[J]. Earth Surface Processes and Landforms, 2014, 39(14): 1960-1978.

[50] Nottebaum V, Stauch G, Hartmann K, et al. Unmixed loess grain size populations along the northern Qilian Shan (China): relationships between geomorphologic, sedimentologic and climatic controls[J]. Quaternary International, 2015, 372: 151-166.

[51] Nottebaum V, Lehmkuhl F, Stauch G, et al. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor-an example from northern Chinese drylands[J]. Geomorphology, 2015, 250: 113-127.

[52] Zhang Zhengcai, Dong Zhibao. Grain size characteristics in the Hexi Corridor Desert[J]. Aeolian Research, 2015, 18: 55-67.

[53] Zhang Zhengcai, Dong Zhibao, Li Jiyan, et al. Implications of surface properties for dust emission from gravel deserts (gobis) in the Hexi Corridor[J]. Geoderma, 2016, 268: 69-77.

[54] 古遠. 祁連北麓黑河河漫灘沉積物碎屑鋯石U-Pb年齡、Hf同位素組成及其地質意義[D]. 北京:中國地質大學(北京),2015. [Gu Yuan. U-Pb dating and Hf isotopic compositions of detrital zircons in the Heihe River’s ediments from the northern Qilian Orogen and their geological implications[D]. Beijing: China University of Geosciences (Beijing), 2015.]

Characteristics of Oxygen Isotopic Compositions of Quartz in the Badain Jaran Desert and Its Implications for Sand Provenances

FU XuDong

College of Environment and Planning, Henan University, Kaifeng, Henan 475004, China

Badain Jaran Desert is the second largest area of shifting sands in China and features the tallest dunes on Earth. Identifying provenance of aeolian deposits in the Badain Jaran Desert is critical to understand the formation and development of mega-dunes. Quartz is the most common mineral of Chinese desert sediments, and oxygen isotopic composition of quartz has been regarded as a useful tracer of provenance. Oxygen isotopic compositions were measured by isotopic techniques in various size fractions of quartz, which were extracted from aeolian and lacustrine sediments collected on northwestern, eastern, and southeastern part in the Badain Jaran Desert. The results indicate that the δ18O values increase with decreasing grain size in quartz from aeolian and lacustrine sediments, and the δ18O composition of quartz in various size fractions has notable variations ranging from 3.1‰ to 9.9‰. The δ18O values in quartz in all size fractions are between 9.4‰ and 19.3‰, in which aeolian sands range from 9.5‰ to 16.6‰, and lacustrine sediments vary from 9.4‰ to 19.3‰. In the study area, the δ18O values of fine-grained (<16 μm) quartz show significant differences between different size fractions of the grains (i.e., 16~64 μm,125~154 μm, 200~250 μm, >300 μm), whereas two coarser fractions (200~250 μm and >300 μm) exhibit no significantly different in the δ18O values. Furthermore, when isotopic results are compared with available findings at regional scale, the δ18O values of fine-grained (<16 μm) quartz have no significant difference between Badain Jaran Desert, Qaidam Basin Desert, and Mongolian Gobi Desert, but that of silt-grained (16~64 μm) quartz exist notable difference between the Badain Jaran Desert and Mongolian Gobi Desert. From these observations, it appears likely that the fine-grained components in each sample probably have a more distal origin. A large range of δ18O values, from 9.4‰ to 19.3‰ is present within the aeolian dune and lacustrine sediments, fall within the range of values considered to be indicative of igneous, metamorphic, and sedimentary rocks. The variable δ18O values seem to result from the mixing ratio of igneous, sedimentary and metamorphic rocks. These differences in δ18O values can be related to regional geological setting, mixing ratio of various detrital components, and grain size dependence so on. In the dominant size fraction (125~154 μm, 200~250 μm) of sediments in Badain Jaran Desert, δ18O values are mostly between 11.0 ‰ and 14.9‰, but extend down to 9.4‰. It suggests that quartz detritus is mostly derived from sedimentary and metamorphic rocks, which is considered as mostly originating from Qilian Shan mountainous areas although the local source cannot be ruled out.

Badain Jaran Desert; sand provenance; Quartz; oxygen isotopic compositions

1000-0550(2017)01-0067-08

10.14027/j.cnki.cjxb.2017.01.007

2016-02-01;收修改稿日期: 2016-04-24

國家自然科學基金項目(40425011,40671020)[Foundation: National Natural Science Foundation of China, No. 40425011,40671020]

付旭東,男,1976年出生,博士,第四紀地質學與全球變化,E-mail: xdhz_fu@163.com

P931.3

A

猜你喜歡
巴丹吉林沙漠物源粒級
國外某大型銅礦選礦廠流程考查與分析①
山地暗棕壤不同剖面深度的團聚體分布
九寨溝震區泥石流物源特征研究
粗骨料最佳級配的試驗研究
基于GF衛星解譯巴丹吉林沙漠湖泊水量變化
強震區泥石流物源演化指標選取及規律分析
九寨溝縣九寨溝景區克澤溝8.8地震后物源統計
巴丹吉林沙漠車日格勒鈣華測年及其地質意義
巴丹吉林和騰格里沙漠降水特征初步分析
中國內蒙古巴丹吉林沙漠曼德拉山巖畫考察
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合