?

自噬調控腎臟衰老的分子機制及中藥的干預作用

2017-02-16 13:30涂玥孫偉陳滌平萬毅剛吳薇姚建
中國中藥雜志 2016年21期
關鍵詞:分子機制自噬中藥

涂玥+孫偉+陳滌平+萬毅剛+吳薇+姚建

[摘要]衰老是生物體在遺傳和環境等多種因素共同作用下而逐漸發生的組織、器官功能性衰退。自噬是真核細胞由溶酶體介導而降解細胞質成分的過程。腎臟是典型的衰老靶器官。自噬可以調控腎臟衰老,自噬水平降低就會加速腎臟衰老,反之,自噬水平升高就能延緩腎臟衰老。在這一腎臟衰老的調控過程中,哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)及其相關信號途徑,包括腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)/mTOR、磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/絲氨酸-蘇氨酸激酶(serine-threonine kinase,Akt)/mTOR、AMPK/沉默信息調節因子1(silent information regulation 1,Sirt1)和轉化生長因子β(transforming growth factorβ,TGF-β)等通路發揮了重要作用。在體內調控這些信號途徑的關鍵信號分子就可以干預腎臟衰老。一些經典的補腎、活血類中藥及其提取物,如冬蟲夏草(Cordyceps sinensis)、姜黃素(curcumin)、白藜蘆醇(resveratrol)等對腎臟衰老和/或腎臟自噬具備有益的影響。因此,基于自噬調控的分子機制揭示中藥抗腎臟衰老的藥理作用是今后的發展方向之一。

[關鍵詞]腎臟衰老; 中藥; 自噬; 分子機制; mTOR信號通路

[Abstract]Aging is the gradual functional recession of the living tissues or organs caused by a variety of genetic and environmental factors together. Autophagy is a process of degrading cytoplasmic components mediated by lysosomes in eukaryotic cells. Kidney is a typical target organ of aging. Autophagy regulates renal aging. Decrease in autophagy can accelerate renal aging,whereas,increase in autophagy can delay renal aging. During the process of regulating renal aging,the mammalian target of rapamycin (mTOR) and its related signaling pathways including the adenosine monophosphate activated protein kinase (AMPK)/mTOR,the phosphatidylinositol 3-kinase (PI3K)/ serine-threonine kinase(Akt)/mTOR,the AMPK/silent information regulation 1 (Sirt1) and transforming growth factorβ (TGF-β) play the important roles in renal aging. Regulating the key signaling molecules in these pathwaysin vivo can control renal aging. Some Chinese herbal medicine (CHM) and their extracts with the effects of nourishing kidney or activating stasis, such asCordyceps sinensis, curcumin and resveratrol have the beneficial effects on renal aging and/or autophagy. Therefore,revealing the pharmacological effects of CHM in anti-renal aging based on the molecular mechanisms of autophagy will become one of the development trends in the future study.

[Key words]renal aging; Chinese herbal medicine; autophagy; molecular mechanisms; mTOR signaling pathway

doi:10.4268/cjcmm20162105

衰老(aging)是生物體在遺傳和環境等多種因素共同作用下而逐漸發生的組織、器官功能性衰退[1]。自噬(autophagy)是真核細胞由溶酶體介導而降解細胞質成分的過程[2-3]。最近的研究表明,人體衰老往往伴有細胞自噬的異常[4],尤其在腎臟衰老的過程中,其調控機制與腎臟固有細胞自噬密切相關[5]。

1 自噬的分類和發生過程

基于細胞內底物進入溶酶體的不同方式,自噬分為巨自噬、微自噬和分子伴侶介導的自噬等3類,目前,對巨自噬的研究最為深入,一般說的“自噬”主要是指巨自噬[3]。自噬的發生過程可人為地分成4個步驟。①自噬體膜(phagophore)的形成:在多種自噬刺激因素(氨基酸、生長因子缺乏、低氧、感染及細胞器受損等)的誘導下,雙層結構的自噬體膜在待降解的細胞器或蛋白周圍形成;②自噬體(autophagosome)的形成:隔離膜緩慢伸展,完全包裹待降解的細胞器或蛋白,形成自噬體;③自噬體的運輸、融合:待降解物被自噬體運輸至溶酶體,并與其融合,形成自噬溶酶體(autophagolysosome);④自噬體的裂解:溶酶體中的各種水解酶和蛋白酶溶解自噬體內膜和包裹在其中的待降解物[6]。

2 自噬的機制

近年來借助有關酵母的研究,一系列自噬相關基因(autophagy-related genes,Atgs)被相繼確定,它們在自噬的誘導、產生、成熟和再循環等過程中是必不可少的。在起始階段,最關鍵的調節分子是Ⅲ類磷脂酰肌醇3-激酶(class Ⅲ phosphatidylinositol 3-kinase,Class Ⅲ PI3K)和空泡分選蛋白34(vacuolar protein sorting associated protein 34,Vps34)。Vps34與Atg6(又稱為“Beclin1”)相互作用,募集B-細胞淋巴瘤2(B-cell lymphoma 2,BCL-2)家族蛋白、Vps15和Atg14等自噬相關蛋白而形成“核心復合物”[7]。自噬小體的形成需要2種重要的泛素-蛋白酶系統支持,即“Atg5-Atg12系統”和“微管相關蛋白輕鏈3(microtubule associated protein light chain 3,LC3)/Atg8系統”。對于前者,Atg12能通過Atg7發揮類似E1泛素活化酶的作用,使其連接到Atg5,進而,Atg10發揮類似E2泛素結合酶的作用, 使得Atg5-Atg12結合物通過非共價的形式與Atg16L1形成復合物;對于后者,LC3通過Atg7(E1樣蛋白)與Atg3(E2樣蛋白)、磷脂酰乙醇胺(phosphatidyl ethanolamine,PE)結合,形成Ⅱ型LC3。這里,LC3作為“自噬核心蛋白”,它是自噬小體形成的關鍵步驟,與泛素樣結合蛋白SQSTM1/p62相互作用,加速自噬小體至溶酶體的運輸過程,并實現降解[8] (圖1)。

3 自噬與腎臟衰老的關系

細胞衰老的普遍特征就是清除代謝廢物的功能減退,導致受損蛋白質、細胞器過度積累而降低細胞的生存能力;細胞自噬的重要功能就是分解和循環利用受損蛋白質、細胞器而提高細胞的生存能力,延緩其衰老[9-10]。因此,自噬缺乏就會加速細胞衰老。

腎臟是典型的衰老靶器官。自噬在維持足細胞和近端腎小管上皮細胞的功能和穩態方面發揮著重要作用[11-12]。研究表明,老齡大鼠和小鼠的腎臟內會出現線粒體形態改變和衰老相關蛋白質累積,同時,伴有自噬活性的降低[13-14]。敲除小鼠足細胞或近端腎小管上皮細胞特異性Atg5基因都會導致細胞內損傷線粒體和泛素化蛋白(衰老相關蛋白質)的累積,進而,引起腎臟細胞衰老[15-16]。這些研究結果提示,對于足細胞和腎小管上皮細胞而言,自噬水平降低會加速腎臟衰老。

4 自噬調控腎臟衰老的分子機制

4.1 mTOR信號途徑 哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是調控細胞自噬的關鍵信號分子,磷酸化70kD核糖體S6激酶(phosphoprotein 70 S6Kinase,p70S6K)是其下游的特異性信號分子。當mTOR/p70S6K信號通路激活,使得核糖體與內質網黏附增強,影響內質網膜脫落,抑制自噬體膜形成,阻斷細胞自噬[17]。因此,抑制mTOR信號通路活性可以促進細胞自噬[18-19]。研究顯示,衰老大鼠的腎臟組織中磷酸化mTOR(phosphorylated mTOR,p-mTOR)蛋白表達增加,經mTOR抑制劑——雷帕霉素(rapamycin)干預后,L-亮氨酸所誘導的細胞衰老表型得到改善[20]。Ning等發現[21],能量限制可降低老年雄性SD大鼠腎組織中mTOR蛋白表達,增加LC3自噬蛋白表達,減輕大鼠腎臟衰老。這些研究結果提示,抑制腎臟mTOR表達可以促進細胞自噬,減輕腎臟衰老(圖2)。

4.2 AMPK信號途徑 腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinase,AMPK)被稱為代謝的主開關,它的活性由細胞的能量狀態,也就是一磷酸腺苷(adenosine monophosphate,AMP)/三磷酸腺苷(adenosine triphosphate,ATP)比值所調節的[22]。在饑餓、氧化應激、缺血、缺氧、代謝產物堆積等因素作用下,AMP/ATP比值升高,激活AMPK,介導結節性硬化復合物(tuberous sclerosis complex,TSC)2磷酸化,抑制mTOR,進而,誘導細胞自噬[23]。據報道[21],能量限制能增加老年雄性SD大鼠腎組織中的AMPK蛋白表達,減少mTOR蛋白表達,增加細胞自噬蛋白表達。這些研究結果提示,調控腎臟AMPK信號通路活性可以促進細胞自噬,減輕腎臟衰老(圖2)。

4.3 PI3K/Akt信號途徑 磷脂酰肌醇3-激酶(phosphoinositide 3-kinase,PI3K)/絲氨酸-蘇氨酸激酶(serine-threonine kinase,Akt)信號通路也是mTOR上游的信號途徑。胰島素、生長因子與胰島素樣受體結合后,激活I型PI3K,進而,活化Akt/蛋白激酶(protein kinase,PK)B信號途徑。其中,活化的Akt可以抑制TSC1/2復合物,激活mTOR/p70S6K通路,從而抑制細胞自噬[24]。Li等發現,在機械應力(mechanical stress)作用下,足細胞p85-PI3K,p-Akt和p-mTOR蛋白表達增加, PI3K/Akt/mTOR信號通路活化,減少LC3,Atg5以及整合素1(integrinβ1)蛋白表達,降低自噬水平,促進足細胞衰老;而螺內酯(spironolactone)能抑制PI3K/Akt/mTOR信號通路活性,提高自噬水平,減輕機械應力引起的足細胞衰老和黏附功能損傷[25]。Kawai等發現,無機磷酸鹽能激活Akt/mTOR信號通路,同時縮短小鼠的壽命;但是,在敲除抗衰老基因αKlotho(Kl-/-)的小鼠中,雷帕霉素不但能阻斷mTOR通路,而且,能減輕高濃度無機磷酸鹽誘導的小鼠衰老,延長小鼠壽命[26]。這些研究結果提示,抑制腎臟PI3K/Akt信號通路活性可以促進細胞自噬,減輕腎臟衰老(圖2)。

4.4 Sirt1信號途徑 沉默信息調節因子1(silent information regulation 1,Sirt1)是Sirtuins家族成員之一,它是一種依賴于煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD+)的去乙?;?。在機體內,Sirt1的激活受到AMPK調控,AMPK能夠增加煙酰胺磷酸核糖轉移酶(nicotinamide phosphoribosyltransferase,NAMPT)活性,將煙酰胺轉化成煙酰胺單核苷酸,增加NAD+表達水平,促進Sirt1轉錄[27-28],隨著細胞內NAD+/還原型煙酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide hydrogen,NADH)比率的增加,AMPK介導Sirt1去乙?;?sup>[29]。據報道[30],Sirt1的活化與能量限制介導的壽命延長有著密切的聯系。一方面,Sirt1可以活化自噬信號途徑中的關鍵信號分子——Atg7,Atg5 和LC3,促進自噬小體形成,從而,提高腎臟細胞自噬水平;另一方面,在叉頭轉錄因子(fork head transcription foctor,FOXO)3A參與下,Sirt1還可以調控近端腎小管上皮細胞自噬,延緩腎臟衰老。研究表明,能量限制不僅能增加老年雄性Sprague Dawley大鼠腎組織中的AMPK蛋白表達,減少mTOR蛋白表達,還能增加Sirt1蛋白表達,促進細胞自噬,減輕腎臟衰老[21]。此外,能量限制能提高雄性糖尿病肥胖大鼠(fa/fa)近端腎小管上皮細胞內 Sirt1表達水平,繼而促進細胞自噬,延緩腎臟衰老[31]。對于體外培養的衰老小鼠的近端腎小管上皮細胞,經能量限制干預后,Sirt1蛋白表達增加,FOXO3A去乙?;觿?,其下游的Bcl-2/腺病毒E1V19-kDa相互作用蛋白質3(Bcl-2/adenovirus E1V 19-kDa interacting protein 3,Bnip3)表達上調,進而,促進 Bnip3介導的自噬。這些研究結果提示,增加腎臟Sirt1表達可以促進細胞自噬,減輕腎臟衰老(圖2)。

4.5 TGF-β信號途徑 轉化生長因子β(transforming growth factorβ,TGF-β)不僅是公認的致腎臟纖維化因子,也是影響腎臟衰老的重要因素之一[32]。一方面,TGF-β1可以誘導人近端腎小管上皮細胞中自噬相關基因Atg5,Atg7和Beclin1表達上調,增加自噬小體累積,激活自噬[33-34];另一方面,在某些條件下,TGF-β1還可以抑制自噬[35-37]。TGF-β的雙重功能取決于特定的細胞類型和病理條件,盡管如此,國內外的學者認為,TGF-β誘導腎臟纖維化和加速腎臟衰老的負面作用是肯定的(圖2)。

5 中藥對腎臟衰老和/或腎臟自噬的干預作用

近來的研究顯示,一些中藥及其提取物對腎臟衰老和/或腎臟自噬具備有益的影響。Zhang等發現,高糖(30 mmol·L-1)干預系膜細胞96 h后能明顯抑制Sirt1活性,誘導系膜細胞衰老,而白藜蘆醇(resveratrol)1 mg·L-1聯合干預后,Sirt1活性有所增強,系膜細胞衰老得到改善[38-39]。李春花等報道[40],在鏈脲佐菌素(streptozotocin,STZ)腹腔注射誘導的糖尿病腎?。╠iabetic nephropathy,DN)大鼠模型中,每天白藜蘆醇(20 mg·kg-1)灌胃,連續12周,可以明顯增加模型鼠腎組織中自噬標志性蛋白LC3-Ⅱ和beclin1表達水平,減輕DN腎臟損傷。Gu等借助阿霉素腎病模型而發現阿霉素能抑制AMPK活性,并促進腎臟細胞凋亡,而白藜蘆醇能通過激活AMPK/mTOR信號通路,誘導細胞自噬,減輕腎臟細胞凋亡[41]。Shen等發現,在果蠅食物中添加姜黃素(curcumin),干預3周,可以增加果蠅的壽命[42-43];基于此,Xu等進一步發現,姜黃素能明顯增加H2O2干預的腎小球系膜細胞LC3Ⅱ蛋白表達水平和LC3Ⅱ/I比值,提高細胞自噬水平,減輕H2O2誘導的腎臟損傷[44]。黃可等發現,對于STZ腹腔注射而誘導的DN大鼠模型,腎組織Klotho核酸和蛋白(抗衰老標記物)表達水平明顯降低;每天經冬蟲夏草(Cordyceps sinensis)5 g·kg-1灌胃,干預24周后,腎組織Klotho核酸和蛋白表達水平明顯上調,腎臟衰老得到延緩[45-46]。Pan等發現,在5/6腎切除大鼠殘余腎組織中TGF-β1及其受體的核酸和蛋白表達水平增加,自噬水平降低;經冬蟲夏草(2 g·kg-1)灌胃,干預12周后,TGF-β1及其受體的核酸和蛋白水平下降,自噬水平升高[47]。

6 結論與展望

自噬可以調控腎臟衰老,自噬水平降低就會加速腎臟衰老,反之,自噬水平升高就能延緩腎臟衰老。在這一腎臟衰老的調控過程中,mTOR及其相關信號途徑,包括AMPK/mTOR,PI3K/Akt/mTOR,AMPK/Sirt1和TGF-β等通路發揮了重要作用。在體內調控這些信號途徑的關鍵信號分子就可以干預腎臟衰老。國內初步的體內研究結果提示,一些經典的補腎、活血類中藥及其提取物不僅能延緩腎臟衰老,而且,其藥理作用很可能與自噬調控的分子機制有關。然而,令人遺憾的是,“腎臟衰老”與“自噬調控”在中藥抗衰老的分子藥理學研究領域尚未得到有機結合。筆者所屬團隊的前期研究表明,對于D-半乳糖誘導的衰老模型鼠,冬蟲夏草提取物——蟲草素(cordycepin)不但可以改善模型鼠腎功能,還可以下調其自噬蛋白LC3和抗衰老蛋白Klotho的表達;大黃的活性成分——大黃酸(rhein)能夠改善Hank′s平衡鹽溶液誘導的大鼠腎小管上皮(NRK-52E)細胞自噬,其機制可能與調控mTOR/p70S6K信號通路中的關鍵蛋白p-mTORSer2448和p-p70S6K表達有關[48]。因此,筆者認為,基于自噬調控的分子機制而揭示中藥(尤其是補腎類中藥)抗腎臟衰老的藥理作用是今后的發展方向之一。

[參考文獻]

[1]van Deursen J M. The role of senescent cells in ageing[J]. Nature,2014,509(7501):439.

[2]Levine B,Mizushima N,Virgin H W. Autophagy in immunity and inflammation[J]. Nature,2011,469(7330):323.

[3]Galluzzi L, Pietrocola F, Levine B,et al. Metabolic control of autophagy[J]. Cell,2014,159(6):1263.

[4]Rubinsztein D C,Marino G,Kroemer G. Autophagy and aging[J]. Cell,2011,146(5):682.

[5]Wang Z,Choi M E. Autophagy in kidney health and disease[J]. Antioxid Redox Signal,2014,20(3):519.

[6]Rabinowitz J D,White E. Autophagy and metabolism[J]. Science,2010,330(6009):1344.

[7]He C,Levine B. The beclin1 interactome[J]. Curr Opin Cell Biol,2010,22(2):140.

[8]Ravikumar B,Sarkar S,Davies J E,et al. Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiol Rev,2010,90(4):1383.

[9]Martinez-Lopez N, Athonvarangkul D, Singh R. Autophagy and aging[J]. Adv Exp Med Biol,2015,847:73.

[10]Cuervo A M,Bergamini E,Brunk U T,et al. Autophagy and aging:the importance of maintaining "clean" cells[J]. Autophagy,2005,1(3):131.

[11]Hartleben B, Wanner N, Huber T B. Autophagy in glomerular health and disease[J]. Semin Nephrol, 2014,34(1):42.

[12]Fougeray S, Pallet N. Mechanisms and biological functions of autophagy in diseased and ageing kidneys[J]. Nat Rev Nephrol, 2015,11(1):34.

[13]Yamamoto T, Takabatake Y, Kimura T, et al. Time-dependent dysregulation of autophagy: implications in aging and mitochondrial homeostasis in the kidney proximal tubule[J]. Autophagy,2016,12(5):801.

[14]Cui J,Bai X Y,Shi S,et al. Age-related changes in the function of autophagy in rat kidneys[J]. Age(Dordr),2012,34(2):329.

[15]Hartleben B,Gdel M,Meyer-Schwesinger C,et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice[J]. J Clin Invest,2010,120(4):1084.

[16]Kimura T,Takabatake Y,Takahashi A,et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury[J]. J Am Soc Nephrol,2011,22(5):902.

[17]Wullschleger S,Loewith R,Hall M N. TOR signaling in growth and metabolism[J]. Cell,2006,124(3):471.

[18]Jung C H,Ro S H,Cao J,et al. mTOR regulation of autophagy[J]. FEBS Lett,2010,584(7):1287.

[19]Klionsky D J,Meijer A J,Codogno P. Autophagy and p70S6 kinase[J]. Autophagy,2005,1(1):59.

[20]Zhuo L, Cai G, Liu F,et al. Expression and mechanism of mammalian target of rapamycin in age-related renal cell senescence and organ aging[J]. Mech Ageing Dev,2009,130(10):700.

[21]Ning Y C,Cai G Y,Zhuo L,et al. Short-term calorie restriction protects against renal senescence of aged rats by increasing autophagic activity and reducing oxidative damage[J]. Mech Ageing Dev,2013,134(11/12):570.

[22]Chen S,Rehman S K,Zhang W,et al. Autophagy is a therapeutic target in anticancer drug resistance[J]. Biochim Biophys Acta,2010,1806(2):220.

[23]Shrivastava S,Bhanja Chowdhury J,Steele R,et al. Hepatitis C virus upregulates beclin1 for induction of autophagy and activates mTOR signaling[J]. J Virol,2012,86(16):8705.

[24]Ma X,Hu Y. Targeting PI3K/Akt/mTOR cascade:the medicinal potential, updated research highlights and challenges ahead[J]. Curr Med Chem,2013,20(24): 2991.

[25]Li D,Yan T,Xu Z,et al. Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR pathway and reduce adhesive damage in podocytes under mechanical stress[J]. Biosci Rep,2016,36(4):e00355.

[26]Kawai M,Kinoshita S,Ozono K,et al. Inorganic phosphate activates the AKT/mTORC1 pathway and shortens the life span of anαKlotho-Deficient model[J]. J Am Soc Nephrol,2016,27(9):2810.

[27]Maiese K. mTOR:driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus[J]. World J Diabetes,2015,6(2):217.

[28]Maiese K. New insights for oxidative stress and diabetes mellitus[J]. Oxid Med Cell Longev,2015,2015:875961.

[29]Hardie D G,Ross F A,Hawley S A. AMP-activated protein kinase:a target for drugs both ancient and modern[J]. Chem Biol,2012,19(10):1222.

[30]Kume S,Uzu T,Horiike K,et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney[J]. J Clin Invest,2010,120(4):1043.

[31]Kitada M,Takeda A,Nagai T,et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty(fa/fa)rats:a model of type 2 diabetes[J]. Exp Diabetes Res,2011,2011:908185.

[32]Bttinger E P,Bitzer M. TGF-beta signaling in renal disease[J]. J Am Soc Nephrol,2002,13(10):2600.

[33]Kiyono K,Suzuki H I,Matsuyama H,et al. Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells[J]. Cancer Res,2009,69(23):8844.

[34]Xu Y,Yang S,Huang J,et al. TGF-β1 induces autophagy and promotes apoptosis in renal tubular epithelial cells[J]. Int J Mol Med,2012,29(5):781.

[35]Li C,Wang Q,Wang J F. Transforming growth factor-β(TGF-β)induces the expression of chondrogenesis-related genes through TGF-β receptor Ⅱ(TGFRⅡ)-AKT-mTOR signaling in primary cultured mouse precartilaginous stem cells[J]. Biochem Biophys Res Commun,2014,450(1):646.

[36]Carracedo A,Ma L,Teruya-Feldstein J,et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer[J]. J Clin Invest,2008,118(9):3065.

[37]Patschan D,Krupincza K,Patschan S,et al. Dynamics of mobilization and homing of endothelial progenitor cells after acute renal ischemia:modulation by ischemic preconditioning[J]. Am J Physiol Renal Physiol,2006,291(1):F176.

[38]Yang T,Wang L,Zhu M,et al. Properties and molecular mechanisms of resveratrol:a review[J]. Pharmazie,2015,70(8):501.

[39]Zhang S,Cai G,Fu B,et al. SIRT1 is required for the effects of rapamycin on high glucose-inducing mesangial cells senescence[J]. Mech Ageing Dev,2012,133(6):387.

[40]李春花,張英,李可心,等. 白藜蘆醇通過誘導自噬保護糖尿病腎病大鼠腎功能的研究[J]. 中國實驗診斷學,2014,18(12):1920.

[41]Gu J,Hu W,Song Z P,et al. Resveratrol-induced autophagy promotes survival and attenuates doxorubicin-induced cardiotoxicity[J]. Int Immunopharmacol,2016,32:1.

[42]Prasad S,Gupta S C,Tyagi A K,et al. Curcumin,a component of golden spice:from bedside to bench and back[J]. Biotechnol Adv,2014,32(6):1053.

[43]Shen L R,Xiao F,Yuan P,et al. Curcumin-supplemented diets increase superoxide dismutase activity and mean lifespan in Drosophila[J]. Age(Dordr),2013,35(4):1133.

[44]Xu J,Meng K,Zhang R,et al. The use of functional chemical-protein associations to identify multi-pathway renoprotectants[J]. PLoS ONE,2014,9(5):e97906.

[45]Paterson R R. Cordyceps:a traditional Chinese medicine and another fungal therapeutic biofactory [J]. Phytochemistry,2008,69(7):1469.

[46]黃可,謝淑華,安寧,等. 冬蟲夏草通過抗氧化及抗衰老減輕糖尿病腎病大鼠腎小管損傷的研究[J]. 中國醫學創新,2014,11(22):15.

[47]Pan M M,Zhang M H,Ni H F,et al. Inhibition of TGF-β1/Smad signal pathway is involved in the effect ofCordyceps sinensis against renal fibrosis in 5/6 nephrectomy rats[J]. Food Chem Toxicol,2013,58:487.

[48]涂玥,孫偉,顧劉寶,等. 大黃酸調控mTOR信號通路活性抑制腎小管上皮細胞自噬蛋白表達的分子機制[J]. 中國中藥雜志,2014,39(21):4090.

[責任編輯 馬超一]

猜你喜歡
分子機制自噬中藥
中藥久煎不能代替二次煎煮
您知道嗎,沉香也是一味中藥
中醫,不僅僅有中藥
中藥貼敷治療足跟痛
縮泉丸補腎縮尿的分子機制探討
自噬在不同強度運動影響關節軟骨細胞功能中的作用
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合