?

WRKY轉錄因子的研究進展

2018-03-31 20:04張凡尹俊龍郭瑛琪岳艷玲
生物技術通報 2018年1期
關鍵詞:擬南芥結構域抗性

張凡 尹俊龍 郭瑛琪 岳艷玲

(1. 云南農業大學園林園藝學院,昆明 650201;2. 中國科學院昆明動物研究所,昆明 650000)

植物在整個發育時期都會受到生物和非生物脅迫。生物脅迫包括來自病原菌、真菌、病毒和卵菌的攻擊。非生物脅迫包括干旱、土壤鹽漬化、重金屬、熱、冷、輻射和氧化應激。適應這些壓力和對各種環境脅迫的響應對于植物的生存和延續是關鍵的。許多轉錄因子家族如WRKY、AP2/ ERF和NAC都是植物所特有的,它們在植物的調節控制中起著重要而獨特的作用[1]。植物所特有的WRKY轉錄因子是最大的轉錄因子家族之一,WRKY轉錄因子是一類DNA結合蛋白,主要存在于植物中,參與植物的各個生理過程,涉及生長,發育和自我應激信號傳導或與不同的基因和轉錄因子交叉調節。這些WRKY轉錄因子的DNA結合結構域被命名為WRKY結構域,其具有不變的WRKYGQK序列和CX4-5CX22-23HXH鋅指結構[2]。WRKY轉錄因子家族的第一個成員——SPF1是從甘薯中分離出來的[3]。在其他植物物種中,特別是模型植物-擬南芥,通過對其進行全基因組測序能夠檢測出更多的WRKY轉錄因子。當植物受到各種脅迫或防御信號時,一些WRKY 轉錄因子的表達會被快速誘導,從而調控各種脅迫的網絡途徑。此外,WRKY 轉錄因子的表達具有快速,瞬態和組織特異性的特點。全文總結了WRKY轉錄因子的結構特點和分類、植物受到生物和非生物脅迫時,WRKY轉錄因子的功能,以及WRKY轉錄因子相應各種脅迫時的調節網絡;除此之外,還分析了WRKY轉錄因子參與植物激素信號轉導和MAPK信號級聯,以及WRKY轉錄因子所特有的自我調節。以期為未來WRKY轉錄因子的研究提供理論參考和思路。

1 WRKY轉錄因子的結構特點和分類

WRKY 轉錄因子包含的WRKY結構域,是具有60個氨基酸長的DNA結合結構域,特征在于N端具有一個高度保守的WRKYGQK核心基序[3-4]。Yamasaki等[5]確定來自擬南芥 WRKY4蛋白的WRKY結構域由四鏈β折疊組成,具有由Cys / His殘基形成的鋅指結構。此外,在N末端β鏈中間的Gly殘基具有疏水作用,并有助于β折疊結構的穩定性。含有WRKYGQK基序的β鏈與約6 bp區域接觸,其大體上與W-盒(TTGACY)的長度一致。在一些WRKY轉錄因子中,WRKY結構域中的WRKY殘基被WRRY,WSKY,WKRY,WVKY或WKKY基序所代替[6]。在水稻方面,WRKY家族擁有19個WRKY結構域的變體,其中WRKYGEK和WRKYGKK是最常見的兩個變體[7]。其他變體包括WRICGQK、WRMCGQK、WKKYGQK、WIKYGQK、WKRYGQK、WSKYEQK 和 WRKYSEK[7]。鋅指結構主要有兩種類型:C2-H2(C-X4-5-C-X22-23-HXH)和C2-HC(C-X7-C-X23-HXC)[8]。

WRKY轉錄因子根據WRKY結構域的數目和鋅指結構的類型可分為3類。具有兩個WRKY域的屬于第I類,而具有一個WRKY域的屬于第II或第III類。第I和第II類成員所具有的鋅指結構為C2-H2(C-X4-5-CX22-23-H-X1-H),其中X可以是任何氨基酸。第III類WRKY蛋白所含的鋅指結構為C2-HC(C-X7-C-X23-H-X-C)[8]。該分類方法是根據蛋白質的結構特征進行分類,不包括WRKY基因家族的進化起源和基因重復?;赪RKY結構域的進化分析,保守域和內含子位置,Xie和Zhang[7]提出了另一種模型,將WRKY蛋白分為5類:I類(IN末端和IC末端)、IIa+IIb類、IIc類、IId+IIe類和III類。他們根據內含子的插入位置將WRKY 轉錄因子分為兩類[7]。第一類包括R型內含子WRKY,其剪接位點位于2 Gs的精氨酸密碼子AGG之間。另一類包括V型內含子WRKY,其中剪接位點位于纈氨酸密碼子前面。WRKY轉錄因子可以激活或抑制生理過程中的轉錄[6]。除了WRKY結構域和鋅指結構外,大多數WRKY轉錄因子還具有核定位信號(Nuclear localization signals,NLS),絲氨酸/蘇氨酸富集區,富含谷氨酰胺的區域,富含脯氨酸的區域,激酶結構域,TIR- NBS-LRR等結構。這些結構使WRKY轉錄因子擁有不同的轉錄調控功能[7]。

2 WRKY轉錄因子在植物生物脅迫中的作用

在植物受到生物脅迫時,WRKY轉錄因子會通過激活水楊酸(Salicylic acid,SA),茉莉酸(Jasmonic acid,JA)和乙烯(ET)信號通路,來改變相關基因的轉錄水平[9],從而對不同的生物脅迫產生反應。經研究證明,WRKY轉錄因子在由幾種病原體攻擊的植物防御反應中起重要作用。棉花基因GhWRKY39-1和GhWRKY40在煙草中的過表達可調節茄科的抗性反應[10]。GhWRKY40還調節了植株中傷口誘導反應[11]。用禾谷鐮刀菌和稻瘟病菌噴施生長2周的二穗短柄草幼苗,發現有15個BdWRKY基因的表達上調,而只用禾谷鐮刀菌噴灑二穗短柄草幼苗時,發現有包括BdWRKY8/34/50/69/70在內的9個BdWRKY基因的表達上調[12]。在葡萄中,在遇到白腐病誘導的生物脅迫后,57%的WRKY基因(16個基因)的表達會發生改變[13]。通過對擬南芥WRKY8的生物功能調查表明:WRKY8可調節擬南芥對丁香假單胞菌和灰葡萄孢的敏感性[14]。進一步研究發現,WRKY8可調控脫落酸(Abscisic acid,ABA)和乙烯(ET)信號通路,在TMV-cg-擬南芥相互作用期間,介導ABA和ET信號之間的串擾,從而賦予TMC-cg抗性[15]。在敲除WRKY22的轉基因水稻中發現,其對稻瘟病菌的感病性增加。而WRKY22基因的過表達則增加了抗病性,說明WRKY22是水稻抗稻瘟病正調控因子[16]。TaWRKY70在小麥高溫苗木(HTSP)抗條銹菌的過程中起到一定作用,其在小麥中可誘導條銹病,其中可能激活SA和ET信號[17]。

大多數已知功能的WRKY轉錄因子是負調節因子,只有少數為具有正調節作用的調節因子[18-19]。在擬南芥中,AtWRKY38和AtWRKY62編碼兩種結構相似的III類WRKY轉錄因子,對病原菌丁香假單胞菌的防御起到負調節作用。在AtWRKY38和AtWRKY62的單突變體及雙突變體中,其抗病性均得到提高[18]。而AtWRKY38或AtWRKY62的過表達則降低了抗病性[18]。在AtWRKY48過表達的轉基因植物中,其感病性增強;而在AtWRKY48功能喪失的突變體中,其對丁香假單胞菌的抗性增強[19]。這些結果表明,WRKY48對擬南芥丁香假單胞菌的基礎抗性具有負調節作用。對抗病原體具有正調控作用的WRKY基因可直接或間接激活抗性基因的表達[20]。WRKY 轉錄因子還參與促分裂原活化蛋白激酶(MAPK)信號通路,其涉及應激誘導的防御反應[21]。在擬南芥中,AtWRKY22和AtWRKY29是MAPK介導的針對病原體的植物防御反應的重要組成部分。AtWRKY29在擬南芥中的瞬時表達也增強了其對根腫菌的抗性[21]。水稻轉錄因子OsWRKY45的表達下調可降低SA對真菌和細菌病原體抗性的誘導,而其過表達對兩種病原體都具有強烈的抗性,表明其對SA誘導的抗病性具有重要作用[22]。

3 WRKY轉錄因子在植物非生物脅迫中的作用

非生物脅迫,包括熱脅迫或逆溫、土壤鹽分、氧化應激、干旱和營養缺乏對植物的生理和生化過程產生不利影響[23]。這些脅迫有時也會同時發生,不利于植物生長。這種非生物脅迫在一定程度上也會誘導WRKY 轉錄因子表達上調或下調并引發信號級聯網絡,以提高植物的脅迫耐受性[23-24]。

3.1 熱應激

熱應激被認為是主要的非生物脅迫。極端高溫或低溫都會導致廣泛的農業經濟損失。因此,制定保護植物細胞不受溫度劇烈變化造成損害的策略對于提高農業生產是必要的[25-26]。植物在遇到熱脅迫時,WRKY轉錄因子通過調控相關基因的表達,幫助植物抵抗溫度的變化。在擬南芥中,高溫處理可抑制AtWRKY33的表達,也可誘導AtWRKY25和AtWRKY26 的表達[27]。AtWRKY25 和 AtWRKY26 的組成型過表達增強了抗熱應激[27]。擬南芥AtWRKY39是第II類WRKY蛋白質的成員,并對多種脅迫作出反應[28]。熱處理誘導AtWRKY39轉錄因子轉錄的同時,SA和JA信號通路正向共調節AtWRKY39[28]。此外,WRKY39過表達可使植物的耐熱性增強[28]。TaWRKY70不僅參與小麥高溫苗木對條銹菌的抗性,還可誘導小麥條銹病的發生,其中SA和ET信號可能被激活[17]。當小麥遇到高溫時,TaWRKY70的轉錄物顯著增加,且在用乙烯,水楊酸和冷(4℃)脅迫處理的植物中增加,但是在用茉莉酸甲酯(MeJA)和熱(40℃)脅迫處理的植物中則下降。TaWRKY70的沉默會導致植株對小麥條銹?。≒st)的敏感性增高[17]。此外,TaWRKY33轉基因株系的耐熱性也大大增強[29]。

3.2 鹽脅迫

干旱經常會引起土壤鹽分析出,從而導致滲透脅迫。AtWRKY25和AtWRKY33雙突變體對NaCl具有高度敏感性,其任一基因的過表達都會賦予NaCl脅迫耐受性[27]。同樣地,菊花中的WRKY基因-DgWRKY1或DgWRKY3的過表達也提高了其的耐鹽性。在DgWRKY1或DgWRKY3過表達的轉基因煙草植物中,鹽脅迫引起的過氧化氫(H2O2)和丙二醛的積累會隨過氧化物歧化酶(Superoxide dismutase,SOD),過氧化物酶(Peroxidase,POD)和過氧化氫酶(Catalase,CAT)等抗氧化酶活性的降低而減少[30]。類似地,在OsWRKY45和OsWRKY72過表達的轉基因水稻植物中,其對干旱和鹽脅迫的耐受性也大大增加[31-32]。當OsWRKY11轉錄因子的cDNA與水稻HSP101的啟動子融合時,轉基因株系顯示出明顯的耐熱耐旱性,如植物綠色部分葉片枯萎較慢和存活率較高[33]。TaWRKY10是來自小麥的WRKY基因,其被引入并在煙草中過量表達時,煙草的干旱和鹽脅迫耐受性顯著增強。通過調節滲透平衡和脅迫相關基因的轉錄,TaWRKY10被認為是干旱和鹽脅迫下的主要調節因子。當轉基因品系受到干旱和鹽脅迫時,脯氨酸和可溶性糖含量增加,MDA含量維持在較低水平[32]。BcWRKY46和HvWRKY38在擬南芥中組成型過表達時,賦予轉基因植物更強的干旱和鹽脅迫耐受性[34-35]。在擬南芥中ZmWRKY23的組成型表達也增強了其對鹽脅迫的耐受性[36]。GhWRKY68可以通過調節ABA含量和增強ABA相關基因的轉錄水平來介導鹽和干旱反應。

3.3 氧化應激

氧化應激是各種其他脅迫引起的最嚴重的脅迫之一[37]。植物中主要有4種類型的活性氧:單線態氧(O2),羥自由基(OH),超氧陰離子(O2)和過氧化氫H2O2。在擬南芥中,WRKY6,WRKY8,WRKY22,WRKY30,WRKY39,WRKY48,WRKY53,WRKY75等WRKY 轉錄因子都響應于H2O2脅迫而上調。Davletova等[38]的研究顯示,擬南芥胞漿H2O2清除酶抗壞血酸過氧化物酶1(APX1)在輕度脅迫過程中起到保護葉綠體的作用。在使用Zat12敲除擬南芥植物H2O2的情況下,研究其與Zat7,WRKY25和APX之間的表達相關性,和在未誘導H2O2的情況下,研究Zat7,WRKY25和APX的表達,表明Zat12在這三個基因的氧化應激反應中的必要性[39]。絲裂原活化蛋白激酶激酶激酶(MEKK1)可以直接與WRKY53相互作用,調節參與抗氧化防御的蛋白質 如 CAT1,CAT2和 CAT3的 表 達[40]。AtWRKY53過表達株系也對干旱脅迫具有敏感性。AtWRKY53的活化表達通過減少保衛細胞中的H2O2含量來抑制氣孔閉合。AtWRKY53可以直接與QQS啟動子序列結合,從而導致淀粉代謝增強[37]。AtWRKY8通過與MAPKKKα-MEK2-WIPK信號級聯的下游基因相互作用,誘導對致病疫霉的抗性,從而增加H2O2的積累并最終誘導植物細胞凋亡[41]。在干旱,鹽,脫落酸和H2O2脅迫時,由GhWRKY68啟動子驅動的b-葡糖苷酸酶活性得到提高[42]。GhWRKY68過表達植物在干旱和鹽脅迫時,對氧化應激的耐受性降低,這與活性氧(Reactive oxy gen species,ROS)的積累,酶活性的降低,MDA含量的升高和ROS相關基因表達的改變相關[42]。

4 WRKY轉錄因子在響應脅迫時的調控網絡

在植物生長發育過程中,許多生長調節劑參與信號轉導網絡的應用。WRKY轉錄因子是這種信號網絡中的新興參與者。WRKY轉錄因子,其下游靶基因和上游調節劑之間的相互作用和交互作用構成了復雜的WRKY 轉錄因子調控網絡,這是研究界的新興領域[43-45]。

4.1 WRKY轉錄因子的自調控

兩個靶基因啟動子和WRKY轉錄因子啟動子都存在W盒。WRKY轉錄因子通過自我調節調控其對各種壓力的防御反應,其通過識別和結合本身目標基因中的W-box或其他WRKY轉錄因子啟動子來實現不同WRKY轉錄因子之間的串擾[44]。經研究表明,石斛蘭中的PcWRKY1可以與其啟動子區域中的W-box結合,也可與PcWRKY3啟動子區域中的W-box結合[46]。具有相同結構的AtWRKY18,AtWRKY40和AtWRKY60在物理和功能上具有相互作用,因為它們在其N端中都具有富含亮氨酸的重復[47]。在野生型擬南芥中,ABA可誘導AtWRKY60表達,但在AtWRKY18和AtWRKY40突變體中不表達,表明WRKY60可能是ABA信號通路中WRKY18/ WRKY40 的直接靶基因[14]。AtWRKY25,AtWRKY26和AtWRKY33也參與了熱誘導反應的調節[28]。AtWRKY25與AtWRKY26和AtWRKY33在耐熱脅迫的調節中相互作用。AtWRKY33的組成型表達通過對自身活動的負反饋增強了對熱應激的抵抗力[27]。

4.2 WRKY轉錄因子在MAPK信號級聯中的作用

絲裂原活化蛋白激酶(Mitogen-activated protein kinase,MAPK)信號級聯存在于所有真核生物中,并在植物中ABA依賴性防御反應的下游信號傳導中起作用[48]。它還參與了對生長發育和多種非生物和生物脅迫反應的調控[49]。MAPK信號級聯通過多種磷酸化反應將上游受體與下游轉錄因子連接[50-51]。在N末端區域含有保守基序的I組WRKY轉錄因子也被MAPK依賴性磷酸化活化,強調其在植物免疫中的重要性[51]。在擬南芥中,轉錄因子WRKY33在不存在病原體感染的情況下與MAP激酶4(MPK4)形成 MAMP或 PAMP 復合物[52]。該復合物取決于MPK4底物MKS1,前者會由于病原體感染而被激活并磷酸化。隨后,核內復合物MPK4-MKS1-WRKY33被破壞,MKS1和AtWRKY33被釋放。AtWRKY33然后激活編碼抗微生物復合物合成所需酶的PAD3的表達[52]。此外,AtWRKY22和AtWRKY29是MAPK介導的對細菌和真菌病原體的抗性的重要組成部分。AtWRKY29同源基因在擬南芥葉中的瞬時表達,賦予其對病原體的抗性[53]。AtWRKY29同源物AtWRKY22可以識別并結合與AtWRKY29相同的啟動子,并賦予相似的功能[21]。另一個例子是OsWRKY30,它通過MAPK磷酸化級聯增強了水稻抗旱性[54]。

4.3 WRKY TFs參與植物激素信號轉導

WRKY轉錄因子在SA和ABA介導的信號通路中起關鍵作用[55]。AtWRKY39可被SA或甲基茉莉酸(MeJA)誘導,并協同參與SA和JA信號通路[56]。AtWRKY38或AtWRKY62的過表達,可抑制SA誘導的防御相關基因AtPR1的表達,從而降低植物的抗病性[57]。OsWRKY45在SA介導的防御反應中是關鍵的,抑制其表達將嚴重損害SA介導的對苯并噻二唑的抗性,而其過表達則使水稻的抗性顯著增強[58]。SA可誘導PtrWRKY89過表達,從而加速PR蛋白的表達,提高對楊樹黑斑病的抗性。綜上所述,WRKY轉錄因子在SA防御信號通路中具有重要作用[59]。

脫落酸也是一種植物激素,在整合各種應激信號和控制下游應激反應方面發揮重要作用。一些WRKY 轉錄因子也參與ABA介導的應激反應中的信號通路。LtWRKY21激活ABA誘導型基因HVA22的啟動子,并與VP1和ABI5協同互作使其表達上調[60]。ChIP測定表明,WRKY57可以直接結合反應性干燥素29A(RD29A)和9-順式環氧類胡蘿卜素雙加氧酶3(NCED3)啟動子的W-box,并啟動基因表達[61]。AtWRKY40結合多個ABA誘導型基因啟動子的W-box,如AtABF4、AtABI4、AtABI5、AtDREB1A、AtMYB2和AtRAB18,以抑制其表達[62]。在擬南芥ABA信號通路中,WRKY18,WRKY40和WRKY60通過與ABI4和ABI5相互作用來調控下游基因表達。其中WRKY40是負調節因子,WRKY18抑制了WRKY40誘導ABI4和ABI5的轉錄,而WRKY60對WRKY40具有拮抗作用[62]。在冷應激和外源性脫落酸處理中,CsWRKY46基因表達上調,但CsWRKY46僅在細胞核中表達,并與ABI5啟動子中的W-盒相互作用。而CsWRKY46過表達的轉基因擬南芥在冷脅迫時具有較高的幼苗存活率,種子萌發期間對ABA也具有較高的敏感性[63]。CmWRKY1是從菊花中分離出來的WRKY轉錄因子家族成員,通過ABA介導途徑在抗旱反應中起重要作用[64]。此外,轉基因植物表現出抑制ABA負調控的基因表達水平,如PP2C,ABI1和ABI2,以及激活ABA正調控的基因表達水平[64]。

4.4 其他調控網絡

IId類WRKY轉錄因子含有CAT結合結構域[65],表明IId類 WRKY 轉錄因子可能受CaM和Ga2+調控[66]。類似的CAT結合結構域也存在于擬南芥的十幾個WRKY 轉錄因子中,其也被CaM結合[66]。一組高度保守的調節蛋白14-3-3存在于所有真核生物中,通過與靶基因的相互作用,通常以磷酸化依賴性方式調節多種細胞生理事件。包括BZR1(油菜素類固醇的轉錄因子),抑制苗生長(Repression of shoot growth,RSG)和絲氨酸乙酰轉移酶(Serine acetyltransferase,SAT)在內的300種擬南芥WRKY轉錄因子都是14-3-3蛋白的靶基因[67-69]。在擬南芥WRKY轉錄因子和14-3-3蛋白之間的相互作用中,應激誘導的信號級聯中分子的磷酸化是必需的[70]。由于14-3-3蛋白質二聚化,每個14-3-3二聚體可以結合兩個蛋白質配體,磷酸化配體和其他未磷酸化的配體都通過與14-3-3二聚體的相互作用而接近。具有磷酸化結合位點的WRKY轉錄因子間接地與其他蛋白質形成復合物,從而參與許多細胞反應。AtWRKY6參與了植物衰老和低磷酸脅迫反應的調控[71-72]。AtWRKY38和AtWRKY62與組蛋白脫乙酰酶19(HDA19)的相互作用,可以通過維持組蛋白尾部的乙?;絹碚{控植物對非生物脅迫的基礎防御反應[18]。除了WRKY轉錄因子之外,還有其他轉錄因子以其他方式響應應激反應。質膜定位的NTL6蛋白可以轉位到細胞核調控目標基因如miR(COR15a)和 PR 基因[73]。

5 展望

WRKYs是高等植物中最大的轉錄因子家族(TFs)之一,在植物對生物和非生物脅迫的反應中起關鍵作用?,F已發現的WRKY 轉錄因子是否都對植物的生理存在作用,其功能是否存在重復,以及WRKY轉錄因子自我調節模式和涉及WRKY轉錄因子的信號傳導途徑之間的串擾機制尚不清楚,仍需進一步的研究證實和完善。而基因組和轉錄組學的研究有助于了解不同植物中WRKY轉錄因子的整個基因組學,有助于揭示WRKR轉錄因子在植物脅迫反應中的作用方式。此外,在不久的將來探索越來越多的信息時,與WRKY轉錄因子及其目標以及其他轉錄因子相結合的協同應對機制將更為有趣。

[1]Jiang Y, Zeng B, Zhao HN, et al. Genome-wide transcription factor gene prediction and their expressional tissue-specificities in maize[J]. J Integr Plant Biol, 2012, 54(9):616-630.

[2]Bakshi M, Oelmüller R. WRKY transcription factors[J]. Plant Signaling & Behavior, 2014, 9(2):247-258.

[3]Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and betaamylase from sweet potato[J]. Molecular Genetics and Genomics,1994, 244(6):563-571.

[4]Rushton, Paul J, Somssich, et al. WRKY transcription factors[J].Trends in Plant Science, 2010, 15(5):247-258.

[5]Yamasaki K, Kigawa T, Inoue M, et al. Solution structure of an Arabidopsis WRKY DNA binding domain[J]. Plant Cell, 2005, 17(3):944-956.

[6]Xie Z, Zhang ZL, Zou X, et al. Annotations and functional analyses of the rice WRKY gene super family reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137:176-189.

[7]Zhang Y, Wang L. The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 2005, 5(1):1-12.

[8]Li H, Yan X, Yu X, et al. Expression and functional analysis of two genes encoding transcription factors, VpWRKY1, and VpWRKY2,isolated from Chinese wild Vitis pseudoreticulata[J]. Planta,2010, 232(6):1325-1337.

[9]Chen L, Song Y, Li S, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta-Gene Regulatory Mechanisms, 2012, 1819(2):120-128.

[10]Shi W, Hao L, Li J, et al. The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana[J]. Plant Cell Reports, 2014, 33(3):483-498.

[11]Wang X, Yan Y, Li Y, et al. GhWRKY40, a Multiple stressresponsive cotton WRKY gene, plays an important role in the wounding response and enhances susceptibility to ralstonia solanacearum infection in transgenic Nicotiana benthamiana[J].PLoS One, 2014, 9(4):e93577.

[12]Wen F, Zhu H, Li P, et al. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon[J]. DNA Research, 2014, 21(3):327-339.

[13]Zhang Y, Feng JC. Identification and characterization of the grape WRKY family[J]. Biomed Research International, 2014, 2014 :doi:10.1155/2014/787680.

[14]Chen L, Zhang L, Yu D. Wounding-induced WRKY8 is involved in basal defense in Arabidopsis[J]. Mol Plant Microbe Interact,2010, 23:558-565.

[15]Chen L, Zhang L, Li D, et al. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis[J]. Proc Natl Acad Sci USA, 2013, 110(21):1963-1971.

[16]Cheng HT, Wang SP. WRKY-Type transcription factors:a significant factor in rice-pathogen interactions[J]. Scientia Sinica, 2014, 44(8):784-793.

[17]Wang J, Tao F, An F, et al. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistanceto Puccinia striiformis f. sp. tritici[J]. Mol Plant Pathol, 2016, 18(5):649-661.

[18]Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371.

[19]Deng H, Xing, Zi B, et al. Stress- and pathogen-induced arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense[J]. Mol Plant, 2008, 1(3):459-470.

[20]Hwang KF, Chang CC. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression[J]. Plant Cell, 2001, 13(7):1527-1540.

[21]Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415(6875):977-983.

[22]Akira N, Setsuko F, Shingo G, et al. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice[J]. BMC Plant Biology, 2013, 13(1):150-160.

[23]Joshi R, Wani SH, Singh B, et al. Transcription factors and plants response to drought stress:current understanding and future directions[J]. Frontiers in Plant Science, 2016, 7:1029.

[24]Rushton DL, Tripathi P, Rabara RC, et al. WRKY transcription factors:Key components in abscisic acid signalling[J]. Plant Biotechnol J, 2012, 10(1):2-11.

[25]Grover A, Mittal D, Negi M, et al. Generating high temperature tolerant transgenic plants:Achievements and challenges[J].Plant Science, 2013, 205(5):38-47.

[26]Ohama N, Sato H, Shinozaki K, et al. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 2017, 22(1):53-65.

[27]Li S, Fu Q, Chen L, et al. Arabidopsis thaliana WRKY25, WRKY26,and WRKY33 coordinate induction of plant thermotolerance[J].Planta, 2011, 233(6):1237-1252.

[28]Li S, Xiang Z, Chen L, et al. Functional characterization of Arabidopsis thaliana, WRKY39 in heat stress[J]. Molecules and Cells, 2010, 29(5):475-483.

[29]He GH, Xu JY, Wang YX, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biology, 2016, 16(1):116-131.

[30]Liu QL, Zhong M, Li S, et al. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, intobacco enhances tolerance to salt stress[J]. Plant Physiol Biochem Ppb, 2013, 69(8):27-33.

[31] Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45,enhances disease resistance and drought tolerance in Arabidopsis[J]. Environmental & Experimental Botany, 2009, 65(1):35-47.

[32]Yu S, Ligang C, Liping Z, et al. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis[J]. Journal of Biosciences, 2010, 35(3):459-471.

[33]Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter[J]. Plant Cell Reports,2009, 28(1):21-30.

[34]Wang C, Deng P, Chen L, et al. A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco[J]. PLoS One, 2013, 8(6):e65120.

[35]Wang F, Hou X, Tang J, et al. A novel cold-inducible gene from Pak-choi(Brassica campestris ssp. chinensis), BcWRKY46,enhances the cold, salt and dehydration stress tolerance in transgenic tobacco[J]. Mol Biol Rep, 2012, 39(4):4553-4564.

[36] Jiang WB, Yu DQ. Arabidopsis WRKY2 transcription factor may be involved in osmotic stress response[J]. Acta Botanica Yunnanica, 2009, 31(5):427-432.

[37]Sun Y, Yu D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J].Plant Cell Reports, 2015, 34(8):1295-1306.

[38]Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis[J]. Plant Cell, 2005, 17(1):268-281.

[39]Rizhsky L, Davletova S, Liang H, et al. The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis[J]. J Biol Chem, 2004,279:11736-11743.

[40]Ying M, Laun T M, Smykowski A, et al. Arabidopsis MEKK1 can take a short cut:it can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to itspromoter[J]. Plant Molecular Biology, 2007, 65(1):63-76.

[41]Zhang H, Li D, Wang M, et al. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses[J].Molecular plant-microbe interactions:MPMI, 2012, 25(12):1639.

[42]Jia H, Wang C, Wang F, et al. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(3):e0120646.

[43]Berri S, Abbruscato P, Faivre-Rampant O, et al. Characterization of WRKY co-regulatory networks in rice and Arabidopsis[J]. BMC Plant Biology, 2009, 9(1):120-141.

[44]Zentgraf U, Laun T, Miao Y. The complex regulation of WRKY53,during leaf senescence of Arabidopsis thaliana[J]. European Journal of Cell Biology, 2010, 89(2-3):133-137.

[45]Banerjee A, Roychoudhury A. WRKY proteins:signaling and regulation of expression during abiotic stress responses[J]. The Scientific World Journal, 2015:807560.

[46]Turck F, Zhou A, Somssich I E. Stimulus-dependent, promoterspecific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley[J].Plant Cell, 2004, 16(10):2573-2585.

[47]Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors[J]. Plant Cell, 2006, 18(5):1310-1326.

[48]De ZA, Colcombet J, Hirt H. The role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science,2016, 21(8):677-685.

[49]Pitzschke A, Schikora A, Hirt H. MAPK cascade signalling networks in plant defence[J]. Curr Opin Plant Biol, 2009, 12(4):421-426.

[50] Fiil BK, Petersen K, Petersen M, et al. Gene regulation by MAP kinase cascades[J]. Curr Opin Plant Biol, 2009, 12(5):615-621.

[51]Ishihama N, Yoshioka H. Post-translational regulation of WRKY transcription factors in plant immunity[J]. Curr Opin Plant Biol,2012, 15(4):431-437.

[52]Qiu JL, Fiil BK, Petersen K, et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus[J]. EMBO J, 2008, 27(16):2214-2221.

[53]Li Y, Williams B, Dickman M. Arabidopsis B-cell lymphoma2(Bcl-2)-associated athanogene 7(BAG7)-mediated heat tolerance requires translocation, sumoylation and binding to WRKY29[J].New Phytologist, 2016, 214(2):695-705.

[54]Danquah A, De ZA, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses[J].Biotechnology Advances, 2014, 32(1):40-52.

[55]Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J].Plant Mol Biol, 2003, 51:21-37.

[56] Li S, Zhou X, Chen L, et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress[J]. Mol Cells,2010, 29:475-483.

[57]Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20:2357-2371.

[58]Shimono M, Sugano S, Nakayama A, et al. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance[J].Plant Cell, 2007, 19:2064-2076.

[59]Jiang Y, Liang G, Yang S, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence[J]. Plant Cell, 2014, 26:230-245.

[60]Zou X, Seemann JR, Neuman D, et al. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway[J]. J Biol Chem, 2004, 279:55770-55779.

[61]Jiang Y, Liang G, Yu D. Activated expression of WRKY57 confers drought tolerance in Arabidopsis[J]. Mol Plant, 2012, 5 :1375-1388.

[62]Shang Y, Yan L, Liu ZQ, et al. The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition[J]. Plant Cell,2010, 22:1909-1935.

[63]Zhang Y, Yu H, Yang X, et al. CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenicplant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiol Biochem, 2016, 108 :478-487.

[64]Fan Q, Song A, Jiang J, et al. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes[J]. PLoS One, 2016, 11 :e0150572.

[65]Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300.

[66]Chan YP, Ju HL, Jae HY, et al. WRKY group IId transcription factors interact with calmodulin[J]. Febs Letters, 2005, 579(6):1545-1550.

[67]Ishida S, Fukazawa J, Yuasa T, et al. Involvement of 14-3-3 signaling protein binding in the functional regulationof the transcriptional activator repression of shoot growth by gibberellins[J]. Plant Cell, 2004, 16(10):2641-2651.

[68]Yin Y, Vafeados D, Tao Y, et al. A new class of transcription factors mediates brassinosteroid-regulated gene expressionin Arabidopsis[J]. Cell, 2005, 120(2):249-259.

[69]Kumaran S, Yi H, Krishnan HB, et al. Assembly of the cysteine synthase complex and the regulatory role of protein-protein interactions[J]. J Biol Chem, 2009, 284(15):10268-10275.

[70]Shen YH, Godlewski J, Bronisz A, et al. Significance of 14-3-3 selfdimerization for phosphorylation-dependent target binding[J].Mol Biol Cell, 2003, 14(11):4721-4733.

[71]Arulpragasam A, Magno AL, Ingley E, et al. The adaptor protein 14-3-3 binds to the calcium-sensing receptor and attenuates receptormediated Rho kinase signalling[J]. Biochemical Journal, 2012,441(3):995-1006.

[72]Chi Y, Yang Y, Zhou Y, et al. Protein-protein interactions in the regulation of WRKY transcription factors[J]. Mol Plant, 2013, 6(2):287-300.

[73]Seo PJ. Recent advances in plant membrane-bound transcription factor research :Emphasis on intracellular movement[J]. J Integr Plant Biol, 2014, 56(4):334-342.

猜你喜歡
擬南芥結構域抗性
一個控制超強電離輻射抗性開關基因的研究進展
富天冬酰胺蛋白增強擬南芥輻射抗性的研究
蛋白質結構域劃分方法及在線服務綜述
尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
甲基對硫磷抗性菌的篩選及特性研究
兩種LED光源作為擬南芥生長光源的應用探究
甜玉米常見病害的抗性鑒定及防治
重組綠豆BBI(6-33)結構域的抗腫瘤作用分析
組蛋白甲基化酶Set2片段調控SET結構域催化活性的探討
用于黃瓜白粉病抗性鑒定的InDel標記
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合