?

海藻希瓦氏菌感染對半滑舌鰨腸道菌群結構及相關功能基因表達的影響

2019-09-10 06:14張燕玉韓卓然孫敬鋒呂愛軍胡秀彩劉軍鋒
南方農業學報 2019年10期
關鍵詞:弧菌海藻菌群

張燕玉 韓卓然 孫敬鋒 呂愛軍 胡秀彩 劉軍鋒

摘要:【目的】明確海藻希瓦氏菌(Shewanella algae)感染對半滑舌鰨(Cynoglossus semilaevis)腸道菌群結構及相關功能基因表達的影響,揭示腸道菌群和腸道組織相關功能基因在疾病發生及免疫應答過程中的作用機制?!痉椒ā恳灾虏⌒院T逑M呤暇斯じ腥景牖圉嵑?,采用16S rDNA高通量測序技術探究其腸道菌群組成結構的變化情況,并利用實時熒光定量PCR檢測分析半滑舌鰨腸道組織中參與疾病發生和免疫應答相關功能基因的表達規律?!窘Y果】共測序獲得118657條有效序列,按97%的序列相似度聚類后得到6732個OTUs。Alpha多樣性分析結果顯示,Shannon指數和Chao1指數以感染前(CG)的健康半滑舌鰨最高,在感染后12 h(12hpi)最低;感染海藻希瓦氏菌前后半滑舌鰨腸道優勢菌門無明顯變化,但不同類群的相對豐度發生變化。在屬水平上,Elizabethkingia、曼噬甲殼菌屬(Chitinophaga)、Brevinema、苯基桿菌屬(Phenylobacterium)、假單胞菌屬(Pseudomonas)、乳桿菌屬(Lactobacillus)、Marivita和雷爾氏菌屬(Ralstonia)的相對豐度在CG半滑舌鰨腸道菌群組成中占比最高,希瓦氏菌屬(Shewanella)、Petrimonas、Proteiniphilum和Aminobacterium的相對豐度在12hpi的占比最高,食酸菌屬(Acidovorax)、芽孢桿菌屬(Bacillus)和弧菌屬(Vibrio)的相對豐度在感染后24 h(24hpi)的占比最高。半滑舌鰨腸道組織相關功能基因的表達變化表現為:果糖二磷酸醛縮酶A基因(ALDOA)的相對表達量在24hpi時顯著高于CG(P<0.05,下同);磷脂酶B1基因(PLB1)、熱休克蛋白70 kD蛋白1A基因(HSPA1A)、組氨酸三聚體核苷結合蛋白1基因(HINT1)和γ谷氨酰轉移酶1基因(GGT1)的相對表達量顯著高于CG和24hpi;海藻糖酶基因(TREH)的相對表達量在12hpi時顯著低于CG和24hpi?!窘Y論】半滑舌鰨感染海藻希瓦氏菌后其腸道菌群多樣性降低、菌群結構發生變化,腸道組織中免疫功能相關基因(HSPA1A和HINT1)及代謝功能相關酶類基因(ALDOA、PLB1、GGT1和TREH)呈差異表達,說明海藻希瓦氏菌感染引起半滑舌鰨腸道微生態紊亂,且腸道組織中免疫功能相關基因和代謝功能相關酶類基因分別參與機體的免疫應答及疾病發生過程。

關鍵詞: 半滑舌鰨;海藻希瓦氏菌;腸道菌群;16S rDNA高通量測序;實時熒光定量PCR

中圖分類號: S941.42? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2019)10-2300-08

Effects of infection with Shewanella algae on the microbial communities and expression of related functional genes in the intestine of Cynoglossus semilaevis

ZHANG Yan-yu1, HAN Zhuo-ran1, SUN Jing-feng1*, LYU Ai-jun1,

HU Xiu-cai1, LIU Jun-feng2

(1College of Fisheries, Tianjin Agricultural University/Tianjin Key Lab of Aqua-Ecology and Aquaculture, Tianjin 300384; 2Tianjin Yushengtang Biotechnology Co., Ltd., Tianjin? 300404, China)

Abstract:【Objective】The purpose of this study was to investigate the changes of intestinal microbial communities and expression of related functional genes in the intestine of Cynoglossus semilaevis after artificial infection with the pathogenic Shewanella algae, and reveal the role of intestinal microbial flora and related functional genes in the process of disease occurrence and intestinal immune response in the host. 【Method】After C. semilaevis were artificially infected with the pathogenic S. algae,16S rDNA high-throughput sequencing technique was used to study the changes of intestinal microbial communities, and real-time fluorescence quantitative PCR technology was used to study the expression pattern of functional genes involved in the process of disease occurrence and immune response in the intestinal tissues. 【Result】A total of 118657 effective tags were obtained and assigned to 6732 OTUs based on a 97% sequence similarity level. The results of alpha diversity analysis showed that the indexes of Shannon and Chao1 were the highest in the control group (CG), and the lowest in the group of 12 h post-injection(12hpi). At phylum level,although the identified dominant intestinal bacteria were consistent between the control and infection groups, the relative abundance of the bacterial taxa varied. At genus level, the relative abundances of Elizabethkingia, Chitinophaga, Brevinema, Phenylobacterium, Pseudomonas, Lactobacillus, Marivita, andalstonia were the highest in the intestinal microbiota of CG; the relative abundances of Shewanella, Petrimonas, Proteiniphilum, and Aminobacterium in 12hpi group were more than those in other groups. Acidovorax, Bacillus, and Vibrio had the highest relative abundance in the group of 24 h post-injection (24hpi). The expression patterns of related functional genes in the intestine of C. semilaevis were as follows:the relative expression of fructose drphosphate aldolase A gene ALDOA in 24hpi group was significantly higher than that in CG(P<0.05, the same below); the relative expression of phospholipase b1 gene(PLB1), heat shock protein 70 kD protein 1A gene(HSPA1A),histidine trimer nucleoside binding protein 1 gene(HINT1) and gamma glutamyltransferase 1 gene(GGT1)in 12hpi group was significantly higher than those in CG and 24hpi groups; the relative expression of trehalase gene(TREH) in 12hpi group was significantly lower than those in CG and 24hpi groups.【Conclusion】The structure of the microflora changes with the diversity of intestinal microflora of C. semilaevis decreasing after infection with S. algae. The immune function related genes(HSPA1A and HINT1) and metabolism-related enzyme genes (ALDOA, PLB1,GGT1 and TREH) are diffe-rentially expressed. It indicates that infection with S. algae results in the disturbance of intestinal microecology of C. semilaevis, and the immune function related genes and metabolism-related enzyme genes are involved in the process of immune response against bacterial infection and disease occurrence.

Key words: Cynoglossus semilaevis;Shewanella algae; intestinal microflora; 16S rDNA high-through sequencing technique; real-time fluorescence quantitative PCR

0 引言

【研究意義】半滑舌鰨(Cynoglossus semilaevis)因具有產量高、肉質鮮美等優點,已發展成為海水漁業中最具養殖價值的魚類品種之一。近年來,隨著漁業工廠化養殖技術的不斷成熟,半滑舌鰨規?;B殖密度越來越高,導致養殖水質惡化、疾病頻發,給養殖戶帶來極大的經濟損失。侵染半滑舌鰨的常見病原菌有副溶血弧菌(Vibrio parahemolyticus)(胡璇等,2014)、創傷弧菌(V. vulnificus)(高桂生等,2016)及殺鮭氣單胞菌(Aeromonas salmonicida)(周紅霞等,2017)等。至今,越來越多研究表明腸道菌群結構與水產養殖動物的健康密切相關(Pérez et al.,2010)。腸道微生物群作為一個復雜的生態系統,通過參與免疫應答、營養吸收及疾病防御,對促進宿主健康至關重要(Lin et al.,2014)。魚類腸道作為機體重要的組織器官,不僅承擔著消化吸收功能,還在免疫防御過程中發揮重要作用(Wang et al.,2018)。因此,研究半滑舌鰨感染病原菌后其腸道菌群結構及相關功能基因表達的變化規律,可為揭示腸道菌群和腸道組織相關功能基因在疾病發生及免疫應答過程中的作用機制提供參考依據?!厩叭搜芯窟M展】腸道微生物對于宿主健康至關重要,針對水產動物的相關研究主要集中在機體健康狀態下的腸道菌群組成結構和多樣性分析(Giatsis et al.,2015;Narrowe et al.,2015;Han et al.,2018)。最近的研究表明,環境因素和養殖條件對水產動物腸道菌群組成結構有顯著影響(Talwar et al.,2018)。不同外界因素如生活環境(Cornejo-Granados et al.,2017)、飲食組成(Duan et al.,2017;He et al.,2017)、養殖水質(Suo et al.,2017)及生長階段(Cornejo-Granados et al.,2018)等均可導致南美白對蝦(Litopenaeus vannamei)腸道菌群組成差異。在魚類上,年齡(Lauzon et al.,2010)、飼料成分(Desai et al.,2012)、食性(Ye et al.,2014)及性別(Li et al.,2016b)等因素均會影響腸道菌群組成結構及其種類豐度。除這些因素外,病原微生物感染及疾病發生對水生動物的腸道微生態系統也有重要影響。白斑綜合征病毒(WSSV)感染可改變中華絨螯蟹(Eriocheir sinensis)和南美白對蝦的腸道微生物種類及其相對豐度(Ding et al.,2017;Wang et al.,2019);弧菌可引起斑節對蝦(Penaeus monodon)和南美白對蝦腸道細菌動態變化(Rungrassamee et al.,2014),并改變南美白對蝦腸道微生物群落結構(He et al.,2017);南美白對蝦急性肝胰腺壞死病的發生常伴隨著宿主腸道微生物群落變化,導致與疾病有關的特異性細菌出現并增殖(Chen et al.,2017);溶藻弧菌(V. alginolyticus)感染三疣梭子蟹(Portunus trituberculatus)可引起腸道微生物不同類群的豐度產生變化(Xia et al.,2018);在魚類方面,從患瘡癤病的圓口銅魚(Coreius guichenoti)和嗜水氣單胞菌(A. hydrophila)感染的斑馬魚(Danio rerio)中均發現腸道微生物群落組成及其多樣性發生變化(Li et al.,2016a;Yang et al.,2017b)。魚類疾病的發生發展和病原生物感染均伴隨著腸道菌群結構變化,腸道作為黏膜免疫應答的重要器官,在抗感染免疫防御過程中發揮重要作用(Wang et al.,2018),如在黏孢子蟲(Enteromyxum leei)感染黑鯛(Sparus aurata)(Davey et al.,2011)和溶藻弧菌感染半滑舌鰨(Yang et al.,2017a)的腸道組織中某些免疫相關基因發生差異表達。目前,關于魚類抗感染免疫應答的研究主要集中于脾臟和頭腎等系統性免疫器官,而針對腸道中功能基因參與免疫應答及疾病發生過程的相關研究鮮見報道?!颈狙芯壳腥朦c】本課題組前期從以腸道炎癥為特征的患病半滑舌鰨中分離獲得致病性海藻希瓦氏菌(Shewanella algae),且證實腸道是其產生致病作用主要的靶器官(Han et al.,2017b),但目前對海藻希瓦氏菌感染引起的半滑舌鰨腸道菌群動態變化及疾病發生和腸道免疫應答反應中的相關功能基因尚缺乏深入了解?!緮M解決的關鍵問題】通過16S rDNA高通量測序技術探究人工感染海藻希瓦氏菌后半滑舌鰨腸道菌群結構的變化情況,并利用實時熒光定量PCR檢測分析半滑舌鰨腸道組織中參與疾病發生和免疫應答相關功能基因的表達規律,旨在揭示腸道菌群和腸道組織相關功能基因在疾病發生及免疫應答過程中的作用機制。

1 材料與方法

1. 1 試驗材料

試驗用半滑舌鰨購自天津市海發珍品實業發展有限公司,健康無病,體長29±2 cm/尾,體重130±5 g/尾。養殖水溫(23±1)℃,pH 7.5,鹽度22‰,溶解氧含量5.5~6.0 mg/L。每日喂食2次,所喂飼料為普通商業飼料;早晚各換水1次,防止糞便及剩余飼料敗壞養殖水質。暫養1周,待魚體狀況穩定后進行感染試驗;感染前隨機選取5尾用于病原菌檢測。

1. 2 細菌培養及感染試驗

海藻希瓦氏菌CSG-15株分離自患病半滑舌鰨肝臟組織,由天津市水產生態及養殖重點實驗室保存提供。將CSG-15株接種至無菌2216E液體培養基中,30 ℃培養18 h后,5000 r/min離心3 min,收集菌體,再用滅菌的0.9%生理鹽水懸浮菌體以獲得1.0×108 CFU/mL的菌懸液。將半滑舌鰨隨機均分為3組,每組9尾魚,分為3個平行。其中2組按200 μL/尾的劑量腹腔注射菌懸液,另一組注射等量無菌生理鹽水。分別于感染前(CG)及感染后12 h(12hpi)和24 h(24hpi)收集半滑舌鰨腸道組織及糞便樣本,將每組樣本分別混合,-80 ℃保存備用,其中,糞便樣本用于腸道微生物基因組DNA提取,腸道組織用于RNA提取。

1. 3 腸道微生物基因組DNA提取

按照QIAamp Fast DNA試劑盒(德國QIAGEN公司)說明提取糞便樣品中微生物基因組DNA,以0.8%瓊脂糖凝膠電泳檢測DNA片段的完整性及大小,采用微量分光光度計檢測DNA純度。

1. 4 PCR擴增及測序

以稀釋后的基因組DNA(1 ng/μL)為模版,用包含Barcode特異性序列的引物對16S rDNA基因V4區進行擴增(Guo et al.,2016)。正、反向引物分別為515F:5'-GTGCCAGCMGCCGCGGTAA-3'和806R:5'-GGACTACHVGGGTWTCTAAT-3'(Xiong et al.,2015)。按照Han等(2018)的方法,回收PCR產物并構建文庫,利用Qubit和實時熒光定量PCR對構建好的文庫進行定量,使用HiSeq 2500 PE250進行高通量測序分析。

1. 5 數據處理

根據Barcode序列和PCR擴增引物序列,從下機數據中拆分出各樣品數據,并將每個樣品的序列拼接為原始Tags數據(Raw Tags),質控后得到有效序列(Effective Tags)。利用UPARSE按97%的序列相似度將有效序列聚類成OTUs(Operational taxonomic units),同時對OTUs代表序列進行物種注釋(Edgar,2013);以Qiime v1.7.0計算Chao1、Shannon和Simpson等指數,并計算Unifrac距離及構建UPGMA聚類分析樹;采用R軟件分析Alpha和Beta多樣性指數及組間差異。

1. 6 腸道組織總RNA提取及cDNA文庫構建

根據RNAiso Plus總RNA提取試劑盒(TaKaRa公司)說明提取半滑舌鰨腸道組織總RNA,使用1.0%瓊脂糖凝膠電泳和微量分光光度計檢測RNA的完整性、濃度和質量。采用PrimeScriptTM RT reagent Kit with gDNA Eraser試劑盒(TaKaRa公司)對RNA樣本進行反轉錄,獲得的cDNA冷凍保存,用于實時熒光定量PCR。

1. 7 實時熒光定量PCR

利用實時熒光定量PCR對熱休克蛋白70 kD蛋白1A(HSPA1A)、組氨酸三聚體核苷結合蛋白1(HINT1)、果糖二磷酸醛縮酶A(ALDOA)、磷脂酶B1(PLB1)、海藻糖酶(TREH)和γ谷氨酰轉移酶1(GGT1)的基因表達情況進行檢測,以β-actin為內參基因。通過NCBI Primer BLAST設計引物(表1),委托生工生物工程(上海)股份有限公司合成。實時熒光定量PCR反應體系20.0 μL:SYBR? Premix Ex TaqTM Ⅱ 10.0 μL,cDNA模板2.0 μL,上、下游引物(10 μmol/L)各0.4 μL,滅菌蒸餾水7.2 μL。擴增程序:95 ℃預變性3 min;95 ℃ 7 s,57 ℃ 10 s,72 ℃ 15 s,進行45個循環。每次循環結束采集熒光信號,然后進行熔解曲線的采集與數據分析,采用2-△△Ct法計算各目的基因的相對表達量。每個基因擴增設3次重復,利用Duncan?s新復極差法進行多重比較。

2 結果與分析

2. 1 半滑舌鰨腸道微生物多樣性分析結果

質控后共測序獲得有效序列118657條,平均每個樣本為39552條。其中,12hpi時獲得有效序列數目最多(45346條),CG獲得有效序列數目最少(39724條)。各組有效序列按97%的序列相似度進行聚類,結果3組樣本共獲得6732個OTUs。CG、12hpi和24hpi對應的OTUs數目分別為2506、2819和2265個,其中3組樣本的共有OTUs為225個(圖1)。Alpha多樣性分析結果表明,Shannon指數和Chao1指數在CG半滑舌鰨中最高,在12hpi半滑舌鰨中最低(圖2)。

2. 2 半滑舌鰨腸道微生物組成結構分析結果

在門水平上共鑒定出38個菌門,其中,12hpi和24hpi半滑舌鰨腸道微生物組成均以變形菌門(Proteobacteria)、擬桿菌門(Bacteroidetes)和厚壁菌門(Firmicutes)占絕對優勢,三者的相對豐度之和超過90%;CG半滑舌鰨腸道微生物組成以變形菌門、擬桿菌門、厚壁菌門和螺旋體門(Spirochaetes)為優勢菌門,其相對豐度之和也在90%以上(圖3-A)。變形菌門和厚壁菌門的相對豐度在12hpi半滑舌鰨腸道微生物組成中占比最高,分別為48.28%和22.08%;而擬桿菌門的相對豐度在CG半滑舌鰨腸道微生物組成中占比最高,為7.85%。

在屬水平上共鑒定出578個菌屬,相對豐度較高的前15個優勢菌屬分別為希瓦氏菌屬(Shewanella)、Elizabethkingia、曼噬甲殼菌屬(Chitinophaga)、Petrimonas、Proteiniphilum、Brevinema、苯基桿菌屬(Phenylobacterium)、Aminobacterium、食酸菌屬(Aci-dovorax)、芽孢桿菌屬(Bacillus)、假單胞菌屬(Pseudomonas)、乳桿菌屬(Lactobacillus)、Marivita、弧菌屬(Vibrio)和雷爾氏菌屬(Ralstonia)(圖3-B)。其中,Elizabethkingia、曼噬甲殼菌屬、Brevinema、苯基桿菌屬、假單胞菌屬、乳桿菌屬、Marivita和雷爾氏菌屬的相對豐度在CG半滑舌鰨腸道微生物組成中占比最高,希瓦氏菌屬、Petrimonas、Proteiniphilum和Aminobacterium的相對豐度在12hpi半滑舌鰨腸道微生物組成中占比最高,食酸菌屬、芽孢桿菌屬和弧菌屬的相對豐度在24hpi半滑舌鰨腸道微生物組成中占比最高。

2. 3 半滑舌鰨腸道微生物Beta多樣性分析結果

基于Unifrac距離構建UPGMA聚類分析樹,結果(圖4)顯示,CG和12hpi的半滑舌鰨腸道微生物樣本先聚為一支,二者與24hpi半滑舌鰨腸道微生物樣本的Unifrac距離相對較遠,說明海藻希瓦氏菌感染半滑舌鰨24 h后其腸道菌群相對豐度及多樣性發生了明顯變化。

2. 4 半滑舌鰨腸道組織相關功能基因的表達情況

由圖5可看出,半滑舌鰨腸道中ALDOA基因的相對表達量在24hpi時顯著高于CG(P<0.05,下同); PLB1、GGT1、HSPA1A和HINT1基因在12hpi時的相對表達量顯著高于CG和24hpi,而TREH基因的相對表達量在12hpi時顯著低于CG和24hpi,說明腸道組織中免疫功能相關基因(HSPA1A和HINT1)參與半滑舌鰨抗細菌感染的免疫應答過程,而代謝功能相關酶類基因(ALDOA、PLB1、GGT1和TREH)與腸道代謝功能紊亂和疾病發生密切相關。

3 討論

目前,關于魚類腸道菌群的研究已有較多報道,但主要集中在健康魚類,而針對病原菌感染引起魚類腸道菌群結構持續變化的研究相對較少(Han et al.,2010;Huang et al.,2016)。與健康魚相比,患病魚類腸道微生物多樣性顯著降低(Li et al.,2016a)。本研究采用16S rDNA高通量測序技術分析致病性海藻希瓦氏菌感染對半滑舌鰨腸道菌群結構的影響,結果表明,健康半滑舌鰨腸道微生物豐度及多樣性均高于感染后,與張正等(2014)在患腹水病和皮膚潰爛病半滑舌鰨、劉志剛等(2018)在患鏈球菌病的尼羅羅非魚(Oreochromis niloticus)的研究結果一致。由此推測,魚類健康狀況與腸道微生物多樣性具有一定相關性。本研究還發現,半滑舌鰨腸道中變形菌門、擬桿菌門和厚壁菌門占絕對優勢,與張正等(2014)的研究結果相似,表明這些菌門可能是半滑舌鰨腸道內的核心菌群。雖然感染海藻希瓦氏菌半滑舌鰨腸道中這些優勢菌群的相對豐度與健康半滑舌鰨不同,但這些菌門均是豐度最高的類群。此外,本研究發現在海藻希瓦氏菌感染前后,半滑舌鰨腸道內均存在弧菌屬、希瓦氏菌屬和芽孢桿菌屬,且這些菌屬的相對豐度在感染后明顯增加?;【囚~類腸道中常見的微生物類群(Jensen et al.,2004;Hovda et al.,2007),且某些種能引起水產動物暴發惡性傳染病,如鰻弧菌(V. anguillarum)和溶藻弧菌(楊少麗等,2005);希瓦氏菌和芽孢桿菌也是水產動物的主要條件性致病菌,可引起魚類暴發疾?。℉an et al.,2017b)。健康魚類腸道內存在大量條件性致病菌,當機體腸道微生態被破壞時會迅速增殖,進而威脅魚類健康,因此這些菌屬應被給予高度關注。

除了腸道微生物組成與宿主健康狀況密切相關外,腸道本身在魚類的黏膜免疫系統中也發揮重要作用(Byadgi et al.,2014;Tafalla et al.,2016)。本研究結果表明,半滑舌鰨感染海藻希瓦氏菌后其腸道組織中的ALDOA、PLB1、HSPA1A、HINT1、GGT1和TREH基因表達水平均發生明顯變化。HSPA1A基因編碼Hsp72蛋白,該蛋白是熱休克蛋白70(Heat shock protein 70,HSP70)家族的重要成員之一。熱休克蛋白是一類保守的細胞蛋白,存在于從細菌到哺乳動物的所有生物體中(Mu et al.,2013;Liu et al.,2015),在應激反應及應激損傷中發揮重要作用(Ming et al.,2010;Mu et al.,2013)。至今,已有多種HSP70家族成員從患細菌性疾病的水產動物不同組織中被鑒定出來。哈維氏弧菌(V. harveyi)感染武昌魚(Megalobrama amblycephala)6 h后其肝臟HSP70基因表達量顯著升高并達峰值,隨后開始降低(Ming et al.,2010);厚殼貽貝(Mytilus coruscus)血細胞中HSP70基因表達水平在鰻弧菌(V. anguillarum)感染后12~48 h顯著升高,至感染72 h時降到正常水平(Liu et al.,2014);哈維氏弧菌感染后,花鱸(Lateolabrax maculatus)頭腎、腸道和鰓組織中HSPA1A、HSC70-1、HSC70-2、HSPA4和HSPA14基因表達量呈先升高后下降的變化趨勢(Han et al.,2017a)。在本研究中,半滑舌鰨感染海藻希瓦氏菌后其腸道組織中HSPA1A基因相對表達量在感染12 h時顯著增高,但至感染24 h時又降至正常水平,與在武昌魚(Ming et al.,2010)和花鱸(Han et al.,2017a)受到病原感染后SPA1A基因及HSP70家族其他成員的表達模式具有一致性。HINT1基因編碼的蛋白分子是組氨酸三聚體蛋白超家族中分布最廣的成員,其在低等和高等動物中的結構及功能高度保守,可通過參與Wnt通路、核因子κB、激活蛋白1信號通路而控制多種轉錄過程,調節細胞的分化、增殖和凋亡,具有免疫監視功能作用(Korsisaari et al.,2003)。感染海藻希瓦氏菌后,半滑舌鰨腸道組織HSPA1A和HINT1基因相對表達量均呈先升高后下降的規律,表明這兩種蛋白(HSPA1A和HINT1)參與半滑舌鰨腸道抗細菌感染的免疫應答,但具體作用機理有待進一步探究。

ALDOA、PLB1、GGT1和TREH是參與動物機體生理過程的重要代謝酶類。其中,ALDOA是一種廣泛存在于生物體中并參與糖酵解的重要酶,主要存在于肌肉及血液紅細胞中(Zhang et al.,2017);PLB1是一種磷脂酶,作用于溶血磷脂Sn-1位酯鍵,廣泛存在于動植物及微生物體內;PLB能水解磷脂生成相應的甘油酰磷脂和脂肪酸,最后生成各類小分子物質,如氨基酸和乙醇胺等被機體利用(Xu et al.,2009);GGT1在微生物、植物和動物中廣泛存在,從谷氨酰胺化合物水解和轉移氨?;鶊F到受體,全程參與谷胱甘肽的代謝,在轉化白三烯C4過程中發揮重要作用(West et al.,2013);TREH是葡萄糖苷酶的一種,對海藻糖有特異作用,水解后生成2個分子的葡萄糖(Kamiya et al.,2004)。本研究結果表明,海藻希瓦氏菌感染半滑舌鰨12 h后,其腸道組織中的ALDOA、PLB1和GGT1基因表達升高,而TREH基因表達降低,故推測這些基因的差異表達還與半滑舌鰨腸道消化吸收代謝功能紊亂有關,即參與機體疾病的發生過程。

4 結論

半滑舌鰨感染海藻希瓦氏菌后其腸道菌群多樣性降低、菌群結構發生變化,腸道組織中ALDOA、PLB1、GGT1、HSPA1A、HINT1和TREH等相關功能基因呈差異表達,說明海藻希瓦氏菌感染引起半滑舌鰨腸道微生態紊亂,且腸道組織中免疫功能相關基因和代謝功能相關酶類基因分別參與機體的免疫應答及疾病發生過程。

參考文獻:

高桂生,張艷英,張召興,吉志新,史秋梅,陳娟,高光平,趙欣欣,韓紅升,宋青春. 2016. 半滑舌鰨皮膚潰瘍病的病原分離鑒定與藥物敏感性分析[J]. 中國獸醫學報,36(4):595-599. [Gao G S,Zhang Y Y,Zhang Z X,Ji Z X,Shi Q M,Chen J,Gao G P,Zhao X X,Han H S,Song Q C. 2016. Isolation and identification of pathogen of skin ulcer from Cynoglossus semilaevis and anaiysis of antibio-tic sensitivity[J]. Chinese Journal of Veterinary Science,36(4):595-599.]

胡璇,孫敬鋒,陳成勛,邢克智. 2014. 養殖半滑舌鰨腹水病的病原分離鑒定及藥物敏感性分析[J]. 天津農學院學報,21(3):12-16. [Hu X,Sun J F,Chen C X,Xing K Z. 2014. Isolation and identification of pathogen of ascites disease from Cynoglossus semilaevis Günther and its antibiotic sensitivity analysis[J]. Journal of Tianjin Agricultural University,21(3):12-16.]

劉志剛,盧邁新,可小麗,王淼,張德鋒. 2018. 尼羅羅非魚腸道及養殖環境中菌群結構與鏈球菌病的相關性[J]. 水產學報,42(10):1635-1647. [Liu Z G,Lu M X,Ke X L,Wang M,Zhang D F. 2018. Correlation between microflora structure in intestinal tract and aquaculture environment of tilapia(Oreochromis niloticus) and streptococcicosis[J]. Journal of Fisheries of China,42(10):1635-1647.]

楊少麗,王印庚,董樹剛. 2005. 海水養殖魚類弧菌病的研究進展[J]. 漁業科學進展,26(4):75-83. [Yang S L,Wang Y G,Dong S G. 2005. Progress of research on vibriosis in marine cultured fish[J]. Marine Fisheries Research,26(4):75-83.]

張正,廖梅杰,李彬,王印庚,王嵐,榮小軍,陳貴平. 2014. 兩種疾病發生對養殖半滑舌鰨腸道菌群結構的影響分析[J]. 水產學報,38(9):1565-1572. [Zhang Z,Liao M J,Li B,Wang Y G,Wang L,Rong X J,Chen G P. 2014. Study on cultured half-smooth tongue sole(Cynoglossus semilaevis Günther) intestinal microflora changes affec-ted by different disease occurrence[J]. Journal of Fisheries of China,38(9):1565-1572.]

周紅霞,姚俊杰,房文紅,李新蒼,趙姝,王元,吳俁學,周俊芳. 2017. 半滑舌鰨潰瘍病原殺鮭氣單胞菌的分離鑒定與藥敏試驗[J]. 海洋漁業,39(3):322-330. [Zhou H X,Yao J J,Fang W H,Li X C,Zhao S,Wang Y,Wu Y X,Zhou J F. 2017. Isolation and identification & antimicrobial susceptibility test of Aeromonas salmonicida associa-ted with the skin ulceration disease of Cynoglossus semilaevis Günther[J]. Marine Fisheries,39(3):322-330.]

Byadgi O,Puteri D,Lee J W,Chang T C,Lee Y H,Chu C Y,Cheng T C. 2014. The effect of TLR9 agonist CpG oligodeoxynucleotides on the intestinal immune response of cobia(Rachycentron canadum)[J]. Journal of Immunology Research. doi:10.1155/2014/273284.

Chen W Y,Ng Y H,Wu J H,Chen J W,Wang H C. 2017. Microbiome dynamics in a shrimp grow-out pond with possible outbreak of acute hepatopancreatic necrosis di-sease[J]. Scientific Reports,7(1):9395.

Cornejo-Granados F,Gallardo-Becerra L,Leonardo-Reza M,Ochoa-Romo J P,Ochoa-Leyva A. 2018. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota[J]. PeerJ,6:e5382. doi:10.7717/peerj.5382.

Cornejo-Granados F,Lopez-Zavala A A,Gallardo-Becerra L,Mendoza-Vargas A,Sánchez F,Vichido R,Brieba L G,Viana M T,Sotelo-Mundo R R,Ochoa-Leyva A. 2017. Microbiome of Pacific white leg shrimp reveals differential bacterial community composition between wild,aquacultured and AHPND/EMS outbreak conditions[J]. Scientific Reports,7(1):11783. doi:10.1038/s41598-017- 11805-w.

Davey G C,Calduch-Giner J A,Houeix B,Talbot A,Sitjà-Bobadilla A,Prunet P,Pérez-Sánchez J,Cairns M T. 2011. Molecular profiling of the gilthead sea bream(Sparus aurata L.) response to chronic exposure to the myxosporean parasite Enteromyxum leei[J]. Molecular Immunology,48(15-16):2102-2112.

Desai A R,Links M G,Collins S A,Mansfield G S,Drew M D,van Kessel A G,Hill J E. 2012. Effects of plant-based diets on the distal gut microbiome of rainbow trout(Oncorhynchus mykiss)[J]. Aquaculture,350:134-142.

Ding Z F,Cao M J,Hu X S,Xu G H,Wang R L. 2017. Changes in the gut microbiome of the Chinese mitten crab(Eriocheir sinensis) in response to white spot syndrome virus(WSSV) infection[J]. Journal of Fish Disea-ses,40(11):1561-1571.

Duan Y,Zhang Y,Dong H,Wang Y,Zhang J. 2017. Effects of dietary poly-beta-hydroxybutyrate(PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei[J]. Journal of Microbiology,55(12):946-954.

Edgar R C. 2013. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods,10:996-998.

Giatsis C,Sipkema D,Smidt H,Heilig H,Benvenuti G,Verreth J,Verdegem M. 2015. The impact of rearing environment on the development of gut microbiota in tilapia larvae[J]. Scientific Reports,5:18206. doi:10.1038/srep18206.

Guo H,Xian J A,Wang A L. 2016. Analysis of digital gene expression profiling in hemocytes of white shrimp Litopenaeus vannamei under nitrite stress[J]. Fish & Shellfish Immunology,56:1-11.

Han S F,Liu Y C,Zhou Z G,He S X,Cao Y N,Shi P J,Yao B,Ring? E. 2010. Analysis of bacterial diversity in the intestine of grass carp(Ctenopharyngodon idellus) based on 16S rDNA gene sequences[J]. Aquaculture Research,42(1):47-56.

Han Y L,Hou C C,Du C,Zhu J Q. 2017a. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection[J]. Fish & Shellfish Immunology,60:299-310.

Han Z R,Lü A J,Shi H Y,Sun J F,Xing K Z,Hu X C,Sung Y Y. 2017b. Isolation,identification and characterization of Shewanella algae from reared tongue sole,Cynoglossus semilaevis Günther[J]. Aquaculture,468:356-362.

Han Z R,Sun J F,Lü A J,Wang A L. 2018. Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing:A case in the koi carp,Cyprinus carpio var. Koi[J]. Microbiology Open,8(1):e00626.

He W Q,Rahimnejad S,Wang L,Song K,Lu K,Zhang C X. 2017. Effects of organic acids and essential oils blend on growth,gut microbiota,immune response and disease resistance of Pacific white shrimp(Litopenaeus vannamei) against Vibrio parahaemolyticus[J]. Fish & Shellfish Immunology,70:164-173.

Hovda M B,Lunestad B T,Fontanillas R,Rosnes J T. 2007. Molecular characterisation of the intestinal microbiota of farmed Atlantic salmon(Salmo salar L.)[J]. Aquaculture,272(1-4):581-588.

Huang Z B,Li X Y,Wang L P,Shao Z Z. 2016. Changes in the intestinal bacterial community during the growth of white shrimp,Litopenaeus vannamei[J]. Aquaculture Research,47(6):1737-1746.

Jensen S,?vre?s L,Bergh ?,Torsvik V. 2004. Phylogenetic analysis of bacterial communities associated with larvae of the Atlantic halibut propose succession from a uniform normal flora[J]. Systematic and Applied Microbio-logy,27(6):728-736.

Kamiya T,Hirata K,Matsumoto S,Arai C. 2004. Targeted disruption of the trehalase gene:Determination of the digestion and absorption of trehalose in trehalase-deficient mice[J]. Nutrition Research,24(2):185-196.

Korsisaari N,Rossi D J,Luukko K,Huebner K,Henkemeyer M,Makela T P. 2003. The histidine triad protein Hint is not required for marine development or Cdk7 function[J]. Molecular and Cellular Biology,23(11):3929-3935.

Lauzon H L,Gudmundsdottir S,Petursdottir S K,Reynisson E,Steinarsson A,Oddgeirsson M,Bjornsdottir R,Gudmundsdottir B K. 2010. Microbiota of Atlantic cod(Gadus morhua L.) rearing systems at pre-and post hatch stages and the effect of different treatments[J]. Journal of Applied Microbiology,109(5):1775-1789.

Li T T,Long M,Ji C,Shen Z X,Gatesoupe F J,Zhang X J,Zhang Q Q,Zhang L L,Zhao Y L,Liu X H,Li A H. 2016a. Alterations of the gut microbiome of largemouth bronze gudgeon(Coreius guichenoti) suffering from furunculosis[J]. Scientific Reports,6:30606. doi:10.1038/srep30606.

Li X M,Yan Q Y,Ring? E,Wu X B,He Y F,Yang D G. 2016b. The influence of weight and gender on intestinal bacterial community of wild large mouth bronze gudgeon (Coreius guichenoti,1874)[J]. BMC Microbiology,16(1):191.

Lin C S,Chang C J,Lu C C,Martel J,Ojcius D M,Ko Y F,Young J D,Lai H C. 2014. Impact of the gut microbiota,prebiotics,and probiotics on human health and disease[J]. Biomedical Journal,37(5):259-268.

Liu H H,He J Y,Chi C F,Shao J Z. 2014. Differential HSP70 expression in Mytilus coruscus under various stressors[J]. Gene,543(1):166-173.

Liu T,Pan L Q,Cai Y F,Miao J J. 2015. Molecular cloning and sequence analysis of heat shock proteins 70(HSP70) and 90(HSP90) and their expression analysis when exposed to benzo(a) pyrene in the clam Ruditapes philippinarum[J]. Gene,555(2):108-118.

Ming J,Xie J,Xu P,Liu W B,Ge X P,Liu B,He Y J,Cheng Y F,Zhou Q L,Pan L K. 2010. Molecular cloning and expression of two HSP70 genes in the Wuchang bream (Megalobrama amblycephala Yih)[J]. Fish & Shellfish Immunology,28(3):407-418.

Mu W J,Wen H S,Li J F,He F. 2013. Cloning and expre-ssion analysis of a HSP70 gene from Korean rockfish(Sebastes schlegeli)[J]. Fish & Shellfish Immunology,35(4):1111-1121.

Narrowe A B,Albuthi-Lantz M,Smith E P,Bower K J,Roane T M,Vajda A M,Miller C S. 2015. Perturbation and restoration of the fathead minnow gut microbiome after low-level triclosan exposure[J]. Microbiome,3:6.doi:10.1186/ s40168-015-0069-6.

Pérez T,Balcázar J L,Ruiz-Zarzuela I,Halaihel N,Vendrell D,de Blas I,Muzquiz J L. 2010. Host-microbiota interactions within the fish intestinal ecosystem[J]. Mucosal Immunology,3(4):355-360.

Rungrassamee W,Klanchui A,Maibunkaew S,Chaiyapechara S,Jiravanichpaisal P,Karoonuthaisiri N. 2014. Characte-rization of intestinal bacteria in wild and domesticated adult black tiger shrimp(Penaeus monodon)[J]. PLoS One,9(3):e91853.

Suo Y,Li E,Li T,Jia Y,Qin J G,Gu Z,Chen L. 2017. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology,63:87-96.

Tafalla C,Leal E,Yamaguchi T,Fischer U. 2016. T cell immunity in the teleost digestive tract[J]. Developmental and Comparative Immunology,64:167-177.

Talwar C,Nagar S,Lal R,Negi R K. 2018. Fish gut microbio-me:Current approaches and future perspectives[J]. Indian Journal of Microbiology,58(4):397-414.

Wang J,Huang Y J,Xu K H,Zhang X Y,Sun H Y,Fan L F,Yan M T. 2019. White spot syndrome virus(WSSV) infection impacts intestinal microbiota composition and function in Litopenaeus vannamei[J]. Fish & Shellfish Immunology,84:130-137.

Wang Y Z,Sun J F,Lv A J,Zhang S L,Sung Y Y,Shi H Y,Hu X C,Chen S J,Xing K Z. 2018. Histochemical distribution of four types of enzymes and mucous cells in the gastrointestinal tract of reared half-smooth tongue sole Cynoglossus semilaevis[J]. Journal of Fish Biology,92(1):3-16.

West M B,Chen Y,Wickham S,Heroux A,Cahill K,Hanigan M H,Mooers B H M. 2013. Novel insights into eukaryo-tic γ-glutamyltranspeptidase 1 from the crystal structure of the glutamate-bound human enzyme[J]. The Journal of Biological Chemistry,289(16):11569.

Xia M J,Feng P,Mu C K,Ye Y F,Wang C L. 2018. Disruption of bacterial balance in the gut of Portunus trituberculatus induced by Vibrio alginolyticus infection[J]. Journal of Oceanology and Limnology,36(5):1891-1898.

Xiong J,Wang K,Wu J,Qiuqian L,Yang K,Qian Y,Zhang D. 2015. Changes in intestinal bacterial communities are closely associated with shrimp disease severity[J]. Applied Microbiology and Biotechnology,99(16):6911-6919.

Xu S Y,Zhao L S,Larsson A,Venge P. 2009. The identification of a phospholipase B precursor in human neutrophils[J]. The FEBS Journal,276(1):175-186.

Yang G,Xiu Y J,Chen Y D,Bai L,Sha Z X. 2017a. Identification and expression of complement component C8α,C8β and C8γ gene in half-smooth tongue sole (Cynoglossus semilaevis) and C8α recombinant protein antibacterial activity analysis[J]. Fish & Shellfish Immunology,72:658-669.

Yang H T,Zou S S,Zhai L J,Wang Y,Zhang F M,An L G,Yang G W. 2017b. Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine[J]. Fish & Shellfish Immunology,71:35-42.

Ye L,Amberg J,Chapman D,Gaikowski M,Liu W T. 2014. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish[J]. The ISME Journal,10(8):2076. doi:10.1038/ismej.2016.71.

Zhang F,Lin J D,Zuo X Y,Zhang Y X,Hong C Q,Zhang G J,Cui X J,Cui Y K. 2017. Elevated transcriptional levels of aldolase A(ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors[J]. BioData Mining,10:6.doi:10.1186/s13040-016-0122-4.

(責任編輯 蘭宗寶)

猜你喜歡
弧菌海藻菌群
從畜禽糞便菌群入手 降低抗生素殘留造成環境風險
海藻球
注意:這種菌很“要命”
“我是一個小小的菌”
美味海鮮為何會變成致命毒物
歐盟:海藻酸、海藻酸鹽作為食品添加劑無安全風險
細菌群落的“資源共享”
出生環境影響腸道菌群
一則病例引發有關弧菌對淡水養殖影響的思考
副溶血性弧菌保藏條件研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合