?

廚余與園林廢物共堆肥過程氮素轉化及損失

2021-09-02 12:57薛晶晶李彥明常瑞雪彭糧歡
農業工程學報 2021年10期
關鍵詞:銨態氮硝態廚余

薛晶晶,李彥明,常瑞雪,王 玨,彭糧歡

廚余與園林廢物共堆肥過程氮素轉化及損失

薛晶晶,李彥明※,常瑞雪,王 玨,彭糧歡

(中國農業大學資源與環境學院,農田土壤污染防控與修復北京市重點實驗室,北京 100193)

為獲得適用于廚余垃圾與園林廢物的共堆肥工藝,采用密閉式好氧堆肥,在含水率75%和通風量0.2 L/(kg·min)的條件下,以廚余垃圾和園林廢物為研究對象,探討了兩者干物質質量比為4∶1(N1)、3∶1(N2)和2∶1(N3)時對發酵溫度、pH值、C/N、GI、氨氣、全氮、有機氮、銨態氮與硝態氮等的影響,以期揭示二者共堆肥過程中氮素的轉化與損失規律。結果表明,在廚余垃圾與園林廢物共堆肥過程中,兩者為2∶1時,不但升溫速度快,有效提高了反應過程的最高發酵溫度,高達63.4 ℃,無害化程度徹底,而且初始C/N較適宜,在第21天實現了完全腐熟狀態,加速了發酵進程;N3較N1、N2處理分別減少了30.30%、12.96%的全氮損失與7.8%、15.71%的氨氣揮發損失,有效促進銨態氮向有機氮和硝態氮轉化,氮素損失最小。因此,廚余垃圾與園林廢物為2∶1時,更利于促進二者協同發酵處理,為提升共堆肥產品氮素養分含量提供理論支持。

堆肥;氨揮發;氮素轉化;氮素損失;廚余垃圾;園林廢物

0 引 言

中國城鎮化的快速發展致使生活垃圾清運量逐年增加,年清運量已高達2.3億t,其中,部分城鎮的廚余垃圾占比高達76%[1]。近年來,城鎮綠化面積也在快速增加,綠化養護產生的園林垃圾約4000萬t/a,且綜合利用率尚不足10%,大量棄置的園林廢物亦然成為城鎮火災隱患[2]。堆肥化是世界范圍內資源化利用有機固體廢棄物的重要途徑[3],廚余垃圾游離態脂肪含量豐富、高水高鹽等特性使其極易酸敗變質,污染環境[4],難以單獨好氧堆肥處理[5];園林廢物單獨堆肥也異常困難,但二者的生化特性正好互補[6-7]。因此,構建適用于二者協同處理的共堆肥工藝,有助于同步實現兩種廢棄物的資源化利用,促進中國城鎮的可持續發展。

此外,由于廚余垃圾中蛋白質含量較高,且這類物質在堆肥發酵過程極易分解轉換為游離銨,進而以氨揮發的形式造成氮素損失[8],研究表明廚余垃圾堆肥過程的氮素損失可高達60%,降低堆肥產品的肥料價值[9-10]。將二者進行共堆肥,不但可有效改善廚余垃圾的物理結園林廢物富含纖維素、半纖維素、木質素等高含碳物質,構,而且還能降低堆肥過程氨揮發,減少氮素損失[11]。

目前還鮮見廚余垃圾與園林廢物協同處理共堆肥的報道。為此,本文以廚余垃圾和園林廢物為研究對象,通過揭示二者共堆肥過程的氮素轉化和損失規律,以期為今后城鎮廚余垃圾與園林廢物共堆肥處理提供理論依據。

1 材料與方法

1.1 供試材料

廚余垃圾取自中國農業大學西校區食堂;園林廢物(包括修剪廢草和落葉)取于中國農業大學西校區垃圾轉運站;分別將廚余和園林垃圾粉碎至≤2 mm后備用,供試物料的理化性質如表1所示。

表1 供試物料的理化性質

1.2 堆肥操作與試驗設計

先將修剪廢草和銀杏樹葉按照1∶1(干物質質量比)混合均勻后,即為園林廢物;之后再將園林廢物與廚余垃圾按照比例進行混合,混合均勻后將自制密閉式堆肥模擬反應器(專利號:202023234710.0)的發酵罐裝滿(圖 1),連接好管路后,開啟裝置。廚余垃圾與園林廢物的混合質量比設置為4∶1(N1)、3∶1 (N2)和2∶1(N3),混合物料的含水率設置為75%,容重為0.35kg/L,每個處理裝填的干物料量相同,通風量設置為0.2 L/(kg·min),發酵周期設置為28d。

1.3 樣品采集與分析方法

在堆肥的第0、3、7、14、21、28天進行翻堆操作和樣品采集。每次采集樣品不少于150g,所取樣品分為2份處理,一份置于-20 ℃冰箱中保存備用,用于pH值、發芽率指數、硝態氮、銨態氮等指標測定;另一份樣品用于風干總有機碳、總氮等指標測定。

溫度:采用Pt100溫度傳感器和自動溫度記錄儀進行數據采集,采集頻率為30 min記錄1次;氨氣:采用硼酸吸收法[11];pH值和電導率:按照固液比1∶10浸提樣品,在室溫條件下放入恒溫振蕩器中,以200 r/min水平密閉震蕩30 min,靜置2 h,提取上清液作為浸提液,分別將校準過的pH計電極和EC計電極插入浸提液;發芽率指數(Germination Index,GI):在培養皿內墊一張濾紙,加入5 mL提取的浸提液浸濕濾紙,均勻放入10粒飽滿的水蘿卜()種子,25 ℃下培養48 h后測定發芽率和根長,每個樣品做3次重復,同時以蒸餾水作空白試驗[12];銨態氮和硝態氮:稱取5 g堆肥樣品于三角瓶內,加入2 mol/L KCl 50 mL,震蕩30 min,過濾取上清液,用流動分析儀測定;總有機碳和總氮的測定參照有機肥測定標準方法(NY 525-2012);灰分:樣品烘干后經550℃灼燒4 h。

1.4 計算方法

根據物質守恒與氮素平衡原理,堆肥氮素損失的計算公式如下[13]:

Loss=100-100[12)/(21)] (1)

式中Loss為堆肥過程中氮素損失率,%;12為堆肥初始和最終的灰分質量分數,%;12為堆肥初始和最終的總氮濃度,g/kg。

氨揮發占氮素損失比例的計算公式如下[14]:

=[(1/TN)×(N分子量/NH3分子量)]×100% (2)

式中為氨揮發占氮素損失的比例,%;1為氨揮發總量,g;TN為初始物料的含氮總量,g。

N2O等其他的氮素損失量為氮素損失總量與氨揮發總量的差值。

應用Office Excel和SPSS 20.0進行數據處理與圖表制作。

2 結果與分析

2.1 基礎理化指標

各處理的溫度變化如圖2a所示,N1、N2和N3的溫度均呈現先上升后下降的趨勢。NH3的揮發主要發生在高溫期,且溫度越高,NH3揮發量越大。當溫度大于60 ℃時,NH3多以氣體的形式揮發,造成嚴重的氮素損失[13]。N2、N3處理超過50 ℃的時間分別為12、13 d,均達到國家堆肥無害化標準的要求(GB7959-2012),而N1處理達50 ℃以上的時間僅維持了7 d,與N2、N3處理差異顯著(<0.05),這可能是由于廚余垃圾占比大,油脂附著在物料表面的含量高,其充當一層隔膜,阻礙了與空氣的充分接觸,進而減弱反應強度,延遲升溫[15],N3處理升溫最快且最先達到峰值溫度63.4 ℃,N1處理升溫緩慢,在第9天左右達到最高溫度,僅為59.6 ℃。3個處理60 ℃以上的持續時間時間分別為0、2和3 d,表明隨著園林廢物比例增加,能縮短升溫時間,延長高溫期時長,加速堆肥發酵進程。

pH值作為影響氮素損失的重要因素之一,會隨著堆肥有機物的降解而發生變化,主要通過影響物料液相中銨離子與氨的平衡來影響氨氣的揮發[16-17]。堆肥起始時,各處理pH值均在4.5以下,偏酸性環境,第7天,N1、N3處理的pH值由4.6迅速增加至7左右,而N2在第7天時,pH值仍舊保持酸性,直到第14天才增加至8,這必然影響微生物對有機質的降解,因此很可能是造成N2處理高溫期(圖2b)滯后的重要原因,但較低的pH能在一定程度上抑制NH3的揮發,減少氮素損失。Godwin的研究表明,當pH值小于9時,NH3的揮發量與pH值呈正相關[18]。堆肥后期,三個處理的pH值變化趨勢相似,最終均維持在8.2左右,方差分析表明3個處理的pH值之間無顯著性差異(>0.05)。

堆肥過程中C/N變化趨勢如圖2c所示,堆肥初期,N1、N2、N3處理的C/N分別為17.72、20.59和22.92,C/N較低時,會導致大量有機氮向氣態氨轉化,并以NH3形式揮發[18],繼而造成嚴重的氮素損失;雖然有機碳也會被微生物分解礦化,但是含碳氮有機物的分解礦化合成并不同步,因此各處理C/N在整個堆肥過程中均呈下降趨勢,堆肥結束時,N3處理的C/N顯著高于N2和N1處理(<0.05),表明隨著園林廢物占比的增多,碳素的損失小于氮素損失,C/N上升。

發芽指數是評價有機固體廢棄物經堆肥化處理后產物對植物是否具有生物毒性及其產品是否腐熟的重要指標。如圖2d所示,隨著堆肥發酵時間的增加,各處理的GI值均呈現上升的趨勢。N3處理的GI值在第9和21天分別率先超過60%和80%,表明廚余與園林廢物按適宜比例協同處理共堆肥工藝,可有效縮短堆肥物料的腐熟時間。堆肥結束時,三個處理的GI值分別為75.77%,81.54%和84.50%。N2、N3處理均達到完全腐熟的標準(>80%),而N1僅達到基本腐熟的標準(>60%),這說明堆肥產物中穩定腐殖質的含量會隨著含有高木質纖維素園林廢物占比的增加而增加[19]。因此,采用堆肥化處理廚余垃圾時,其比例不建議高于初始混合物料的80%。

2.2 氨氣排放速率和累積排放量

各處理氣態NH3的排放速率與累積排放量如圖3a、3b所示。NH3揮發的高峰期為堆肥過程的第8~20天,此階段各處理氨的排放速率有較大差異,N1、N2、N3處理的最大排放速率分別為2.15,1.41和1.59 g/d,N3因高溫期提前,于第9天率先達到峰值,與達到發酵高溫(圖2a)的時間相吻合;而N1排放峰值最大,排放速率顯著(<0.05)大于N2、N3處理,與N1處理堆肥后期pH值(圖2b)較大密切相關,N1處理高NH3排放速率必然會造成高NH3釋放累積量(13.29 g/kg),這是由多重因素所決定的,一方面,N1處理園林廢物占比少,初始C/N低,可供消耗的碳素較少,氮素相對過剩且無法被微生物利用時,部分氮素就會轉化成游離NH3并大量逸出。另一方面,氨揮發與氮素轉化密切相關。堆肥初期,有機氮在高pH值條件下,經過氧化作用可轉化為游離NH3,造成N1處理有機氮含量的迅速下降[19-21],隨著有機質的降解,部分有機氮礦化為NH3(液)并結合H+,進而形成NH4+,進而提高液相底物的pH值[22],這是導致N1處理銨態氮含量峰值(圖4c)與pH值(圖2b)均較高的原因。當NH3(液)持續轉移到水和氣相的界面,且NH3/NH4+的pKa超過9.25時,便會以NH3(氣)的形式揮發[23]。到堆肥后期,各處理的硝態氮含量相對初始時降低(圖4d),表明各處理的硝化作用被抑制,致使NH4+未能在亞硝化細菌和硝化細菌的作用下轉化為NO3-[24],Al-Jabi等[25]通過在食品廢物堆肥中添加富含硝化微生物的腐熟堆肥,強化銨的硝化作用,使NH3揮發降低36%。因此,強化NH3/NH4+的微生物同化作用或添加強化硝化作用的外源改良劑,均可促進物料中無機氮向有機氮轉化,降低氨氣揮發,減少氮素損失。

2.3 堆肥過程不同氮素形態的轉化

堆肥過程中全氮的變化情況如圖4a所示,第0天時,因含氮量高的廚余垃圾占比不同致使N3

有機氮的變化如圖4b所示,N1、N2和N3處理初始有機氮分別為32.15、28.22和24.81 g/kg,占總氮的93.24%、90.73%和85.86%,表明在堆肥初期有機氮在堆體中占據絕對優勢,微生物將無機氮合成有機氮的速率小于有機氮經過氧化作用轉化為無機氮的速率,致使三個處理有機氮含量均呈下降趨勢,N1處理下降幅度最大,因廚余垃圾占比大、含水率高,堆體局部厭氧致使部分有機氮進入滲濾液造成損失[22]。之后隨著堆肥高溫期的到來及氧化作用的加強,N2、N3處理有機氮含量逐步降低。堆肥后期,N1、N2、N3處理的有機氮含量均呈上升趨勢,一方面可能是因為部分硝態氮被微生物吸收利用,通過細胞質合成作用生成有機氮所造成的[22];另一方面,銨態氮與碳源代謝的中間產物α-酮戊二酸在谷氨酸合成酶的作用下也會生成有機氮[21]。堆肥結束時三個處理有機氮含量分別為23.37、26.21、27.73 g/kg,處理之間性差異不顯著(>0.05)。

圖4 全氮、有機氮、銨態氮和硝態氮隨時間變化

Jiang等[28]研究表明氨氣的揮發和有機氮的礦化是影響銨態氮濃度的主要因素。如圖4c所示,銨態氮含量隨堆肥發酵進程均呈現先上升后下降的趨勢,N1、N2、N3處理分別在第14、14和7天達到最大值6.08、5.87、5.94 g/kg,堆肥前期,由于有機氮的礦化導致銨態氮含量增加,這段時間稱為銨態氮的積累期。隨后N3最先下降且速率最快,與N1、N2差異顯著(<0.05),這與N3升溫最快且最先達到最高溫度(圖2a)有關。第21~28天,伴隨著有機物降解速率和氨氣揮發速率的減緩,各處理的銨態氮含量也逐漸減緩并趨于穩定,反應結束時,N1、N2、N3處理的銨態氮含量分別降低了58.44%、53.82%、82.39%。硝態氮含量如圖4d所示,堆肥初期,N3的硝態氮含量最高(1.65 g/kg),其余處理的硝態氮含量則介于 1.04~1.14 g/kg之間,區別于N1處理平緩下降,N2、N3處理均呈現短暫的上升趨勢,這可能是由于園林廢物占比的增多使得堆體的厭氧區域相對較少,反硝化作用被抑制,硝態氮含量有所增加[22],堆肥后期隨著物料降解、堆料顆粒變小以及孔隙度的降低,反硝化作用大于硝化作用,部分硝態氮轉化為有機氮,含量不斷降低[23]。堆肥結束時,各處理間硝態氮的濃度無明顯差異(>0.05),分別為0.06、0.12、0.23 g/kg。

2.4 氮素平衡及物料損失

堆肥過程中氮素損失主要包括氨揮發、滲濾液中的離子態氨氮、硝氮以及氣態NOX等,氮素平衡和物料損失如表2所示,各處理氨揮發占總氮素損失的比例分別為63.33%、65.66%、70.59%;由于在該研究中監測到的N2O排放量較少,故而將其合并到了其他N損失的部分。前人的研究表明廚余垃圾堆肥中由NOX排放造成的氮素損失僅占氮素損失的4%左右,滲濾液中氮素占總氮損失可達18.8%[29];由此可見氨揮發是堆肥過程氮素損失的主要途徑。N3和N2較N1處理減少了30.30%和12.96%的全氮損失與7.8%和15.71%的氨揮發。表明園林廢物占比量的增加不僅對NH3減排起到一定的促進作用,還有效降低離子態氮素的流失,還能提高堆肥產品的養分含量。減量化是固體廢棄物進行堆肥化處理的主要目的之一,堆肥前后的物料質量變化可以直觀地反映其減量化效果。N3與N1、N2處理差異顯著(<0.05),可能是因為N3處理的堆體結構與好氧狀態較好,提高了微生物活性[30],促進了有機物轉化,所以N3處理高溫持續時間和所達到的最高溫度(圖2a)均優于N1、N2處理。

表2 氮素平衡及物料損失

3 結 論

1)綜上可知,隨著廚余垃圾比例的降低和園林廢物比例的上升,有利于改善堆體結構,促進有機物轉化,減少氨揮發。廚余垃圾與園林廢物協同堆肥處理比例為2∶1時,發酵溫度可高達63.4 ℃,21 d可達到完全腐熟,減量化效果明顯。

2)兩者協同處理共堆肥可解決它們單獨處理發酵難、效率低、氮素損失嚴重等難題,有助于銨態氮向有機氮和硝態氮轉化,減少氨氣排放和氮素損失,提升堆肥產品品質,增加肥料價值,為現代化城鎮綠色高質量發展提供支撐。

[1] 楊娜,邵立,何品晶.我國城市生活垃圾組分含水率及特征分析[J].中國環境科學,2018,38(3):1033-1038.

Yang Na, Shao Li, He Pinjing. Analysis of water content and characteristics of municipal solid waste in China[J]. China Environmental Science, 2018, 38(3): 1033-1038. (in Chinese with English abstract)

[2] 劉瑜,戚智勇,趙佳穎,等. 我國城市園林廢棄物及其資源化利用現狀[J]. 再生資源與循環經濟,2020(8):38-44.

Liu Yu, Qi Zhiyong, Zhao Jiaying, et al. Current situation of urban garden waste and its resource utilization in China[J]. Recycling Research, 2020(8): 38-44. (in Chinese with English abstract)

[3] Awasthi M K, Wang Q, Awasthi S K, et al. Influence of medical stone amendment on gaseous emissions, microbial biomass and abundance of ammonia oxidizing bacteria genes during biosolids composting[J]. Bioresource Technology, 2017, 247: 970-979.

[4] 炊春萌,李保國,劉莉,等. 餐廚垃圾厭氧發酵研究進展[J]. 食品與發酵科技,2020(4):60-64.

Chui Chunmeng, Li Baoguo, Liu Li, et al. Research progress on anaerobic fermentation of kitchen waste[J]. Food and Fermentation Sciences and Technology, 2020(4): 60-64. (in Chinese with English abstract)

[5] Xu F Q, Li Y Y, Ge X M, et al. Anaerobic digestion of food waste: Challenges and opportunities[J]. Bioresource Technology, 2017, 247: 1047-1058.

[6] Chen M L, Huan Y M, Liu H J, et al. Impact of different nitrogen source on the compost quality and greenhouse gas emissions during composting of garden waste[J]. Process Safety and Environmental Protection, 2019, 124: 326-335.

[7] 劉敏茹,郭華芳,林鎮榮. 園林綠化廢棄物聯合餐廚垃圾好氧堆肥的“推流”工藝及應用研究[J]. 環境工程,2016,34(s1):743-746.

Liu Minru, Guo Huafang, Lin Zhenrong. Research on “Push flow” technology and application of landscaping waste combined with kitchen waste aerobic composting[J]. Environmental Engineering, 2016, 34(s1): 743-746. (in Chinese with English abstract)

[8] 楊延梅. 通風量對廚余堆肥氮素轉化及氮素損失的影響[J]. 環境科學與技術,2010,33(12):1-4.

Yang Yanmei. Effect of ventilation rate on nitrogen conversion and nitrogen loss of kitchen waste composting[J]. Environmental Science & Technology, 2010, 33(12): 1-4. (in Chinese with English abstract)

[9] 楊延梅,楊志峰,張相鋒,等. 底物含氮量對廚余堆肥氮素轉化及其損失的影響研究[J].環境科學學報,2017,27(6):993-999.

Yang Yanmei, Yang Zhifeng, Zhang Xiangfeng, et al. Effect of substrate nitrogen content on nitrogen conversion and loss of kitchen waste composting[J]. Acta Scientiae Circumstantiae, 2017, 27(6): 993-999. (in Chinese with English abstract)

[10] Zhang H Y, Li G X, Gu J, et al. Influence of aeration on Volatile Sulfur Compounds (VSCs) and NH3emissions during aerobic composting of kitchen waste[J]. Waste Management, 2016, 58: 369-375.

[11] 張玉冬,張紅玉,顧軍,等. 通風量對廚余垃圾堆肥過程中H2S和NH3排放的影響[J]. 農業環境科學學報,2015,34(7):1371-1377.

Zhang Yudong, Zhang Hongyu, Gu Jun, et al. Influence of ventilation rate on H2S and NH3emission during composting of kitchen waste[J]. Journal of Agro-Environment Science, 2015, 34(7): 1371-1377. (in Chinese with English abstract)

[12] Micha?owski T, Asuero A G. New approaches in modeling carbonate alkalinity and total alkalinity[J]. Critical Reviews in Analytical Chemistry, 2012, 42(3): 220-244.

[13] Paredes C, Roig A, Bernal M P, et al. Evolution of organic matter and nitrogen during co-composting of olive mill wastewater with solid organic wastes[J]. Biology and Fertility of Soils, 2000, 11(11): 6235-6248.

[14] 陳是吏. 低碳氮比雞糞堆肥溫室氣體和 NH3排放規律影響研究[D]. 北京:中國農業大學,2017.

Chen Shili. Study on the Influence of Greenhouse Gas and NH3Emission Law of Low Carbon Nitrogen Ratio Chicken Manure Composting[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

[15] 賈軍濤. 易腐垃圾連續式好氧生物轉化工藝構建[D]. 北京:中國農業大學,2019.

Jia Juntao. Construction of Continuous Arobic Biotransformation Process for Perishable Garbage[D]. Beijing: China Agricultural University, 2019. (in Chinese with English abstract)

[16] Bernal M P, Alburquerque J A, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453.

[17] Wang X, Selvam A, Wong J W C. Influence of lime on struvite formation and nitrogen conservation during food waste composting[J]. Bioresource Technology, 2016, 217: 227-232.

[18] Godwin C M, Whitaker E A, Cotner J B. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria[J]. Ecology, 2017, 98(3): 820-829.

[19] 常瑞雪,王騫,甘晶晶,等. 易降解有機質含量對黃瓜秧堆肥腐熟和氮損失的影響[J]. 農業工程學報,2017,33(1):231-237.

Chang Ruixue, Wang Qian, Gan Jingjing, et al. Influence of easily-degraded organic matter content on maturity and nitrogen loss during composting of cucumber vine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 231-237. (in Chinese with English abstract)

[20] Zhang H J, Matsuto, Toshihiko. Mass and element balance in food waste composting facilities[J]. Waste Management, 2010, 30(8/9): 1477-1485.

[21] 周海瑛,邱慧珍,楊慧珍,等. C/N比對好氧堆肥中NH3揮發損失和含氮有機物轉化的影響[J]. 干旱地區農業研究,2020(2):69-77.

Zhou Haiying, Qiu Huizhen, Yang Huizhen, et al. Effect of C/N ratio on NH3volatilization loss and nitrogen organic conversion in aerobic composting[J]. Agricultural Research in the Arid Areas, 2020(2): 69-77. (in Chinese with English abstract)

[22] 楊延梅. 易利用碳的添加對廚余堆肥氮素轉化與氮素損失的影響[J]. 安徽農業科學,2011,39(32):19831-19833.

Yang Yanmei. Effect of easy use of carbon on nitrogen conversion and nitrogen loss of kitchen waste composting[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32): 19831-19833. (in Chinese with English abstract)

[23] Wang S G, Zeng Y. Ammonia emission mitigation in food waste composting: A review[J]. Bioresource Technology, 2018, 248: 13-19.

[24] Chan M T, Selvam A, Wong J W C. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment[J]. Bioresource Technology, 2016, 200: 838-844.

[25] Al-Jabi L F, Halalsheh M M, Badarneh D M. Conservation of ammonia during food waste composting[J]. Environmental Technology, 2008, 29(10): 1067-1073.

[26] 李赟,袁京,李國學,等. 輔料添加對廚余垃圾快速堆肥腐熟度和臭氣排放的影響[J]. 中國環境科學,2017,37(3):1031-1039.

Li Yuan, Yuan Jing, Li Guoxue, et al. Effect of supplementary material addition on fast composting degree and odor emission of kitchen waste[J]. China Environmental Science2017, 37(3): 1031-1039. (in Chinese with English abstract)

[27] Jiang L, Ma L, Sui Y, et al. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants[J]. Journal of Hazardous of Materials, 2010, 184(1/2/3): 337-344.

[28] Jiang T, Schuchardt F, Li G X, et al. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting[J]. Journal of Environmental Science, 2011, 23(10): 1754-1760.

[29] 楊帆,歐陽喜輝,李國學,等. 膨松劑對廚余垃圾堆肥 CH4、N2O 和 NH3排放的影響[J]. 農業工程學報,2013,29(18):226-233.

Yang Fan, Ouyang Xihui, Li Guoxue, et al. Effects of leavening agent on CH4, N2O and NH3emissions from kitchenwaste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 226-233. (in Chinese with English abstract)

[30] 郭秋月,常瑞雪,孫霞,等. 初始物料水溶性有機碳含量對番茄秧堆肥進程的影響[J]. 中國蔬菜,2018(5):42-47.

Guo Qiuyue, Chang Ruixue, Sun Xia, et al. Effect of initial water-soluble organic carbon content on composting process of tomato seedlings[J]. China Vegetables, 2018(5): 42-47. (in Chinese with English abstract)

Nitrogen transformation and loss during co-composting of kitchen and garden wastes

Xue Jingjing, Li Yanming※, Chang Ruixue, Wang Jue, Peng Lianghuan

(,,100193,)

A large amount of kitchen and garden wastes is ever increasing, with the rapid development of urbanization in China. Kitchen waste is characterized by rich free fat content, high water and salt content. The inappropriate pore structure and organic composition can inhibit the organic degradation during aerobic composting, thereby leading to nitrogen loss in the form of ammonia volatilization. Garden waste is rich in cellulose, hemicellulose, lignin, and high-carbon substances, particularly hard to be degraded directly. Alternatively, a co-composting of kitchen and garden wastes can improve the physicochemical characters to make the mixed materials more suitable for composting. Therefore, the current work aims to investigate the co-composting feasibility of kitchen and garden wastes. The ratios of kitchen and garden wastes were set as 4∶1 (N1), 3∶1 (N2), and 2∶1 (N3) (dry weight basis). A 28-day experiment was conducted in the self-developed closed system of aerobic composting. The total material weight, the moisture content, and the aeration rate of composting mixtures were 2.5kg, 75%, and 0.2L/(kg·min), respectively. Some indexes were recorded during the process, including the fermentation temperature, pH, C/N, Germination Index (GI), NH3and cumulative emissions, total N, organic N, ammonium N, and nitrate nitrogen. The specific rule was revealed to the nitrogen transformation and ammonia volatilization loss. The results showed that the temperature increased faster than other treatments, when the ratio of kitchen and garden waste was 2∶1 (N3), indicating the highest fermentation temperature (63.4℃). Meanwhile, the GI in N3 treatment exceeded 80% on the 21stday, meaning that the fermentation was significantly accelerated. The GI values of three treatments at the end of the process were 75.77%, 81.54%, and 84.50%, respectively. The products in the N2 and N3 treatment reached the standard of complete decomposing (>80%), while, those in the N1 only met the standard of basic decomposing (>60%). Therefore, a strong recommendation was given that the proportion of kitchen waste should not be higher than 80% of materials in the process of waste co-composting. The total nitrogen content decreased in the N1 and N2 treatment, whereas, it increased in the N3 fermentation. A high pH of products was obtained, due mainly to the fact that part of organic nitrogen was converted into ammonium nitrogen. The total nitrogen loss in N3 was the lowest at the end of composting, especially lower than that in the N1 and N2 by 30.30% and 12.96%, respectively. The nitrogen transformation demonstrated that the high fraction of garden waste reduced the NH3emission and the loss of ionic nitrogen, thereby promoting the conversion of ammonium nitrogen to organic nitrogen and nitrate nitrogen, indicating a higher nitrogen content in compost products. An optimal ratio of kitchen waste to garden waste was 2∶1, indicating the treatment is feasible. The co-fermentation of kitchen and garden wastes can greatly contribute to the reduction of nitrogen loss. The finding can provide potential theoretical support to the co-composting for kitchen and garden wastes.

composting; ammonia emission; nitrogen transformation; nitrogen loss; kitchen waste; garden waste

10.11975/j.issn.1002-6819.2021.10.023

X705

A

1002-6819(2021)-10-0192-06

薛晶晶,李彥明,常瑞雪,等. 廚余與園林廢物共堆肥過程氮素轉化及損失[J]. 農業工程學報,2021,37(10):192-197.doi:10.11975/j.issn.1002-6819.2021.10.023 http://www.tcsae.org

Xue Jingjing, Li Yanming, Chang Ruixue, et al. Nitrogen transformation and loss during co-composting of kitchen and garden wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(10): 192-197. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.10.023 http://www.tcsae.org

2021-01-19

2021-04-22

“十三五”國家重點研發計劃課題任務書:易腐有機固廢多組份協同好氧降解轉化技術及裝備(2018YFC1901000)

薛晶晶,研究方向為廢棄物處理與資源化。Email:xjj_0602@126.com

李彥明,副教授,博士生導師,研究方向為廢棄物處理與資源化。Email:liym@cau.edu.cn

猜你喜歡
銨態氮硝態廚余
離子型稀土尾礦深層土壤剖面銨態氮污染特征及影響因素*
河北太行山山前平原葡萄園土壤硝態氮累積特征及影響因素
基于廚余垃圾處理實踐活動開展生態環保教育的探究
錳離子對引黃灌區不同質地土壤銨態氮吸附影響
不同電子受體反硝化除磷的研究進展
基于文獻分析的氮肥用量對小麥玉米輪作體系硝態氮淋溶的影響*
姑蘇區最大廚余垃圾處理項目試運營 日處理能力達100噸
淺談中國廚余垃圾商業再利用意識的覺醒與發展
灌溉定額對春播裸燕麥土壤氮素的影響
食物廢料處理器
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合