?

生物炭對旱坡地宿根甘蔗土壤養分、酶活性及微生物多樣性的影響

2022-06-15 13:45桂意云李海碧韋金菊毛蓮英張榮華區惠平祝開趙培方周會劉昔輝
南方農業學報 2022年3期
關鍵詞:生物炭甘蔗養分

桂意云 李海碧 韋金菊 毛蓮英 張榮華 區惠平 祝開 趙培方 周會 劉昔輝

摘要:【目的】分析旱坡地宿根甘蔗生長、土壤養分和微生物群落對生物炭的響應,揭示生物炭改良宿根甘蔗土壤的微生態機制,為緩解甘蔗連作障礙、宿根蔗病害及生物炭在甘蔗栽培中的應用提供科學依據?!痉椒ā恳院灯碌厮薷收幔ǚN植第4年,1年新植3年宿根)為試驗材料,設2個處理:不施用生物炭對照(CK)和施用生物炭處理(3 t/ha),分析生物炭對宿根甘蔗土壤養分、酶活性、微生物多樣性和甘蔗生長的影響?!窘Y果】與CK相比,施用生物炭可顯著增加土壤堿解氮、速效鉀和有機質含量(P<0.05,下同),顯著提高蔗糖酶和酸性磷酸酶活性。施用生物炭還可改變土壤細菌和真菌分類單元(OTUs)總數,對土壤中各優勢細菌門、細菌屬相對豐度影響不大,但降低了真菌子囊菌門(Ascomycota)、擔子菌門(Basidiomycota)及淀粉藻(Amyloflagellula)和鐮刀菌屬(Fusarium)相對豐度,增加了接合菌門(Zygomycota)及毛殼菌屬(Chaetomium)和被孢霉屬(Mortierella)的相對豐度。在甘蔗生長方面,施用生物炭可顯著降低甘蔗梢腐病發病率,使甘蔗產量顯著提高5.2%?!窘Y論】施用生物炭可改良甘蔗土壤,改變土壤微生物群落結構,增強宿根甘蔗抗梢腐病能力,提高旱坡地宿根甘蔗第4年產量。

關鍵詞: 甘蔗;生物炭;土壤;養分;微生物多樣性;梢腐病發病率;產量

中圖分類號: S566.1;S158.3? ? ? ? ? ? ? ? ? ? ? 文獻標志碼: A 文章編號:2095-1191(2022)03-0776-09

Effects of biochar on soil nutrients,enzyme activities and microbial diversity of ratoon sugarcane in dry slope land

GUI Yi-yun LI Hai-bi WEI Jin-ju MAO Lian-ying ZHANG Rong-hua

OU Hui-ping ZHU Kai ZHAO Pei-fang ZHOU Hui LIU Xi-hui

(1Sugarcane Research Center, Chinese Academy of Agricultural Sciences/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Key Laboratory of Sugarcane Genetic Improvement in Guangxi, Nanning, Guangxi 530007, China; 2Guangxi South Subtropical Agricultural Science Research Institute, Chongzuo, Guangxi? 532400,China; 3Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, Yunnan? 661699, China)

Abstract:【Objective】To explore the microecological mechanism of biochar on soil improvement by analyzing the growth of ratoon sugarcane soil nutrition and microbial diversity, so as to lay a theoretical foundation for application of biochar in sugarcane cultivation, the alleviation of ratoon sugarcane diseases and the reduction of obstacles to continuous cropping of sugarcane. 【Method】Sugarcane in the fourth year of planting was used as the experimental material and two treatments were set up. They were CK (without biochar) and biochar (3 t/ha). The effect of the treatments on soil nu-trients, enzyme activities, microbial diversity and sugarcane growth were measured. 【Result】The application of biochar significantly increased the contents of alkali hydrolyzable nitrogen, available potassium and organic matter (P<0.05,the same below) compared with CK. Moreover, biochar also significantly increased the activities of sucrase and acid phosphatase. The application of biochar can also change the total number of bacterial and fungal OTUs in soil. The relative abundance of dominant bacterial phylum and genus in soil were equivalent between CK and biochar treatment. Biochar treatment decreased the relative abundance of Ascomycota, Basidiomycota, Amyloflagellula and Fusarium, while increasing the relative abundance of Zygomycota, Chaetomium and Mortierella. In terms of sugarcane growth, the application of biochar significantly reduced the incidence rate of pokkah boeng disease, and the sugarcane yield was significantly increased by 5.2%. 【Conclusion】The application of biochar can improve sugarcane soil, change the structure of the soil microbial community, increased the sugarcane resistance to Pokkah boeng, thus increased the sugarcane yield of ratoon sugarcane in the fourth year on dry slope land.

Key words: sugarcane; biochar; soil; nutrients; microbial diversity; the incidence of pokkah boeng; yield

Foundation items: National Natural Science Foundation of China (31860350,32060293); Central Guided Local Science and Technology Development Project (ZY20198005); Guangxi Natural Science Foundation Project(2020GXNSFAA297132)

0 引言

【研究意義】廣西是我國最大的甘蔗產區,甘蔗種植面積占全國甘蔗面積的60%以上。受自然條件影響,廣西大部分甘蔗種植在耕層淺、瘦、酸的旱地上(謝國雪等,2018)。甘蔗連作現象普遍,導致土壤通氣不良、病害嚴重,加上季節性干旱嚴重,限制了廣西甘蔗產業的進一步發展。近年來,氮肥大量施用導致廣西蔗區土壤酸化加劇,需重視土壤酸化治理,尋求合適途徑來提高土壤肥力(孟博等,2021)。研究表明,施用適量秸稈生物炭能顯著增加土壤有機質含量(安寧等,2020;焦敏娜等,2020;Hu et al.,2020;Zhao et al.,2020),尤其是快速增加土壤穩定性碳庫(Smith,2016;Munir et al.,2019),也可增加土壤三大微生物類群的數量(陳心想等,2014;殷全玉等,2021)。因此,針對廣西蔗區特點,分析旱坡地宿根甘蔗生長、土壤理化性質和微生物群落對生物炭的響應,揭示生物炭改良宿根甘蔗土壤的微生態機制,可為緩解甘蔗連作障礙、宿根蔗病害及生物炭在甘蔗栽培中的應用提供理論基礎?!厩叭搜芯窟M展】大量研究表明,生物炭能改變土壤理化性質、提高土壤酶活性、優化微生物群落結構和降低土壤重金屬污染風險,也可提高作物的抗病能力,進而提高作物產量和品質(戴皖寧等,2019;Liu et al.,2019;郭懷剛等,2020;Weng et al.,2020;白珊等,2021)。施用生物炭基肥可顯著提高土壤有機碳、速效磷和速效鉀含量(呂澤先,2017);在堿性石灰土中添加生物炭可顯著提高土壤陽離子交換量(Safrazr et al.,2017);生物炭施用21 d后增加了土壤細菌群落結構的多樣性(Li et al.,2019);隨著生物炭施用量的增加,可加速微生物的生長和繁殖(馮慧琳等,2021;劉領等,2021)。施用生物炭還可提高農作物產量,如溫室黃瓜單株產量提高11.4%(王彩云等,2019),大豆產量提高17.9%~33.3%(魏永霞等,2019)。生物炭在甘蔗生產中也已有應用。Yang等(2015)研究表明,施用生物炭對甘蔗苗期根系性狀有較好的改善作用,可提高甘蔗根冠比,施用20%生物炭可提高土壤pH,顯著增加有效磷、有效鉀和有機質的濃度。Alvarez-Camposa等(2018)研究發現施用生物炭提高了佛羅里達砂質土新植甘蔗的產量,并可改善土壤性質。Kaewpradit和Toomsan(2019)在輪作系統中施用桉樹生物炭,發現可提高甘蔗的氮利用效率。Weng等(2020)研究表明,施用13C和15N雙標記甘蔗秸稈生物炭可增加甘蔗土壤有機碳含量,提高氮肥利用效率。Lopes等(2021)設5種生物炭施用量(0、10、20、30和40 t/ha),連續2年采集甘蔗土壤,結果表明小于30 t/ha的生物炭施用量可提高甘蔗土壤中β-葡萄糖苷酶、酸性磷酸酶、芳基硫酸酯酶和脲酶活性及土壤總微生物數量;然而,隨著時間的推移,較高的施用量會降低這些酶的活性及土壤總微生物數量。Tafti等(2021)研究指出生物炭有助于保持土壤養分,防止徑流和淋濾損失,提高甘蔗產量?!颈狙芯壳腥朦c】前人對生物炭在甘蔗生產上應用的研究大多局限于新植甘蔗,而針對生物炭施用對宿根甘蔗生長、土壤養分及微生物多樣性影響的研究鮮見報道?!緮M解決的關鍵問題】通過分析多年宿根甘蔗生長、土壤理化性質和微生物群落對生物炭的響應,明確施用生物炭對宿根甘蔗生長的積極作用,為緩解甘蔗連作障礙、宿根蔗病害及生物炭在甘蔗栽培上的應用提供科學依據。

1 材料與方法

1. 1 試驗區概況及試驗材料

試驗于2020年4月—2021年1月在廣西扶綏縣東亞集團甘蔗地(東經107°53′52″、北緯22°30′26″)進行。蔗地為山坡地,坡度5°~10°。試驗區屬亞熱帶季風氣候,年均氣溫約21.7 ℃,年均降水量約1300.0 mm,年無霜期達342 d以上。2020年該區遭遇嚴重季節性干旱,年降水量為737.6 mm,其中甘蔗拔節的快速生長期(6—9月)降水量僅215.8 mm,占年降水量的29.3%。

供試土壤為第四紀紅土發育的赤紅壤,試驗前0~20 cm土層土壤pH 4.0、有機質24.4 g/kg、全氮1.4 g/kg、堿解氮128 mg/kg、速效磷69 mg/kg、速效鉀223 mg/kg。供試甘蔗品種為廣西主栽品種桂糖42號,由廣西農業科學院甘蔗研究所提供。寬窄行(1.35 m+0.50 m)種植,為種植第4年(1年新植3年宿根)的宿根甘蔗。由于甘蔗宿根年限久,疏于管理,梢腐病發生嚴重。試驗用生物炭為草本生物炭(湖南百威生物科技有限公司生產),稻殼材料制作,養分含量為全氮3.08 g/kg、全磷3.81 g/kg、全鉀14.3 g/kg、全碳55.3%。

1. 2 試驗方法

試驗設2個處理:不施用生物炭對照(CK)和施用生物炭處理(T,用量為3 t/ha)。每處理3個重復,共6個小區,小區面積0.13 ha。生物炭施用量依據前期甘蔗產量效應和生物炭施用量預試驗結果確定。2020年4月17日,甘蔗處于苗期,將生物炭均勻撒施在甘蔗種植壟上,培土覆蓋。大田管理按當地傳統方法進行。在甘蔗生長旺盛期、成熟期時進行農藝性狀調查,成熟期進行產量測定和土壤樣品采集與分析。

1. 3 測定項目及方法

甘蔗農藝性狀:于2020年7月13日和11月12日,選擇小區內長勢處于平均水平的連續20株甘蔗植株測定株高和莖徑。株高從地面測量到第1片見肥厚帶的葉鞘處(羅霆等,2021)。莖徑于距離地面1 m的節間中部測量。

甘蔗經濟性狀:2021年1月7日選取3行調查小區甘蔗有效莖,測算單位面積有效莖數;每小區選取株高大于1 m的連續蔗莖10根,采用ATAGO手持式折光儀測定甘蔗錘度。

病害調查:于2021年1月7日,在甘蔗收獲前,沿著甘蔗種植行向,調查連續100株甘蔗的梢腐病發病株數,并統計發病率。

土壤養分及生物學性狀:2021年1月7日,按照五點采樣法采集0~20 cm土層土壤樣品,混勻后采用四分法保留土壤樣品裝入密封袋中,放入冰盒,帶回實驗室用于土壤養分及生物學指標分析。土壤養分及土壤酶活性測定參照林先貴(2010)、魯如坤(2000)、李科和李志軍(2019)的方法。其中土壤過氧化氫酶、酸性磷酸酶、蔗糖酶、脲酶活性分別采用高錳酸鉀滴定法、磷酸苯二鈉比色法、3,5-二硝基水楊酸比色法、苯酚鈉—次氯酸鈉比色法測定;堿解氮采用堿解擴散法測定;有效磷采用碳酸氫鈉浸提—鉬銻抗比色法測定;速效鉀采用1 mol/L NHOAc浸提,火焰光度法測定;有機質采用KCrO-HSO消煮,FeSO容量法測定;pH采用pH計測定(土水比1∶2.5);陽離子交換量采用氯化鋇—硫酸強迫交換法測定。土壤微生物多樣性采用高通量測序技術測定,由生工生物工程(上海)股份有限公司完成。

1. 4 統計分析

試驗數據利用Excel 2007進行計算整理并作圖,采用SPSS 22.0進行統計分析。

2 結果與分析

2. 1 生物炭對宿根甘蔗土壤養分、土壤pH和酶活性的影響

由表1可知,與CK相比,施用生物炭的T處理顯著增加了土壤堿解氮、速效鉀和有機質含量(P<0.05,下同),增幅分別為34.6%、23.2%和11.7%;同時顯著降低了有效磷含量,降幅為10.4%。施用生物炭對土壤陽離子交換量和土壤pH影響不顯著(P>0.05,下同)。說明施用生物炭有助于提高土壤有效氮、有效鉀及有機質含量。

由表2可知,與CK相比,T處理土壤中脲酶和過氧化氫酶活性分別降低61.2%和14.5%,土壤蔗糖酶和酸性磷酸酶活性分別增加40.7%和1280.0%,差異均達顯著水平。

2. 2 生物炭對宿根甘蔗土壤微生物多樣性的影響

2. 2. 1 樣本測序結果 圖1-A顯示,土壤細菌分類單元(OTUs)總數為2445,CK和T處理共有細菌OTUs數為1604,二者特有細菌OTUs數分別為517和324。圖1-B顯示,土壤真菌OTUs總數為529,CK和T處理共有真菌OTUs數為312,二者特有真菌OTUs數分別為147和70??梢?,施用生物炭后土壤中的細菌和真菌OTUs總數均減少,其中細菌總OTUs數減幅較真菌多。

2. 2. 2 土壤細菌和真菌群落結構分析 微生物群落結構分析結果表明,在門水平(圖2-A),CK和T處理根際土壤中各優勢細菌門相對豐度變化不明顯,變形菌門(Proteobacteria)、放線菌門(Acidobacteria)、綠彎菌門(Chloroflexi)、酸桿菌門(Actinobacteria)均為土壤的優勢細菌門。從相對豐度來看,CK土壤中變形菌門和酸桿菌門的相對豐度高于T處理,而放線菌門和綠彎菌門的相對豐度低于T處理??傮w來看,相對豐度變化幅度不大,為1.0%~7.0%。

由圖2-B可看出,各優勢真菌門相對豐度變化較大。子囊菌門(Ascomycota)和擔子菌門(Basidiomycota)為CK的優勢真菌門,子囊菌門和接合菌門(Zygomycota)為T處理的優勢真菌門。從相對豐度來看,CK和T處理土壤子囊菌門的相對豐度分別為67.0%和43.0%,T處理相對降低35.8%;接合菌門相對豐度分別為2.0%和55.0%,T處理相對增加2650.0%;土壤擔子菌門相對豐度分別為31.0%和1.0%,T處理相對降低96.7%。

在屬水平(圖3-A),CK和T處理土壤檢測到10個優勢細菌屬,各細菌屬的相對豐度在0.6%~7.0%,CK和T處理土壤中各細菌屬差異不大。CK和T處理土壤中檢測到5個優勢真菌屬(圖3-B),其中有3個優勢真菌屬在2個處理間變化明顯。CK土壤中毛殼菌屬(Chaetomium)的相對豐度為3.0%,T處理為20.0%,較CK增加566.7%;CK土壤中被孢霉屬(Mortierella)相對豐度為0.2%,T處理為18.0%,較CK增加8900.0%。CK土壤中淀粉藻(Amyloflagellula)相對豐度為12.0%,T處理接近0。CK土壤中鐮刀菌屬(Fusarium)相對豐度為6.0%,T處理為3.0%,較CK減少50.0%。

2. 3 生物炭對宿根甘蔗生長的影響

由表3可知,與CK相比,T處理不同生長時期的甘蔗株高有所降低、莖徑略有變細,但成熟期(2021年1月7日)的有效莖數較多,錘度也略高于CK。施用生物碳后,T處理的梢腐病發生率為23.1%,顯著低于CK的發病率(38.8%),且T處理預估產量也較CK顯著增加5.2%。說明施用生物炭可明顯降低甘蔗梢腐病發生率并提高甘蔗產量。

3 討論

3. 1 施用生物炭對旱坡地宿根甘蔗土壤養分和土壤酶活性的影響

土壤養分是土壤肥力的重要指標,其含量高低直接影響作物生長。前人研究表明,施用生物炭可不同程度地提高土壤養分含量,如李明等(2016)、涂玉婷等(2021)研究發現施用生物炭不同程度地提高了土壤堿解氮、速效磷、速效鉀和有機質含量。但也有學者的研究結果與上述結論不盡一致,如呂波等(2018)認為施加生物炭可增加土壤速效磷、速效鉀及有機質含量,但顯著降低土壤堿解氮含量;魏永霞等(2019)在黑土區施用生物炭,發現土壤有效磷無顯著變化。由于生物炭自身的分解,生物炭施用下黑土的碳氮增幅顯著高于潮棕壤(劉興等,2021)。在本研究中,施用生物炭顯著增加旱坡地宿根甘蔗的土壤堿解氮、速效鉀和有機質含量,降低速效磷含量。說明生物炭施用促進了土壤氮鉀的有效性,降低了磷的有效性。施用生物炭對土壤養分影響不同的原因可能與生物炭原料、土壤性質和生物炭施用量等有關。

土壤酶在維持土壤健康和養分循環方面發揮重要作用,可作為衡量土壤質量的生物指標(Ghani et al.,2019;Wang et al.,2019)。脲酶在土壤尿素水解中發揮重要作用,其水解產物是植物生長發育的氮源之一(Teng and Zhou,2018)。蔗糖酶促進土壤中蔗糖水解成單糖,為微生物提供能量。生物炭施入土壤后,其豐富的多孔結構既能為微生物繁殖提供良好的生存空間,又能吸附反應底物有助于酶促反應而提高土壤酶活性。相反,酶分子也能被生物炭吸附從而隱蔽酶促反應結合位點,抑制酶促反應(丁艷麗等,2013)。不同土壤條件下,生物炭施用對土壤酶的影響不同。Wang等(2019)研究表明,在蘋果土壤中施用生物炭后,土壤轉化酶、脲酶、蛋白酶和過氧化氫酶活性增強。Pokharel等(2020)研究發現,生物炭可增加土壤微生物生物量及脲酶、堿性磷酸酶和脫氫酶活性,增幅分別為22%、23%、25%和20%。Wu等(2020)通過盆栽試驗,研究4種生物炭對桃樹幼苗土壤酶活性的影響,結果顯示施用生物炭可增加土壤脲酶活性,抑制土壤過氧化氫酶和中性磷酸酶活性。本研究結果表明,生物炭的施用增加了宿根甘蔗土壤蔗糖酶和酸性磷酸酶活性,但降低了脲酶和過氧化氫酶活性。其原因可能與生物炭提高土壤有機質含量有關,有機質含有較多可利用的碳源,從而為土壤微生物生長提供營養物質。本研究中土壤有效磷含量降低說明生物炭通過對磷的吸附促進了酸性磷酸酶活性。然而,可能由于脲酶和過氧化氫酶本身分子結構的復雜性,導致土壤脲酶和過氧化氫酶與土壤蔗糖酶和酸性磷酸酶活性的變化存在差異。

3. 2 施用生物炭對旱坡地宿根甘蔗土壤微生物多樣性的影響

土壤是土壤微生物的生活場所,土壤結構對土壤微生物群落結構有較大影響。生物炭可通過吸附和封存作用降低土壤養分,導致微生物豐度降低(Kaewpradit and Toomsan,2019)。生物炭造就的土壤環境能促進一部分微生物群體快速增殖成為競爭優勢群落,進而改變群落組成(雷海迪等,2016)。Zhang等(2021)研究表明,生物炭施用降低了細菌和真菌的多樣性。Hassink等(1993)認為添加生物炭后土壤真菌多樣性減少的原因,可能是生物炭中有效碳含量太少,從而抑制了擔子菌門和變型菌門的生長繁殖。本研究結果顯示,施用生物炭改變了旱坡地宿根甘蔗土壤微生物群落結構,不僅減少了土壤中細菌和真菌OTUs總數,同時降低了子囊菌門和擔子菌門的相對豐度,與Zheng等(2016)、Li等(2020)的研究結果一致。

3. 3 施用生物炭對旱坡地宿根甘蔗病害的影響

宿根甘蔗種植能減少勞作和投入成本,但多年的單一種植結構,蔗地土壤退化嚴重,病害發生風險加?。ㄋ螡?,2016)。其中宿根蔗病害程度高于新植蔗(劉曉燕等,2015)。生物炭可影響通過植物葉面和土壤傳播的病害(Jaiswal et al.,2017),對空氣傳播(如灰霉病菌及不同種類的白粉?。┖屯寥纻鞑ィㄧ牭毒鷮?、疫霉屬、立枯絲核菌)的病原體也有顯著抑制作用(Bonanomi et al.,2015)。眾多研究表明,生物炭可有效抑制鐮刀菌引起的土傳疾?。℅u et al.,2017;Jaiswal et al.,2018;Zhao et al.,2019;Lucas et al.,2020)。生物炭通過吸收根系分泌物直接或間接地吸引病原體,顯著降低細菌性枯萎病發病率(Gu et al.,2017),長期施用生物炭可減少番茄單一栽培引起的枯萎?。╖hao et al.,2019),增強番茄幼苗抗病性,減少病害發生的嚴重程度(Jaiswal et al.,2018;Lucas et al.,2020)。Tian等(2021)也發現生物炭應用能有效防治西洋參鐮刀菌根腐病。甘蔗梢腐病是真菌性病害,病原菌的有性態屬于子囊菌亞門,主要致病菌為鐮刀菌,該病菌侵染甘蔗后會引起甘蔗產量降低和糖分下降(Wang et al.,2017)。本研究中,宿根甘蔗第4年梢腐病發生嚴重,施用生物炭后甘蔗梢腐病發病率顯著降低。結合高通量技術下細菌16S rDNA和真菌ITS1基因擴增子測序分析,生物炭施用對細菌門的影響不明顯,而對真菌門影響較大,在真菌屬中甘蔗梢腐病的致病菌(鐮刀菌屬)相對豐度減少。說明施用生物炭可抑制蔗地土壤梢腐病病原菌的繁衍,減少甘蔗梢腐病的發病率,提高甘蔗產量。Frenkel等(2017)研究表明低濃度(≤1%)的生物炭施用可抑制多種病害,但較高濃度(≥3%)生物炭施用對大多數病害無效或誘發植物病害,建議合理控制生物炭施用量。本研究中生物炭施用量為3 t/ha,對甘蔗梢腐病發病抑制作用明顯,可作為甘蔗梢腐病防控的合理施用量。

4 結論

施用生物炭可改良甘蔗土壤,改變土壤微生物群落結構,提高宿根甘蔗抗梢腐病能力和甘蔗產量。因此,生物炭應用有利于廣西旱坡地宿根甘蔗生長及提高抵御病害的能力。

參考文獻:

安寧,李冬,李娜,吳正超,任彬彬,楊勁峰,韓巍,韓曉日. 2020. 長期不同量秸稈炭化還田下水稻土孔隙結構特征[J]. 植物營養與肥料學報,26(12):2150-2157. [An N,Li D,Li N,Wu Z C,Ren B B,Yang J F,Han W,Han X R. 2020. Characterization of soil pore structure of paddy soils under different long-term rice straw biochar incorporation[J]. Journal of Plant Nutrition and Fertilizers,26(12):2150-2157.] doi:10.11674/zwyf.20403.

白珊,倪幸,楊瑗羽,方先芝,柳丹,葉正錢. 2021. 不同原材料生物炭對土壤重金屬Cd、Zn的鈍化作用[J]. 江蘇農業學報,37(5):1199-1205. [Bai S,Ni X,Yang Y Y,Fang X Z,Liu D,Ye Z Q. 2021. Immobilization of soil cadmium and zinc by different raw material derived biochars[J]. Jiangsu Journal of Agricultural Sciences,37(5):1199-1205.] doi:10.3969/j.issn.1000-4440.2021.05.015.

陳心想,耿增超,王森,趙宏飛. 2014. 施用生物炭后塿土土壤微生物及酶活性變化特征[J]. 農業環境科學學報,33(4):751-758. [Chen X X,Geng Z C,Wang S,Zhao H F. 2014. Effects of biochar amendment on microbial biomass and enzyme activities in loess soil[J]. Journal of Agro-Environment Science,33(4):751-758.] doi:10.11654/jaes. 2014.04.019.

戴皖寧,王麗學,Ismail Khan,王曉帆,李振華. 2019. 秸稈覆蓋和生物炭對玉米田間地溫和產量的影響[J]. 生態學雜志,38(3):719-725. [Dai W N,Wang L X,Khan I,Wang X F,Li Z H. 2019. Effects of straw mulching and biochar addition on soil temperature and maize yield[J]. Chinese Journal of Ecology,38(3):719-725.] doi:10. 13292/j1000-4890.201903.031.

丁艷麗,劉杰,王瑩瑩. 2013. 生物炭對農田土壤微生物生態的影響研究進展[J]. 應用生態學報,24 (11):3311-3317.[Ding Y L,Liu J,Wang Y Y. 2013. Effects of biochar on microbial ecology in agriculture soil:A review[J]. Chinese Journal of Applied Ecology,24(11):3311-3317.] doi:10. 13287/j.1001-9332.2013.0560.

馮慧琳,徐辰生,何歡輝,曾強,陳楠,李小龍,任天寶,姬小明,劉國順. 2021. 生物炭對土壤酶活和細菌群落的影響及其作用機制[J]. 環境科學,42(1):422-431. [Feng H L,Xu C S,He H H,Zeng Q,Chen N,Li X L,Ren T B,Ji X M,Liu G S. 2021. Effect of biochar on soil enzyme activity & the bacterial community and its mechanism[J]. Environmental Science,42(1):422-431.] doi:10.13227/ j.hjkx.202005285.

郭懷剛,付東波,林俊俊,王智慧,殷大偉,徐晶宇,李佐同,趙長江. 2020. 土壤中添加生物炭對玉米幼苗紋枯病抗性的影響[J]. 河南農業科學,49(4):78-86. [Guo H G,Fu D B,Lin J J,Wang Z H,Yin D W,Xu J Y,Li Z T,Zhao C J. 2020. Effect of adding biochar in soil on resistance of maize seedling to sheath blight[J]. Journal of Henan Agricultural Sciences,49(4):78-86.] doi:10.15933/j.cnki. 1004-3268.2020.04.011.

焦敏娜,周鵬,孫權,姬強. 2020. 不同改性生物炭及施用量對風沙土土壤團聚體及牧草產量的影響[J]. 中國土壤與肥料,(6):34-40. [Jiao M N,Zhou P,Sun Q,Ji Q. 2020. Effects of different modified biochars and application rates on soil aggregates and forage yield in aeolian sandy soil[J]. Soil and Fertilizer Sciences in China,(6):34-40.] doi:10.11838/sfsc.1673-6257.19520.

雷海迪,尹云鋒,劉巖,萬曉華,馬紅亮,高人,楊玉盛. 2016. 杉木凋落物及其生物炭對土壤微生物群落結構的影響[J]. 土壤學報,53(3):790-799. [Lei H D,Yin Y F,Liu Y,Wan X H,Ma H L,Gao R,Yang Y S. 2016. Effects of fir(Cunninghamia Lanceolata) litter and its biochar on soil microbial community structure[J]. Acta Pedologica Sinica,53(3):790-799.] doi:10.11766/trxb201509050424.

李科,李志軍. 2019. 土壤農化分析方法[M]. 北京:中國農業科學技術出版社. [Li K,Li Z J. 2019. Analytical me-thods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press.]

李明,胡云,黃修梅,張清梅,尹春. 2016. 生物炭對設施黃瓜根際土壤養分和菌群的影響[J]. 農業機械學報,47 (11):172-178. [Li M,Hu Y,Huang X M,Zhang Q M,Yin C. 2016. Effect of biological carbon on nutrient and bacterial communities of rhizosphere soil of facility cucumber[J]. Transactions of the Chinese Society for Agricultural Machinery,47(11):172-178.] doi:10.6041/j.issn. 1000-1298.2016.11.023.

林先貴. 2010. 土壤微生物研究原理與方法[M]. 北京:高等教育出版社. [Lin X G. 2010. Principles and methods of soil microbiology research[M]. Beijing:Higher Education Press.

劉領,馬宜林,悅飛雪,喬鑫鑫,尹飛,王艷芳. 2021. 生物炭對褐土旱地玉米季氮轉化功能基因叢枝菌根真菌及N2O釋放的影響[J]. 生態學報,41(7):2803-2815.[Liu L,Ma Y L,Yue F X,Qiao X X,Yin F,Wang Y F. 2021. Effects of biochar on nitrogen transformation functional genes abundances,arbuscular mycorrhizal fungi and N2O emission of rainfed maize season in cinnamon soil[J]. Acta Ecologica Sinica,41(7):2803-2815.] doi:10.5846/stxb 202006041438.

劉曉燕,梁強,李毅杰,董文斌,謝金蘭,李長寧,朱秋珍,王維贊. 2015. 2012—2013年廣西甘蔗品種區試南寧點試驗報告[J]. 中國糖料,37(2):10-12. [Liu X Y,Liang Q,Li Y J,Dong W B,Xie J L,Li C N,Zhu Q Z,Wang W Z. 2015. Report on Nanning regional sugarcane varieties trial of Guangxi in 2012-2013[J]. Sugar Crops of China,37(2):10-12.] doi:10.13570/j.cnki.scc.2015.02.004.

劉興,武國慧,張玉蘭,解宏圖,陳振華,陳利軍. 2021. 生物炭施用方式對黑土和潮棕壤養分及氮磷轉化相關酶活性的影響[J]. 應用生態學報,32(8):2693-2702. [Liu X,Wu G H,Zhang Y L,Xie H T,Chen Z H,Chen L J. 2021. Effects of biochar application patterns on soil nutrients and nitrogen-and phosphorus-related enzyme activities in phaeozem and luvisol[J]. Chinese Journal of Applied Ecology,32(8):2693-2702.] doi:10.13287/j.1001-9332.202108.041.

魯如坤. 2000. 土壤農業化學分析方法[M]. 北京:中國農業科學技術出版社. [Lu R K. 2000. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press.]

羅霆,鄧宇馳,丘立杭,陳榮發,范業賡,周慧文,閆海鋒,黃杏,周忠鳳,吳建明. 2021. 宿根黃花對甘蔗主要農藝性狀及內源激素的影響[J]. 熱帶作物學報,42(12):3559-3565. [Luo T,Deng Y C,Qiu L H,Chen R F,Fan Y G,Zhou H W,Yan H F,Huang X,Zhou Z F,Wu J M. 2021. Effects of chlorosis on main agronomic traits and endogenous hormones of ratoon sugarcane[J]. Chinese Journal of Tropical Crops,42(12):3559-3565.] doi:10. 3969/j.issn.1000-2561.2021.12.024.

呂波,王宇函,夏浩,姚子涵,姜存倉. 2018. 不同改良劑對黃棕壤和紅壤上白菜生長及土壤肥力影響的差異[J]. 中國農業科學,51(22):4306-4315. [Lü B,Wang Y H,Xia H,Yao Z H,Jiang C C. 2018. Effects of biochar and other amendments on the cabbage growth and soil fertility in yellow-brown soil and red soil[J]. Scientia Agricultura Sinica,51(22):4306-4315.] doi:10.3864/j.issn.0578-1752. 2018.22.009.

呂澤先. 2017. 施用生物質炭和生物質炭基肥對作物產量及經濟效益的影響[D]. 南京:南京農業大學. [Lü Z X. 2017. Effects of biochar and compound fertilizer application on crop yield and economic benefits[D]. Nanjing:Nanjing Agricultural University.]

孟博,周一帆,戰健,楊林生,鄧燕. 2021. 廣西蔗區土壤和葉片養分狀況調查研究[J]. 中國土壤與肥料,https://kns.cnki.net/kcms/detail/11.5498.S.20210906.1116.002.html. [Meng B,Zhou Y F,Zhan J,Yang L S,Deng Y. 2021. Investigation on soil and sugarcane leaf nutrient status in Guangxi[J]. Soil and Fertilizer Sciences in China,https://kns.cnki.net/kcms/detail/11.5498.S.20210906.1116.002. html.] doi:10.11838/sfsc.1673-6257.20656.

宋潔. 2016. 連作土壤寄生真菌多樣性及對大豆胞囊線蟲抑制作用[D]. 哈爾濱:東北農業大學. [Song J. 2016. Diversity and suppressive effect of parastic fungi on soyrean cyst nematode in Soybean Monoculture soil[D]. Harbin:Northeast Agricultural University.]

涂玉婷,黃繼川,彭智平,吳雪娜,廖偉杰. 2021. 生物炭對酚酸脅迫下番茄生長和土壤微生態的影響[J]. 廣東農業科學,48 (1):94-103. [Tu Y T,Huang J C,Peng Z P,Wu X N,Liao W J. 2021. Effect of biochar on tomato growth and soil microecology under phenolic acid stress[J]. Guangdong Agricultural Sciences,48(1):94-103.] doi:10.16768/j.issn.1004-874X.2021.01.012.

王彩云,武春成,曹霞,賀字典,曾曉玉,姜濤. 2019. 生物炭對溫室黃瓜不同連作年限土壤養分和微生物群落多樣性的影響[J]. 應用生態學報,30(4):1359-1366. [Wang C Y,Wu C C,Cao X,He Z D,Zeng X Y,Jiang T. 2019. Effects of biochar on soil nutrition and microbial community diversity under continuous cultivated cucumber soils in greenhouse[J]. Chinese Journal of Applied Eco-logy,30(4):1359-1366.] doi:10.13287/j.1001-9332.201904. 036.

魏永霞,石國新,馮超,吳昱,劉慧. 2019. 黑土區坡耕地施加生物炭對土壤結構、肥力與大豆產量的影響[J]. 農業機械學報,50(8):309-320. [Wei Y X,Shi G X,Feng C,Wu Y,Liu H. 2019. Effects of applying biochar on soil structure and soybean yield on slope farmland in black soil region[J]. Transactions of the Chinese Society for Agricultural Machinery,50(8):309-320.] doi:10.6041/j.issn.1000-1298.2019.08.034.

謝國雪,黃啟廳,曾志康,覃澤林,張秀龍,蘇秋群. 2018. 丘陵縣域地塊尺度的甘蔗產業精準規劃研究[J]. 中國農業資源與區劃,39(5):154-163. [Xie G X,Huang Q T,Zeng Z K,Qin Z L,Zhang X L,Su Q Q. 2018. Precision planing of sugarcane industry in scale of hilly area[J]. Chinese Journal of Agricultural Resources and Regional Planning,39(5):154-163.] doi:10.7621/cjarrp.1005-9121. 20180521.

殷全玉,李想,王典,張明月,王兆雙,云菲,王新發,劉國順. 2021. 連續4年施用生物炭對土壤細菌多樣性及其群落結構的影響[J]. 河南農業大學學報,55(4):752-760.[Yin Q Y,Li X,Wang D,Zhang M Y,Wang Z S,Yun F,Wang X F,Liu G S. 2021. Effects of continuous application of biochar for 4 years on soil bacterial diversity and community structure[J]. Journal of Henan Agricultural University,55(4):752-760.] doi:10.16445 /j.cnki.1000-2340.20210512.001.

Alvarez-Camposa O,Lang T A,Bhadha J H,McCray J M,Glaz B,Daroub S H. 2018. Biochar and mill ash improve yields of sugarcane on a sand soil in Florida[J]. Agriculture,Ecosystems and Enviroment,253:122-130. doi:org/10.1016/j.agee.2017.11.006.

Bonanomi G,Ippolito F,Scala F. 2015. A “black” future for plant patholagy biochar as a new soil amendment for controlling plant diseases[J]. Journal of Plant Pathology,97(2):223-234. doi:10.4454/jpp.v97i2.3381.

Frenkel O,Jaiswal A K,Elad Y,Lew B,Kammann C,Graber E R. 2017. The effect of biochar on plant diseases:What should we learn while designing biochar substrates?[J]. Journal of Encironmental Engineering and Landscape Management,25(2):105-113. doi:10.3846/16486897.2017. 1307202.

Ghani M I,Ali A,Atif M J,Ali M,Amin B,Anees M,Khurshid H,Cheng Z H. 2019. Changes in the soil microbiome in eggplant monoculture revealed by high-throughput Illumina MiSeq sequencing as inflfluenced by raw garlic stalk amendment[J]. International Journal of Molecular Sciences,20(9):2125. doi:10.3390/ijms20092125.

Gu Y,Hou Y G,Huang D P,Hao Z X,Wang X F,Wei Z,Jousset A,Tan S Y,Xu D B,Shen Q R,Xu Y C,Friman V P. 2017. Application of biochar reduces Ralstonia solanacearum infection via effects on pathogen chemotaxis,swarming motility,and root exudate adsorption[J]. Plant and Soil,415(1-2):269-281. doi:10.1007/s11104-016-3159-8.

Hassink J,Bouwman L A,Zwart K B,Brussaard L.1993. Relationships between habitable pore space,soil biota and mineralization rates in grasslandsoils[J]. Soil Biology and Biochemistry,25(1):47-55. doi:10.1016/0038-0717(93)90240-C.

Hu L,Li S L,Li K,Huang H Y,Wan W X,Huang Q H,Li Q Y,Li Y F,Deng H,He T G. 2020. Effects of two types of straw biochar on the mineralization of soil organic carbon in farmland[J]. Sustainability,12(24):1-18. doi:10. 3390/SU122410586.

Jaiswal A K,Elad Y,Paudel I,Graber E R,Cytryn E,Frenkel O. 2017. Linking the belowground microbial composition,diversity and activity to soilborne disease suppression and growth promotion of Tomato amended with biochar[J]. Scientific Reports,7:44382. doi:10.1038/srep 44382.

Jaiswal A K,Frenkel O,Tsechansky L,Elad Y,Graber E R. 2018. Immobilization and deactivation of pathogenic enzymes and toxic metabolites by biochar:A possible mecha-nism involved in soilborne disease suppression[J]. Soil Biology and Biochemistry,121:59-66. doi:10.1016/j.soibio.2018.03.001.

Kaewpradit W,Toomsan B. 2019. Impact of Eucalyptus biochar application to upland rice-sugarcane cropping systems on enzyme activities and nitrous oxide emissions of soil at sugarcane harvest under incubation experiment[J]. Journal of Plant Nutrition,42(4):362-373. doi:10.1080/01904167.2018.1555849.

Li S,Wang S,Fan M,Wu Y,Shang G Z. 2020. Interactions between biochar and nitrogen impact soil carbon mineralization and the microbial community[J]. Soil and Tillage Research,196:104437. doi:10.1016/j.still.2019.104437.

Li X N,Song Y,Wang F,Bian Y R,Jiang X. 2019. Combined effects of maize straw biochar and oxalic acid on the dissipation of polycyclic aromatic hydrocarbons and microbial community structures in soil:A mechanistic study[J]. Journal of Hazardous Materials,364:325-331. doi:10.1016/j.jhazmat.2018.10.041.

Liu L Y,Tan Z X,Gong H B,Huang Q Y. 2019. Migration and transformation mechanisms of nutrient elements(N,P,K)within biochar in straw-biochar-soil-plant systems:A review[J]. ACS Sustainable Chemistry & Engineering,7:22-32. doi:10.1021/acssuschemeng.8b04253.

Lopes é M,Reis M M,Fraz?o L A,Terra L E,Lopes E F,Santos M M,Fernandes L A. 2021. Biochar increases enzyme activity and total microbial quality of soil grown with sugarcane[J]. Environmental Technology & Innovation,21:101270. doi:10.1016/j.eti.2020.101270.

Lucas G S,Cristiano A,Wagner B. 2020. Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato[J]. Tropical Plant Pathology,45(1):73-83. doi:10.1007/s40858-020-00332-1.

Munir A,Shahzada S I,Muhammad A,Qaiser H,Asma H,Muhammad A,Muhammad T,Muhammad I,Kashif B,Sanaur R. 2019. Impact of biochar with different organic materials on carbon fractions,aggregate size distribution,and associated polysaccharides and soil moisture retention in an arid soil[J]. Arabian Journal of Geosciences,12:626. doi:10.1007/s12517-019-4792-3.

Pokharel P,Ma Z L,Chang S X. 2020. Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities:A global meta-analysis[J]. Biochar,(1):1-15. doi:10.1007/s42773-020-00039-1.

Safrazr R,Shakoor A,Abdullam M,Arooj A,Hussain A,Xing S H. 2017. Impact of integrated application of biochar and nitrogen fertilizers on maize growth and nitrogen recovery in alkaline calcareous soil[J]. Soil Science and Plant Nutrition,63(5):488-498. doi:10.1080/00380768. 2017.1376225.

Smith P. 2016. Soil carbon sequestration and biochar as negative emission technologies[J]. Global Change Biology,22(3):1315-1324. doi:10.1111/gcb.13178.

Tafti N,Wang J,Gaston L,Park J H,Wang M,Pensky S. 2021. Agronomic and environmental performance of biochar amendment in alluvial soils under subtropical sugarcane production[J]. Agrosystems,Geosciences & Environment,4(3):1-14. doi:10.1002/agg2.20209.

Teng Y,Zhou Q X. 2018. Response of soil enzymes,functional bacterial groups,and microbial communities exposed to sudan I-IV[J]. Ecotoxicology and Environmental Safety,166:328-335. doi:10.1016/j.ecoenv.2018.09.102.

Tian G L,Bi Y M,JiaoX L,Zhang X M,Li J F,Niu F B,Gao W W. 2021. Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng[J]. Applied Microbiology and Biotechnology,105: 6977-6991. doi:10.1007/s00253-021-11464-y.

Wang Y F,Ma Z T,Wang X W,Sun Q R,Dong H Q,Wang G S,Chen X S,Yin C M,Han Z H,Mao Z Q. 2019. Effects of biochar on the growth of apple seedlings soil enzyme activities and fungal communities in replant disease soil[J]. Scientia Horticulturae,256:108641. doi:10.1016/scienta.2019.108641.

Wang Z P,Sun H J,Guo Q,Xu S Q,Wang J H,Lin S H,Zhang M Q. 2017. Artificial inoculation method of pokkah boeng disease of sugarcane and screening of resistant germplasm resources in subtropical China[J]. Sugar Tech,19(3):283-292. doi:10.1007/s12355-016-0465-7.

Weng Z,Liu X H,Eldridge S,Wang H R,Rose T,Rose M,Rust J,Singh B P,Tavakkoli E,Tang C X,Ou H P,Zwieten L V. 2020. Priming of soil organic carbon induced by sugarcane residues and its biochar control the source of plant uptake:A dual 13C and 15N isotope three-source-partitioning study[J]. Soil Biology and Biochemistry,146:107792. doi:10.1016/j.soilbio.2020.107792.

Wu C F,Hou Y F,Bie Y H,Chen X,Dong Y P,Lin L J. 2020. Effects of biochar on soil water-soluble sodium,calcium,magnesium and soil enzyme activuty of peach seedlings[J]. Earth and Environmental Science,446:032 007. doi:10.1088/1755-1315/446/3/03207.

Yang L,Liao F,Huang M,Yang L T,Li Y R. 2015. Biochar improves sugarcane seedling root and soil properties under a pot experiment[J]. Sugar Tech,17(1):36-40. doi:10.1007/s12355-014-0335-0.

Zhang H J,Wang S J,Zhang J X,Tian C J,Luo S S. 2021. Biochar application enhances microbial interactions in mega-aggregates of farmland black soil[J]. Soil & Tillage Research,213:105145. doi:10.1016/j.still.2021.105145.

Zhao F Y,Zhang Y Y,Dong W G,Zhang Y Q,Zhang G X,Sun Z P,Yang L J. 2019. Vermicompost can suppress Fusarium oxysporum f. sp. lycopersici via generation of beneficial bacteria in a long-term tomato monoculture soil[J]. Plant Soil,440:491-505. doi:10.1007/s11104-019-04104-y.

Zhao Y,Lin S,Liu Y,Li G,Butterbach K. 2020. Application of mixed straw and biochar meets plant demand of carbon dioxide and increases soil carbon storage in sunken solar greenhouse vegetable production[J]. Soil Use and Management,36(3):439-448. doi:10.1111/sum.12579.

Zheng J F,Chen J H,Pan G X,Liu X Y,Zhang X H,Li L Q,Bian R J,Cheng K,Zheng J W. 2016. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment,571(15):206-217. doi:10.1016/j.scitotenv.2016.07.135.

(責任編輯 王 暉)

猜你喜歡
生物炭甘蔗養分
為什么植物的根莖向上生長?
甘蔗的問題
甜甜的甘蔗
樹木是怎樣過冬的
為什么雨水多了瓜果會不甜
生物炭的制備與表征比較研究
黑熊吃甘蔗
生物炭的應用研究進展
基于生物炭的生態浮床設計
生物炭還田對固碳減排、N2O排放及作物產量的影響研究進展
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合