?

受豬籠草啟發的多孔微腔低冰黏附防除冰表面

2023-11-06 07:48向科峰尹歡宋岳干楊益李國強賴林
表面技術 2023年10期
關鍵詞:微腔硅油結冰

向科峰,尹歡,宋岳干,楊益,李國強,賴林

受豬籠草啟發的多孔微腔低冰黏附防除冰表面

向科峰,尹歡,宋岳干*,楊益,李國強,賴林

(西南科技大學 制造科學與工程學院,四川 綿陽 621010)

提高光滑液體注入表面(SLIPS)的防/除冰耐用性。將鎳箔完全浸沒在無水乙醇中,使用飛秒激光照射無水乙醇環境中的鎳箔表面誘導出立體多孔納米微腔陣列結構,并使用氟硅烷改性增加表面對硅油的親和力,最后用50 cSt的硅油旋涂在改性后的表面上。通過掃描電鏡和光學顯微鏡對立體多孔納米微腔結構進行形貌分析,并通過延緩結冰試驗、冰黏附強度測試和高溫蒸發試驗,分別評價該SLIPS的延緩結冰性能、冰黏附強度和防除冰耐用性。在立體多孔納米微腔結構的毛細作用下,具有親油憎水性的立體多孔納米微腔表面上的蒸餾水滴也會被釘扎。相比非結構化表面,該SLIPS將延緩結冰時間提升了2.8倍,同時,在低溫高濕度環境中,實現了冷凝水的自去除。在80 ℃高溫環境下的蒸發10 min后進行結冰/除冰操作,10個周期后,該SLIPS的接觸角(CA)為110°,滑動角(SA)為8.5°,以及冰黏附強度參數(ice)為3.6 kPa。利用飛秒激光加工無水乙醇環境中的鎳箔表面生成的立體納米多孔微腔陣列結構能夠減少SLIPS表面的潤滑劑損失,可有效提高防除冰SLIPS的耐用性。

仿生;飛秒激光直寫;納米微腔結構;SLIPS;低冰黏附;防冰;除冰

霜凍是自然界中普遍存在且常給人類社會造成巨大危害的自然現象,充分掌握和揭示固體表面積冰現象的機理是近代社會面臨的巨大挑戰[1-3]。傳統的防除冰方法主要包括加熱除冰,機械除冰以及一些化學除冰方法[4-6],這些主動除冰方法普遍受到除冰效率低,破壞生態環境等弊端的限制。因此,被動防除冰技術的研究迫在眉睫。

被動除冰方法中,超疏水表面(SHS)因其卓越的防污[7]和自清潔性能[8]而受到廣泛關注[9-10]。SHS是通過減少表面雜質來抑制冰晶異相成核,實現防除冰目的。此外,SHS多層級微/納結構可減少液滴與表面的接觸面積,從而提高冰晶成核勢壘[11-13]。然而,在高濕度條件下,未及時去除的液滴會在SHS上形成冰核,并在微納結構中發散,延伸到狹隙中,使得SHS與冰互鎖,最終導致SHS防冰性能失效[14]。由此可見,SHS并不是長期防結冰的完美策略。為了克服高濕條件下SHS防冰性能失效的缺陷,SLIPS通過將潤滑液注入基底,在冰和基底之間形成潤滑劑層來防止冰積聚[15-18]。低結冰點的潤滑層延遲了冰的成核時間,并在最大限度上減少了粗糙表面上的冰與固體表面的接觸面積,最終實現防冰性能。然而,進一步研究表明,潤滑液在結冰/除冰循環過程中容易損失,導致SLIPS性能失效。因此,如何提高SLIPS的穩定性是一大挑戰。

豬籠草瓶口具有多梯度楔角和銳利邊緣的不對稱拱形微腔結構,此外,該結構中還注滿了腺體分泌的潤滑液,用于減小摩擦阻力[19]。該結構不僅能實現液滴單向運輸[20],還可使潤滑液穩定保留在微腔中,實現長期捕獲昆蟲。受豬籠草瓶口多孔微腔注液表面的啟發,本文采用酒精輔助超快飛秒激光直寫技術在鎳箔表面加工具有立體納米孔洞的微腔陣列結構,再將50 cSt的硅油均勻旋涂在氟化后的表面制備SLIPS。該表面獨有的立體納米微腔結構賦予了表面卓越的毛細力,極大地增強了該SLIPS的穩定性。本文在每一次結冰/除冰后,將立體多孔納米微腔SLIPS置于80 ℃環境中蒸發10 min,10個周期后,其CA、SA以及ice依舊保持穩定。此外,即使在高濕度條件下,該SLIPS可以有效去除冷凝水分從而抑制冰/霜的積聚。

1 試驗

1.1 試劑與儀器

試劑:1H,1H,2H,2H-全氟癸基三乙氧基硅烷(C16F17H19O3Si),上海阿拉丁生化科技有限公司;無水乙醇(CH3CH2OH),成都金山化學試劑有限公司;蒸餾水,實驗室自制。試驗基底材料為鎳箔。

儀器:Sosltice Ace型飛秒激光一體化系統,美國NWEPORT公司;CY-SPC4-A勻膠機,鄭州成越科學儀器有限公司;Ultra 55型場發射掃描電子顯微鏡系統,德國Carl Zeiss NTS GmbH公司; EOS-750D型數碼照相機,佳能(中國)有限公司;SDC-350型接觸角測量儀,東莞晟鼎精密儀器有限公司;HA- JS826A型超聲波加濕器,中山市浩奇電器有限公司;LJ800-012型數顯推拉力計,南京蘇測計量儀器有限公司;實驗室自主搭建四核心環境封閉制冷系統。

1.2 酒精輔助飛秒激光加工技術一步誘導生成立體納米微腔結構

天然豬籠草微腔結構與功能示意圖如圖1a所示,受它啟發的仿生立體多孔SLIPS制備過程如圖1b所示。首先,將鎳箔(10 mm×10 mm)放入無水乙醇中使用超聲波清洗儀清洗10 min,再放入80 ℃干燥箱中干燥10 min。將干燥后的鎳箔固定在皮氏培養皿中并加入無水乙醇,使無水乙醇沒過鎳箔表面。采用飛秒激光直寫掃描系統加工浸沒在無水乙醇中的鎳箔表面。通過SCANLAB LaserDesk軟件繪制相互垂直且間隔25 μm的網格草圖。加工時采取的激光

脈沖為高斯光束,中心波長為800 nm,脈沖寬度為104 fs,1 kHz重復頻率,使用功率為80 mW,掃描速度為0.001 m/s。酒精輔助飛秒激光加工鎳箔后表面微結構如圖1c~d所示。為了增加表面對硅油的親和力,對激光加工后的樣品使用氟硅烷改性。將加工后的鎳箔放入體積比為1∶50的氟硅烷酒精溶液中浸泡2 h,取出后在80 ℃的干燥箱中干燥1 h。此時表面表現出卓越的毛細作用,能釘扎與表面具有排斥作用的液滴(圖1e)。最后在勻膠機上旋涂50 cSt的硅油,使用轉速為500 r/s,時間為1 min,樣品如圖1f所示。為了確保立體多孔納米微腔表面優先被潤滑液潤濕,應滿足[15]:

表1中,A、B分別是蒸餾水和硅油的表面張力,AB是蒸餾水和硅油交接面的表面張力,A、B分別是蒸餾水和硅油在氟化改性后立體多孔納米微腔鎳箔表面上的接觸角,是立體多孔納米微腔表面實際面積和投影面積的比值。帶入表1的數據計算出?1> 0,?2>0,滿足表面優先被硅油浸沒。

1.3 潤濕性能測試

將樣品固定在接觸角測量儀系統的樣品臺上,通過注射系統在樣品表面上滴入5 μL的水滴,測量此時接觸角的大小。再通過三維移動平臺使樣品傾斜一定角度,測量液滴在樣品表面發生滑動時的臨界傾斜角,即滾動角。所有接觸角和滾動角均為同一樣品不同位置3次測試值的平均值。

1.4 防除冰測試

延遲結冰測試:將所制備的SLIPS放置在環境封閉制冷系統的四核心制冷臺上,在SLIPS上滴入8 μL液滴,通過數碼相機記錄結冰過程并統計結冰時間。低溫高濕度環境下的抗冰測試:將SLIPS和SHS放入冰柜中(?10 ℃),使用加濕器增加濕度,并通過數碼相機記錄各表面凍結過程。冰黏附力測試:在四核心制冷臺上放置所制備的SLIPS,同時在表面上放置5 mm×5 mm×50 mm的冰柱模型并注滿蒸餾水冷凍12 h。通過勻速推動拉力計推倒完全凍結后的冰柱并實時記錄推力,根據壓力公式(ice,其中是推力峰值力,是冰柱的有效橫截面積)計算冰黏附強度ice。每個樣品報告的值都是取3個樣品的平均值。

圖1 仿生SLIPS制備與表征

表1 界面優先潤濕的計算數據

Tab.1 Calculation data of preferential wetting of interface

2 結果與討論

2.1 立體多孔納米微腔SLIPS形貌表征分析

為了制備具有高毛細作用的表面結構,需要在表面使用激光誘導出密集的納米孔洞。利用無水乙醇營造的液體環境增強了激光誘導等離子體、聲壓、以及沖擊波和爆炸性汽化,促使激光對基底加工附近會產生過熱物質和瞬間高壓區,并將周圍液體帶入到超臨界狀態[21-24]。金屬鎳的熔體層在高沖擊和爆炸性汽化顯現的相互作用下,其形態受到劇烈擾動,冷卻重鑄后形成納米微腔結構[21]。立體納米微腔結構的形貌取決于激光束的脈沖能量和輻照時間。在激光功率80 mW的前提下,分別用0.001、0.003、0.007 m/s的速度對浸沒在無水乙醇下的鎳箔表面進行掃描,其掃描電鏡圖像(SEM)分別如圖1c~d、圖2a~b和圖2c~d所示。通過增加激光掃描速度,納米孔洞的平均直徑在增加,且數目逐漸減少,結構也變得更加簡單。這是由于低速掃描能產生更加密集的沖擊波和爆炸汽化現象,使得掃描速度越快的鎳箔表面納米孔洞更少(圖2e)。低速誘導的立體納米多孔結構對液滴有著高黏附性,即便是使用低表面能的氟硅烷改性后仍然表現出“玫瑰花效應”,這使得表面能更低的硅油能夠更好地儲藏在納米微腔結構中,實現SLIPS的高穩定。

圖2 不同掃描速度下鎳箔的SEM和潤濕性

2.2 潤濕性分析

未加工的鎳箔表面CA=64°,通過酒精輔助激光低速掃描后鎳箔表面CA=84°,氟硅烷改性后的CA=163°。未改性的結構化鎳箔表面對水滴有著毛細作用,使得未改性結構化表面CA比非結構化鎳箔表面僅大20°。隨著激光掃描速度的增加,改性后的樣品CA呈現出降低趨勢(圖2f)。這是由于CA由表面粗糙度和表面能共同決定,低速掃描能使激光作用的局部區域產生更加劇烈的爆炸和氣化現象,熔融的鎳重鑄生成的納米孔洞的數量也就更多,粗糙度得到進一步增加,因此改性后的CA也就越大。

從不同樣品的CA不難看出低速掃描能誘導出數目更多更加密集的立體納米孔洞結構,并在宏觀展現出對液體的高黏附性,因此,低速掃描的鎳箔表面能更好地維持SLIPS的穩定性。

2.3 防/除冰性能分析

針對結冰現象的不同階段,樣品防/疏冰的性能主要通過兩個指標進行評價:冰成核延遲時間和表面冰黏附強度ice。防冰是指延長過冷液滴結冰時間,使過冷液滴在完全凍結前在外力作用迅速脫離表面,達到防冰目的。疏冰是指冰黏附強度小于100 kPa,當冰黏附強度小于100 kPa時,表面能在震動和風等外力作用下被動去除。

如圖3a所示,非結構化鎳箔表面延緩結冰時長為240 s,而SHS和立體多孔微腔SLIPS延緩結冰時長分別為667 s和677 s,試驗結果表明該SLIPS延緩結冰時間是非結構化表面的2.8倍。此外,SHS和SLIPS均能有效延緩結冰時間,達到防冰目的(圖3b)。但是,不同表面的結冰時間有很大差異,造成這種差異的機理可以用熱力學方程來解釋。SLIPS上形成冰主要是一個均相成核過程,其成核自由能壘(?homo)可由公式(3)計算[25-27]。而非結構化表面和SHS主要是異相成核,其冰核自由能壁壘(?hete)可由公式(4)~(5)計算。

式中:是成核半徑,是CA,IL是晶核和潤滑油之間的界面能,ΔV是凝固驅動力,()是的單調遞增函數。在成核過程中,非結構化表面和SHS水接觸角分別為64°、163°,比值(?hete/?homo)分別為0.192和0.988,且0.192<0.998,理論計算與試驗結果一致。此外,冷凝水在蒸汽壓力梯度的影響下不斷匯聚并釋放表面能,由于SLIPS具有較低的摩擦阻力,液滴在匯聚變大過程中自發向邊緣移動,實現了冷凝水的自去除(圖3a)。

為了進一步比較SHS和SLIPS的防冰性能,將SHS和SLIPS水平放置于環境溫度?10 ℃的冰柜中,并通過超聲波加濕器加濕營造低溫高濕環境。在室溫且非高濕環境中時,SHS表面的液滴處于Cassie狀態[28],此時空氣被困在水滴下的微/納結構中形成氣墊,氣墊大大減少了液滴和表面的接觸面積,表現出卓越疏水性。當環境溫度為?10 ℃且高濕度時,SHS表面上液滴的接觸角顯著降低,如圖4a所示,此時液滴處于Wenzel狀態[29]。造成Cassie狀態轉變為Wenzel狀態的原因是痕量水在微/納結構的縫隙中凝結成更小的液滴,此時由于空氣墊被微液滴所取代導致表面疏水性降低[30-32]。由于Wenzel狀態恢復到Cassie狀態需要突破較大的能量勢壘,因此Wenzel狀態無法自發恢復到Cassie狀態[33-36],這將大大削弱SHS的防冰能力。微/納結構中的微液滴在持續的低溫下成核凍結,并在縫隙中發散延展[37-38],直至整個表面完全凍結(圖4a)。因此,在低溫高濕環境下,具有微/納結構的SHS防冰性能被大大削弱。在溫度極低的情況下,SLIPS上也會發生液滴凍結現象[39],并且每個冷凝液滴的生長和聚結導致液滴尺寸隨著時間的推移逐漸增加,如圖4b所示。圖4b展示了SLIPS在低溫高濕度環境中的結冰情況,迎風口在高濕度冷空氣的侵襲下,SLIPS的左側率先出現冷凝液滴,并不斷往右側生長。215 s時,SHS上液滴和冰霜的覆蓋率達到了近乎100%,而此時SLIPS上的液滴-冰霜覆蓋率僅16.8%。417 s時,SHS表面被完全凍結,此時SLIPS表面液滴-冰霜覆蓋率為71.2%。在極端條件下(低溫高濕度),SHS和SLIPS表面都無法避免凍結,但SLIPS在極端環境下的抗冰能力明顯優于SHS。

SHS和SLIPS都能在一定程度上延緩結冰,但無法完全扼制結冰現象的發生,因此衡量表面的抗冰性能還要考慮液滴凍結之后冰對表面的黏附強度,即ice。在?10 ℃的環境溫度下使用拉力計測試推倒SLIPS上的冰柱,如圖5a所示。冰黏附強度的計算公式為:

式中:τice為冰黏附強度,F為拉力計所測試的推力峰值,A為SLIPS和冰柱的接觸面積。

圖4 低溫高濕環境下的SHS(a)和SLIPS(b)

圖5 SLIPS穩定性分析:a)冰黏附力測試裝置示意圖;b)SLIPS自修復示意圖;c~d)分別為結冰/除冰10個循環周期內SLIPS的θCA、θSA和τice變化;f)SHS喪失超疏水性示意圖;g~h)分別為結冰/除冰10個循環周期內SHS的θCA變化和τice變化

SLIPS的微/納結構在除冰過程中有所損壞,但是,殘破的立體納米微腔結構變得更加粗糙,孔洞中的硅油再次釋放,能填補進硅油缺失區域(圖5b)從而繼續維持表面功能。圖5c~e展示了SLIPS在80 ℃高溫下蒸發10 min后進行結冰/除冰循環試驗10個周期內的CA、SA以及ice變化。在結冰/除冰循環的10個周期內,SLIPS的CA和SA保持相對穩定(圖5c~d),CA和SA分別上升了2°和1.8°。經過公式(6)計算,SLIPS在第1次除冰時的冰黏附強度為2.4 kPa,此時的SHS冰黏附強度僅1.0 kPa。但是,在結冰/除冰的第3個周期時,SHS的冰黏附強度急劇增加,突破到了31.1 kPa,并且沒有降低的趨勢。造成SHS冰黏附強度激增的原因是在除冰過程中,SHS的表面成分和結構不可避免地遭到了破壞,多分子層的低表面能氟化物隨著冰的去除而被去除,并且脆弱的微納結構也遭到破壞(圖5f),使得SHS由超疏水變為疏水(HS),表面液滴狀態由Cassie狀態變為Wenzel狀態。此外,液滴的接觸角也由最初的160.9°急劇下降到127.9°(圖5g),液滴被牢牢鎖在SHS上無法滾落,使其凍結后與SHS互鎖造成冰黏附強度急劇上升(圖5h)。該SLIPS獨特的結構優勢使得它的防/除冰性能比傳統SHS更加出色,在除冰10次后,SLIPS的冰黏附強度為3.6 kPa,比SHS的冰黏附強度小了1個量級。該SLIPS低冰黏附和長期耐用的特點,使其在防/除冰領域具有極大的應用潛力。

3 結論

本文通過無水乙醇輔助飛秒激光加工的方法,在鎳箔表面制備了立體多孔納米微腔陣列結構,再使用50 cSt的硅油做潤滑液,制備了SLIPS。在立體多孔納米微腔結構的強毛細作用下,增強了表面對潤滑液的親和作用和貯存作用,改善了SLIPS潤滑劑易損失的缺陷。在結冰/除冰循環周期中,將SLIPS放入到80 ℃高溫環境蒸發10 min后進行結冰/除冰試驗,10個周期后,SLIPS的CA=110°,SA=8.5°,并且冰黏附強度僅3.6 kPa。該SLIPS具有穩定的疏冰性能,在防結霜冰領域具有廣闊的應用前景。

[1] YANG Si-yan, WU Chen-yang, ZHAO Guan-lei, et al. Condensation Frosting and Passive Anti-Frosting[J]. Cell Reports Physical Science, 2021, 2(7): 100474.

[2] LO C W, SAHOO V, LU Ming-chang. Control of Ice Formation[J]. ACS Nano, 2017, 11(3): 2665-2674.

[3] LI Qi, GUO Zhi-guang. Fundamentals of Icing and Common Strategies for Designing Biomimetic Anti-Icing Surfaces[J]. Journal of Materials Chemistry A, 2018, 6(28): 13549-13581.

[4] CHEN Feng-chen, SU Xin, YE Qing, et al. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology[J]. The Scientific World Journal, 2018, 2018: 1-6.

[5] WANG Feng, ZHUO Yi-zhi, HE Zhi-wei, et al. Dynamic Anti-Icing Surfaces (DAIS)[J]. Advanced Science, 2021, 8(21): 2101163-2101163..

[6] HONARVAR NAZARI M, MOUSAVI S Z, POTAPOVA A, et al. Toxicological Impacts of Roadway Deicers on Aquatic Resources and Human Health: A Review[J]. Water Environment Research: a Research Publication of the Water Environment Federation, 2021, 93(10): 1855-1881.

[7] RAGESH P, GANESH V A, NAIR S V, et al. A Review on self-Cleaning and Multifunctional Materials[J]. Journal of Materials Chemistry A, 2014, 2(36): 14773-14797.

[8] FU Yu-chen, JIANG Jing-xian, ZHANG Qing-hua, et al. Robust Liquid-Repellent Coatings Based on Polymer Nanoparticles with Excellent Self-Cleaning and Antibac-terial Performances[J]. Journal of Materials Chemistry A, 2017, 5(1): 275-284.

[9] CHENG Tian-tian, HE Ren, ZHANG Qing-hua, et al. Magnetic Particle-Based Super-Hydrophobic Coatings with Excellent Anti-Icing and Thermoresponsive Deicing Performance[J]. Journal of Materials Chemistry A, 2015, 3(43): 21637-21646.

[10] 詹曉力, 金碧玉, 張慶華, 等. 多功能超潤濕材料的設計制備與應用[J]. 化學進展, 2018, 30(1): 87-100.ZHAN Xiao-li, JIN Bi-yu, ZHANG Qing-hua, et al. Design and Applications of Multifunctional Super-Wetting Ma-terials[J]. Progress in Chemistry, 2018, 30(1): 87-100.

[11] CAO Liang-liang, JONES A K, SIKKA V K, et al. Anti- Icing Superhydrophobic Coatings[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2009, 25(21): 12444- 12448.

[12] VARANASI K K, HSU M, BHATE N, et al. Spatial Control in the Heterogeneous Nucleation of Water[J]. Applied Physics Letters, 2009, 95(9): 094101.

[13] ALIZADEH A, YAMADA M, LI Ri, et al. Dynamics of Ice Nucleation on Water Repellent Surfaces[J]. Langmuir, 2012, 28(6): 3180-3186.

[14] NOSONOVSKY M, HEJAZI V. Why Superhydrophobic Surfaces are not always Icephobic[J]. ACS Nano, 2012, 6(10): 8488-8491.

[15] WONG T S, KANG S H, TANG S K Y, et al. Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity[J]. Nature, 2011, 477(7365): 443-447.

[16] NOSONOVSKY M. Slippery when Wetted[J]. Nature, 2011, 477(7365): 412-413.

[17] TUO Yan-jing, ZHANG Hai-feng, CHEN Wei-ping, et al. Corrosion Protection Application of Slippery Liquid- Infused Porous Surface Based on Aluminum Foil[J]. Applied Surface Science, 2017, 423: 365-374.

[18] LIU Yan, LI Xin-lin, JIN Jing-fu, et al. Anti-Icing Property of Bio-Inspired Micro-Structure Superhydrophobic Sur-faces and Heat Transfer Model[J]. Applied Surface Science, 2017, 400: 498-505.

[19] 陳華偉, 張鵬飛, 張力文, 等. 豬籠草口緣區表面液體單方向連續搬運機制[J]. 中國科學基金, 2016, 30(3): 217-219. CHEN Hua-wei, ZHANG Peng-fei, ZHANG Li-wen, et al. Continuous Directional Water Transport on the Peristome Surface of Nepenthes Alata[J]. Bulletin of National Natural Science Foundation of China, 2016, 30(3): 217-219.

[20] 姜晨, 朱達, 魏久翔, 等. 基于3D打印的大尺寸豬籠草口緣區仿生表面設計[J]. 機械工程學報, 2021, 57(13): 225-231. JIANG Chen, ZHU Da, WEI Jiu-xiang, et al. Design of Large-Scale Structural Surfaces Inspired by the Peristome of Nepenthes Alata Based on 3D Printing[J]. Journal of Mechanical Engineering, 2021, 57(13): 225-231.

[21] YANG G W. Laser Ablation in Liquids: Applications in the Synthesis of Nanocrystals[J]. Progress in Materials Science, 2007, 52(4): 648-698.

[22] SHAHEEN M E, GAGNON J E, FRYER B J. Femtosecond Laser Ablation of Brass in Air and Liquid Media[J]. Journal of Applied Physics, 2013, 113(21): 213106.

[23] ZHANG Dong-shi, RANJAN B, TANAKA T, et al. Multiscale Hierarchical Micro/Nanostructures Created by Femtosecond Laser Ablation in Liquids for Polarization- Dependent Broadband Antireflection[J]. Nanomaterials, 2020, 10(8): 1573.

[24] LI Guo-qiang, LI Jia-wen, ZHANG Chen-chu, et al. Large-Area One-Step Assembly of Three-Dimensional Porous Metal Micro/Nanocages by Ethanol-Assisted Fe-m-tosecond Laser Irradiation for Enhanced Antireflection and Hydrophobicity[J]. ACS Applied materials interfaces, 2015, 7(1): 383-390.

[25] WILSON P W, LU Wei-zhe, XU Hao-jun, et al. Inhibition of Ice Nucleation by Slippery Liquid-Infused Porous Surfaces (SLIPS)[J]. Physical Chemistry Chemical Physics, 2013, 15(2): 581-585.

[26] WEI Cun-qian, JIN Bi-yu, ZHANG Qing-hua, et al. Anti-Icing Performance of Super-Wetting Surfaces from Icing-Resistance to Ice-Phobic Aspects: Robust Hydrophobic or Slippery Surfaces[J]. Journal of Alloys and Com-pounds, 2018, 765: 721-730.

[27] LIU Qi, YANG Ying, HUANG Meng, et al. Durability of a Lubricant-Infused Electrospray Silicon Rubber Surface as an Anti-Icing Coating[J]. Applied Surface Science, 2015, 346: 68-76.

[28] CASSIE A B D, BAXTER S. Wettability of Porous Surfaces[J]. Transactions of the Faraday Society, 1944, 40(0): 546-551.

[29] WENZEL R N. Resistance of Solid Surfaces to Wetting by Water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.

[30] JUNG Y C, BHUSHAN B. Wetting Behaviour during Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces[J]. Journal of Mi-cro-scopy, 2008, 229(1): 127-140.

[31] WIER K A, MCCARTHY T J. Condensation on Ultrahy-drophobic Surfaces and Its Effect on Droplet Mobility: ? Ultrahydrophobic Surfaces are not always Water Re-pellant[J]. Langmuir, 2006, 22(6): 2433-2436.

[32] NARHE R D, BEYSENS D A. Nucleation and Growth on a Superhydrophobic Grooved Surface[J]. Physical Review Letters, 2004, 93(7): 076103.

[33] CHENG Zhong-jun, LAI Hua, ZHANG Nai-qing, et al. Magnetically Induced Reversible Transition between Cassie and Wenzel States of Superparamagnetic Micro-droplets on Highly Hydrophobic Silicon Surface[J]. The Journal of Physical Chemistry C, 2012, 116(35): 18796- 18802.

[34] JOGHEE S H, UTHANDI K M, SINGH N, et al. Evolution of Temperature-Driven Interfacial Wettability and Surface Energy Properties on Hierarchically Structured Porous Superhydrophobic Pseudoboehmite Thin Films[J]. Langmuir, 2020, 36(23): 6352-6364.

[35] ZHENG Q S, YU Y, ZHAO Z H. Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(26): 12207- 12212.

[36] BOREYKO J B, BAKER C H, POLEY C R, et al. Wetting and Dewetting Transitions on Hierarchical Superhydrophobic Surfaces[J]. Langmuir, 2011, 27(12): 7502-7509.

[37] BOREYKO J B, COLLIER C P. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces[J]. ACS Nano, 2013, 7(2): 1618-1627.

[38] KULINICH S A, FARHADI S, NOSE K, et al. Superhy-drophobic Surfaces: Are they Really Ice-Repellent?[J]. Langmuir, 2011, 27(1): 25-29.

[39] KIM P, WONG T S, ALVARENGA J, et al. Liquid- Infused Nanostructured Surfaces with Extreme Anti-Ice and Anti-Frost Performance[J]. ACS Nano, 2012, 6(8): 6569-6577.

Low Ice Adhesion Deicing/Anti-icing Surface of Porous Microcavity Inspired by Nepenthes

,,*,,,

(School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Sichuan Mianyang 621010, China)

Ice accretion on solid surfaces is a common phenomenon in winter, which brings a lot of inconvenience to daily life and even causes serious disasters. At first, the superhydrophobic surface is considered as an ideal anti-icing surface for its micro/nano-textured structure and low surface tension. Air cushion formed between droplets and the surface leads to the decrease of contact area which contributes to delayed icing. In a high humidity environment, however, the droplets can easily intrude into the micro-nano structures, resulting in interlock. The ice is more difficult to remove. Fortunately, slippery liquid-infused surface (SLIPS) with lubricating fluids to fill micro-nanostructures inspired by nepenthes can be applied in anti-icing for its low friction force. With lubricating fluid with a high freezing point as the medium, the ice can be easily removed even in an ultra-low temperature and high humidity environment. However, lubricant losses are inevitable during the icing/deicing cycles, resulting in a great durability reduction and a significant drop of the anti-deicing performance. Therefore, how to reduce the loss of lubricating fluid and improve the durability of SLIPS has become a major challenge. To improve the anti-icing/deicing durability of slippery liquid-infused surfaces (SLIPS), the stereo porous nano-microcavity array was presented under the inspiration of the slippery liquid-infused surface of nepenthes. The stereo porous nano-microcavity array was fabricated by a femtosecond laser to irradiate the nickel foil surface immersed absolutely in ethanol. Then, C16F17H19O3Si was used to modify the surface to increase the affinity of the surface to silicone oil. Finally, 50 cSt silicone oil was used to spin-coat on the modified surface, obtaining the stereo porous nano-microcavity SLIPS. The morphologies of the stereo porous nano-microcavity structure were analyzed by scanning electron microscope (SEM) and optical microscope (OM). The anti-icing/deicing performance, ice adhesion and durability of the SLIPS were evaluated through the icing delay test, ice adhesion test and high-temperature evaporation test, respectively. Due to the capillary action of the stereo porous nano-microcavity structure, the distilled water droplets on the surface of the stereo porous nano-microcavity with lipophilicity and hydrophobicity could be pinned. It indicated that the stereo porous nano-microcavity structure could perfectly lock the lubricating fluid to improve the durability of SLIPS. Compared with the unstructured surface, the icing delay test showed that the SLIPS delayed the icing time by 2.8 times. Furthermore, the supercooled droplet was affected by condensed water in a low temperature and high humidity environment to realize the self-driving of condensed water. The SLIPS was put in a high temperature environment of 80 ℃ for ten minutes, then followed with the icing/deicing cycle experiment. After 10 cycles, the contact angle was 110°, the sliding angle was 8.5°, and ice adhesion was 3.6 kPa. The stereo porous nano-microcavity array structure is induced on the surface of nickel foil by femtosecond laser scanning nickel foil immersed in ethanol. It can reduce the loss of lubricant on the SLIPS surface and effectively improve the ice durability of SLIPS. Excellent durability and low ice adhesion make this SLIPS have the potential to be applied in various anti-icing/deicing fields.

bionics; femtosecond laser direct writing; nano-microcavity structure; SLIPS; low ice adhesion; anti-icing; deicing

2023-01-06;

2023-08-25

TG174

A

1001-3660(2023)10-0313-08

10.16490/j.cnki.issn.1001-3660.2023.10.027

2023-01-06;

2023-08-25

結冰與防除冰重點實驗室開放基金(IADL20210408)

Supported by Open Fund of Key Laboratory of Icing and Anti/De-icing (IADL20210408)

向科峰, 尹歡, 宋岳干, 等.受豬籠草啟發的多孔微腔低冰黏附防除冰表面[J]. 表面技術, 2023, 52(10): 313-320.

XIANG Ke-feng, YIN Huan, SONG Yue-gan, et al. Low Ice Adhesion Deicing/Anti-icing Surface of Porous Microcavity Inspired by Nepenthes [J]. Surface Technology, 2023, 52(10): 313-320.

通信作者(Corresponding author)

責任編輯:萬長清

猜你喜歡
微腔硅油結冰
基于時域有限差分法的光子晶體波導微腔耦合研究
通體結冰的球
二甲基硅油結構及熱穩定性
冬天,玻璃窗上為什么會結冰花?
微腔結構介質阻擋放電的仿真與實驗研究
魚缸結冰
硅油及鈦白粉在聚丙烯膨脹阻燃中的應用研究
CAE技術在硅油風扇開發中的應用
粒子在二維開放型四分之一圓形微腔中的逃逸研究
烯基硅油環氧化改性及織物整理應用
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合