?

植物脲酶誘導碳酸鹽沉淀改良土體研究進展

2024-01-25 17:42李明東張詩艾楊遠江徐浩峰陶雪晴何稼
關鍵詞:重金屬

李明東 張詩艾 楊遠江 徐浩峰 陶雪晴 何稼

摘要: 酶誘導碳酸鹽沉淀(EICP)改良土體是巖土工程領域的新興熱點技術,全面總結梳理EICP改良土體的研究現狀,優選關鍵技術參數,并對EICP的未來發展提出了展望。建議制定植物脲酶促沉碳酸鈣改良土體方法標準,對植物脲酶的保存方法、EICP改良土體在特殊環境條件下的長期性能開展研究。研究結果表明:EICP能夠顯著提高土體的性能,無側限抗壓強度最高可達3 MPa,抗風蝕能力可達29.1 m·s-1,表面貫入強度可達1.065 MPa,滲透系數降低率可達98.2%,重金屬離子質量分數降低率可達99.96%。

關鍵詞:植物脲酶; 酶誘導碳酸鹽沉淀(EICP); 土體改良; 固化; 重金屬

中圖分類號: TU 44文獻標志碼: A?? 文章編號: 1000-5013(2024)01-0001-09

Research Progress of Soil Improvement by Plant Urease Induced Carbonate Precipitation

LI Mingdong, ZHANG Shiai, YANG Yuanjiang,XU Haofeng, TAO Xueqing, HE Jia

(School of Civil Engineering and Architecture, East China University of Technology, Nanchang 330013, China)

Abstract: Soil improvement by enzyme induced carbonate precipitation (EICP) is an emerging hot technologie in the field of geotechnical engineering. The research status of soil improvement by EICP are summarized comprehensively, the key technical parameters are optimized, and the prospects of future development of EICP are pointed out. The standard method of soil improvement by plant urease promoting sinking of calcium carbonate is suggested. The preservation methods of plant urease and the longterm performance of soil improvement by EICP under special environmental conditions are conducted. The research results show that EICP can significantly improve the performance of soil, the maximal unconfined compressive strength reaches 3 MPa, the ability of wind erosion resistance reaches 29.1 m·s-1, the surface penetration strength reaches 1.065 MPa, the rate of permeability coefficient reduction reaches 98.2%, the rate of heavy metal ion mass content reduction reaches 99.96%.

Keywords: plant urease; enzyme induced carbonate precipitation (EICP); soil improvement; solidification; heavy metal

許多植物的種子或根部富含脲酶,脲酶能夠將土體中的尿素催化水解為氨氣和二氧化碳,它們與土體中的水反應,轉化為碳酸根和銨根離子。當土體中存在難溶碳酸鹽的陽離子(鈣離子、鉛離子等)時,碳酸鹽達到過飽和狀態,形成沉淀,其自然反應為

利用該自然反應,人為地從植物中提取脲酶,將足量脲酶和尿素引入土體中,它們能在短時間內誘導生成大量碳酸鹽沉淀,稱為植物脲酶誘導碳酸鹽(EICP),相應的處理過程稱為EICP改良土體[1-6]過程。EICP在巖土工程領域具有廣闊的應用前景[7-9],主要有3個方面。1) 土體加固和防滲處理。將脲酶、尿素和可溶性鈣鹽同時引入土體,生成強膠結力的碳酸鈣[10],碳酸鈣粘結松散的土顆粒,填充土內孔隙,起到提高土體強度、降低土體滲透性的作用,具體可用于路基加固、防風固沙、濕陷性土治理和膨脹土治理等[11-14]。2) 巖石、混凝土裂隙堵漏。將脲酶、尿素和可溶性鈣鹽配制成堵漏液,當堵漏液流經過滲漏裂隙時,碳酸鈣在裂縫側壁上逐漸沉積,直至裂隙閉合[15]。3) 重金屬污染土修復。將脲酶和尿素引入重金屬污染土,重金屬離子與碳酸根結合成穩定的碳酸鹽結合態。

植物脲酶誘導碳酸鹽技術具有3個優勢。1) EICP與微生物誘導碳酸鈣(MICP)相比,整個反應過程不需要空氣(氧氣),因此,也適用于細粒土[16-17]。2) 堵漏液中的游離脲酶只有12 nm,能夠修復極細小的裂隙。3) 全過程環保來源為植物,處理過程不需要水泥,處理后的剩余脲酶可以自然降解[18]。

為了總結EICP改良土體的現狀,優選技術參數,研討前進方向,本文從EICP的影響因素、改良土體的效果和改良土體的機理3個方面進行了全面梳理,希望能為這一新興領域的發展提供借鑒。

1 EICP的影響因素

EICP的反應效率(實際碳酸鈣沉淀量與理論最大值的比率)用碳酸鈣產率進行表達,其影響因素包括脲酶的來源、質量濃度、鈣離子質量濃度、pH值和溫度等。碳酸鈣產率隨豆粉質量濃度的變化[19-27],如圖1所示。圖1中:ρ為質量濃度;w為質量分數;c為濃度。由圖1可知:碳酸鈣產率隨洋刀豆脲酶質量濃度的增加先增加后減小,當洋刀豆脲酶質量濃度為3 g·L-1時,碳酸鈣產率最大,可達90%以上[19-23];當黃豆脲酶質量濃度低于15 g·L-1時,碳酸鈣產率隨黃豆脲酶質量濃度增加而快速增加,當黃豆脲酶質量濃度超過15 g·L-1時,碳酸鈣產率增長緩慢[24],當黃豆脲酶質量濃度為15 g·L-1時,碳酸鈣產率為55%[25],當黃豆脲酶質量濃度為40~50 g·L-1時,碳酸鈣產率為80%~90%[26],當黃豆脲酶質量濃度為50 g·L-1時,碳酸鈣產率達到99.4%[27]。Javadi等[28]使用西瓜籽脲酶,碳酸鈣產率可達64%。

碳酸鈣產率隨鈣離子質量濃度的變化[29-31],如圖2所示。

文獻[29-36]發現使用低Ca2+ 質量濃度的鈣源時,碳酸鈣產率較高,隨著Ca2+ 質量濃度的增加,碳酸鈣產率逐漸下降。氯化鈣、醋酸鈣、硝酸鈣、乳酸鈣的加固效果依次降低[32]。隨著反應環境pH值的升高,碳酸鈣產率先增高后降低,當反應環境pH值在8~9時,碳酸鈣產率達到峰值[9,33-36],主要原因是偏酸性反應環境會抑制脲酶活性,強堿性反應環境不利于尿素水解[31]。Arab等[23]在10,25,40 ℃條件下,使用EICP改良土體,25,40 ℃土體中的碳酸鈣質量分數接近,分別為4.3%和4.4%,而10 ℃土體中的碳酸鈣質量分數只有3.4%。Krajewska等[37]發現溫度從0 ℃上升至50 ℃時,碳酸鈣沉淀速率從0.038 g·h·L-1提升至0.340 g·h·L-1,這是由于脲酶活性會隨溫度的升高而逐步增加[23,34,37],但不同種類的脲酶差異性較大,對溫度的耐受程度不一致,存在不同的最適溫度范圍。黃豆脲酶在0~75 ℃范圍內活性隨溫度上升快速升高,65 ℃以上酶活性的增長率變緩[34];西瓜籽脲酶在50 ℃左右達到最佳酶活性[2];黑眼豌豆的最佳酶活性在30~35 ℃之間[38]。

Ahenkorah等[39]發現植物脲酶誘導碳酸鈣的晶型主要為方解石,少部分為球霰石、文石,晶型主要取決于植物脲酶來源、鈣源和外加劑。不同酶源的方解石形態掃描電子顯微鏡(scanning electron microscope,SEM)圖像[28,40-41],如圖3所示。由圖3可知:西瓜籽脲酶誘導碳酸鈣晶型為斜方6面體方解石[28];洋刀豆脲酶誘導碳酸鈣晶型大多為方塊狀方解石[40];黃豆脲酶誘導碳酸鈣晶型多為類球型方解石[41],這是由于不同植物脲酶的氨基酸序列不同,其中,酸性氨基酸的數量和分布結構是決定碳酸鈣晶型的重要因素之一[36]。氯化鈣、硝酸鈣等無機鈣鹽生成的碳酸鈣晶型為更穩定的方解石[42-44],使用有機鈣鹽生成的晶型多為球霰石,少數為文石。Phua等[45]用乳酸鈣制成了放射性增長的球形方解石。外加劑的引入有利于生成更穩定的方解石,并促進球霰石向方解石的轉換[22,46-53]。

2 EICP改良土體的效果

2.1 加固效果

Cui等[46]用單相(低pH值)注入法處理砂土,砂土的無側限抗壓強度達到3.0 MPa(目前最好記錄),大多數為0.2~2.0 MPa[2,17,20,23,29,34,47]。EICP的處理能將抗風蝕能力從加固前的8 m·s-1提高到加固后的25 m·s-1[48],最高可達29.1 m·s-1,將海藻酸鈉加入EICP溶液抗風蝕能力還能再提升一倍[22],多次處理的效果更佳,循環4次后,砂粒的平均表面貫入強度由11 kPa增加到了1.065 MPa[49],這是因為風沙表面形成了堅硬致密的凝膠結皮層[22]。

EICP加固土體的效果除了受到EICP反應影響外,還受到土體的影響和外加劑的影響。吳林玉等[34]用EICP處理砂土后,發現隨著砂土粒徑的增大,砂土試樣的無側限抗壓強度先增大后減小,粒徑為0.25~0.50 mm的砂土的無側限抗壓強度最高(1.21 MPa);粒徑為0.50~1.00 mm的砂土和粒徑小于0.25 mm的砂土的無側限抗壓強度分別為0.62,0.40 MPa。

外加劑的影響也十分顯著,不同成核劑作用效果[19,21-22,50-54],如圖4所示。圖4中:p為無側限抗壓強度.由圖4可知:木素的無側限抗壓強度由298 kPa提高到419 kPa[50],脫脂奶粉由0.12~0.16 MPa提高到1.65 MPa~1.82 MPa[22],山梨醇提高2.2倍[51],黃原膠提高約8倍,Mg2+提高16.6%[52-53],海藻酸鈉最多提高3倍[54]。提高的主要原因是外加劑為碳酸鈣提供了成核位點[20,50,53,55-60]。綜上,當前研究主要基于無側限抗壓強度判定加固效果,遴選最佳技術參數。

在不同環境條件(降雨引發干濕循環、凍融循環、酸雨)下,需要進一步研究加固土體的耐久性及動力特性。

2.2 防滲效果

EICP具有較好的防滲效果,Yasuhara等 [29]用EICP處理一次后,土體滲透系數降低60%~70%,4次處理后土體滲透系數從初始的0.040 0 cm·s-1降低至0.001 5 cm·s-1,總體降低了96%。 Handley-Sidhu等[57]用達西方程式進行了計算,多孔介質的滲透率從9.990 m3·s-1降至0.175 m3·s-1,滲透系數降低了98.2%。Hoang等[17]使用EICP對砂土進行8,12和16次處理,發現增加處理次數會降低土體滲透率,16次處理后,滲透系數最大降低90%。綜上,EICP技術在降低土體滲透性方面效果明顯,主要原因是碳酸鈣沉淀充填于土顆粒之間,占據土體孔隙,土體孔隙體積減?。?8]。截止目前,尚未見利用EICP進行混凝土裂隙或巖石裂隙堵漏的相關研究,有必要開展專題研究。

2.3 修復重金屬污染土的效果

重金屬污染對環境和生物的危害極大,且易通過食物鏈富集危害人類的健康。Nam等[40]應用EICP修復礦山廢渣中的重金屬,發現處理后的可溶性As,Mn,Zn,Pb,Cr和Cu的質量濃度分別降低了31.7%,65.8%,50.6%,51.6%,45.1%和49.7%。Moghal等[59]探究了EICP對不同重金屬組合污染土的修復效果,發現重金屬吸附從大到小順序為Cd,Ni,Pb。在EICP反應液中添加脫脂奶粉,養護40 d后,可溶性鉛離子下降率最高可達99.96%[59]。邊漢亮等[60]用黃豆粗提取脲酶對鋅離子污染土進行修復,經過3次修復后,土體中可溶性鋅離子減少83.75%,碳酸鹽結合態增加68.51%。重金屬污染土的修復是千年工程,但目前尚未見到EICP修復重金屬污染土在不同環境(酸堿度、溫度及濕度)條件下的長期穩定性相關研究,有必要開展專題研究。

3 EICP改良土體的機理

3.1 加固機理

EICP加固土體的機理,如圖5所示。

過飽和的碳酸鈣沉積在土體內,起到橋接、黏結和覆膜作用。橋接作用是碳酸鈣晶體在兩個相鄰但不接觸的土顆粒之間沉淀、生長,通過“搭橋”連接兩個土顆粒;黏結作用是碳酸鈣晶體在土顆粒接觸點附近沉積聚集,黏結土顆粒,提高土體強度;覆膜作用是碳酸鈣晶體覆蓋在土顆粒表面。

因此,橋接作用和黏結作用在土體顆粒之間產生膠結作用,能顯著增強土體團塊的強度,是EICP加固土體的主要機制,而覆膜作用未能給土顆粒之間建立聯系,沒有明顯的加固作用[61-73]。

碳酸鈣質量分數隨無側限抗壓強度的變化[17,20,23,29,34,73],如圖6所示。由于各試驗使用的EICP溶液配比、加固土體類型、處理周期等不同,數據出現一定的離散性,整體呈現出碳酸鈣質量分數越高,無側限抗壓強度越大的趨勢[17,20,23,29,34,65]。

3.2 修復重金屬污染土的機理

EICP主要是將污染土體中的可交換態重金屬離子轉化為固態碳酸鹽,EICP修復重金屬機理示意圖,如圖7所示。由圖7可知:一些離子半徑接近Ca2+的重金屬離子(Pb2+,Cu2+和Zn2+等)直接替代Ca2+離子,并與CO2-3結合生成碳酸鹽沉淀[66];在土壤中形成的CaCO3對環繞其表面的金屬離子具有很強的化學吸附能力,將重金屬離子包裹,有效減少重金屬污染物淋濾浸出[67-68];部分重金屬(As,Cr等)在溶液中形成絡合陰離子(亞砷酸根等),絡合陰離子替代CO2-3與Ca2+反應生成沉淀[69-71]。

4 結論

總結梳理EICP改良土體現有研究,得到了以下3點主要結論。

1) 目前,已經開發出的植物脲酶包括洋刀豆、黃豆、黑豆、西瓜籽和南瓜子脲酶等,其中,洋刀豆脲酶效果最好,最佳質量濃度為3 g·L-1;黃豆脲酶經濟性最好,質量濃度越大,效果越好;氯化鈣、醋酸鈣、硝酸鈣、乳酸鈣的加固效果依次降低。

2) EICP能夠顯著提高土體強度,土體強度隨碳酸鈣質量分數的增加而增加,最高可達3 MPa;EICP能夠顯著提高砂土的抗風蝕能力,由8 m·s-1提高到25 m·s-1;EICP能夠顯著降低土體的滲透系數,降低率可達98.2%;EICP能夠顯著降低重金屬離子的質量分數,最高可達99.96%。EICP改良土體缺乏成核點位的問題可通過添加方解石種子、木質素、脫脂奶粉、蔗糖、山梨醇和海藻酸鈉等成核劑進行解決。

3) EICP加固土體的內在機理是碳酸鹽晶體的橋接作用和黏結作用,防滲的內在機理是碳酸鈣晶體的孔隙填充作用和孔道堵塞作用,修復重金屬污染土內在機理是成鹽沉淀和絡合作用。

當前,EICP改良土體研究存在以下3點不足。

1) 計算碳酸鈣產率的反應時間、鈣離子濃度、反應溫度標準不統一,難以比較不同研究人員的結果,建議盡快建立統一的標準。

2) 植物脲酶溶液在常溫下放置72 h后會大量失活,亟需對植物脲酶的保存方法開展對比研究,在實驗室研究中可考慮0 ℃水溶液、-5 ℃軟凍、-18 ℃冰凍、-80 ℃冰凍狀態等,并給出植物脲酶溶液的合理保存方法。

3) 目前,EICP改良土體的研究主要集中于處理后即時性能評價,對于改良后土體長期性能的研究仍占少數[72],尚需進一步開展系統研究,包括干濕循環、凍融循環、酸雨影響和反復荷載下的性能演化規律和機制。

參考文獻:

[1] 張海麗,徐品品,冷立健,等.微生物誘導碳酸鈣沉積研究與應用[J].生物學雜志,2020,37(1):86-91.DOI:10.3969/j.issn.2095-1736.2020.01.086.

[2] DILRUKSHI R A N,NAKASHIMA K,KAWASAKI S.Soil improvement using plant-derived urease-induced calcium carbonate precipitation[J].Soils and Foundations,2018,58(4):894-910.DOI:10.1016/j.sandf.2018.04.003.

[3] ABDULLAH A,HAMED K T,EDWARD K,et al.Enzyme induced biocementated sand with high strength at low carbonate content[J].Scientific Reports,2019,9(1):1135.DOI:10.1038/s41598-018-38361-1.

[4] GAO Yufeng,HE Jia,TANG Xinyi,et al.Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil[J].Soils and Foundations,2019,59(5):1631-1637.DOI:10.1016/j.sandf.2019.03.014.

[5] 劉陽,高玉峰,何稼,等.大豆脲酶誘導碳酸鈣沉積技術的防風固沙試驗研究[J].河南科學,2019,37(11):1784-1789.DOI:10.3969/j.issn.1004-3918.2019.11.012.

[6] HE Jia,GAO Yufeng,GU Zhangxiang,et al.Characterization of crude bacterial urease for CaCO3 precipitation and cementation of silty sand[J].Journal of Materials in Civil Engineering,2020,32(5):04020071.DOI:10.1061/(ASCE)MT.1943-5533.0003100.

[7] KAVAZANJIAN E,HAMDAN N.Enzyme induced carbonate precipitation (EICP) columns for ground improvement[C]∥International Conference on Future Environment and Energy.Virginia:Geotechnical Special Publication,2015:2252-2261.DOI:10.1061/9780784479087.209.

[8] MUJAH D,CHENG L,SHAHIN M A.Microstructural and geomechanical study on biocemented sand for optimization of MICP process[J].Journal of Materials in Civil Engineering,2019,31(4):04019025.DOI:10.1061/(ASCE)MT.1943-5533.0002660.

[9] CHENG Liang,SHAHIN M A.Microbially induced calcite precipitation (MICP) for soil stabilization[J].Ecological Wisdom Inspired Restoration Engineering,2019(1):47-68.DOI:10.1007/978-981-13-0149-0_3.

[10] QIAN Chunxiang,REN Xinwei,RUI Yafeng.et al.Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species [J].Biochemical Engineering Journal,2021,176:108180.DOI:10.1016/j.bej.2021.108180.

[11] NEUPANE D,YASUHARA H,KINOSHITA N,et al.Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique[J].Journal of Geotechnical and Geoenvironmental Engineering,2013,139(12):2201-2211.DOI:10.1061/(ASCE)GT.1943-5606.0000959.

[12] KAVAZANJIAN J E,ALMAJED A,HAMDAN N.Bio-inspired soil improvement using EICP soil columns and soil nails[C]∥Grouting 2017.Virginia:Geotechnical Special Publication,2017:13-22.DOI:10.1061/978078448079 3.002.

[13] SONG J Y,SIM Y,JANG J,et al.Near-surface soil stabilization by enzyme-induced carbonate precipitation for fugitive dust suppression[J].Acta Geotechnica,2020,15(7):1967-1980.DOI:10.1007/s11440-019-00881-z.

[14] PUTRA H,YASUHARA H,FAUZAN M.Review of enzyme-induced calcite precipitation as a ground-improvement technique[J].Infrastructures,2020,5(8):66.DOI:10.3390/infrastructures5080066.

[15] 李明東,李琳,田安國,等.一種混凝土壩縫隙的堵漏方法: CN 104480902A [P].2015-04-01.

[16] KHODADADI T H,KAVAZANJIAN E,BILSEL H.Mineralogy of calcium carbonate in MICP-treated soil using soaking and injection treatment methods[C]∥Geotechnical Frontiers 2017.Florida:American Society of Civil Engineers,2017:195-201.DOI:10.1061/9780784480441.021.

[17] HOANG T,ALLEMAN J,CETIN B,et al.Sand and silty-sand soil stabilization using bacterial enzyme-induced calcite precipitation (BEICP)[J].Canadian Geotechnical Journal,2019,56(6):808-822.DOI:10.1139/CGJ-2018-0191.

[18] 曹光輝,劉士雨,俞縉,等.酶誘導碳酸鈣沉淀(EICP)技術及其在巖土工程中的應用[J].高校地質學報,2021,27(6):754-768.DOI:10.16108/j.issn1006-7493.2020200.

[19] ALMAJED A.Enzyme induced carbonate precipitation (EICP) for soil improvement[D].Arizona:Arizona State University,2017.

[20] ALMAJED A,KHODADADI T H,KAVAZANJIAN J E.Baseline investigation on enzyme-induced calcium carbonate precipitation[J].Journal of Geotechnical and Geoenvironmental Engineering,2018,144(11):04018081.DOI:10.1061/(ASCE)GT.1943-5606.0001973.

[21] ALMAJED A,ABBAS H,ARAB M,et al.Enzyme-induced carbonate precipitation (EICP)-based methods for ecofriendly stabilization of different types of natural sands[J].Journal of Cleaner Production,2020,274:122627.DOI:10.1016/j.jclepro.2020.122627.

[22] ALMAJED A,LEMBOYE K,ARAB M G,et al.Mitigating wind erosion of sand using biopolymer-assisted EICP technique[J].Soils and Foundations,2020,60(2):356-371.DOI:10.1016/j.sandf.2020.02.011.

[23] ARAB M G,ROHY H,ZEIADA W,et al.One-phase EICP biotreatment of sand exposed to various environmental conditions[J].Journal of Materials in Civil Engineering,2021,33(3):04020489.DOI:10.1061/(ASCE)MT.1943-5533.0003596.

[24] PRATAMA E M,PUTRA H,SYARIF F.Application of calcite precipitation method to increase the shear strength of peat soil[C]∥Conference Series: Earth and Environmental Science.San Francisco:IOP Publishing,2018:012058.DOI:10.1088/1755-1315/871/1/012058.

[25] BAIQ H S,YASUHARA H,KINOSHITA N,et al.Examination of calcite precipitation using plantderived urease enzyme for soil improvement[J].Geomate Journal,2020,19(72):231-237.DOI:10.21660/2020.72.9481.

[26] LEE S,KIM J.An experimental study on enzymatic-induced carbonate precipitation using yellow soybeans for soil stabilization[J].KSCE Journal of Civil Engineering,2020,24(7):2026-2037.DOI:10.1007/s12205-020-1659-9.

[27] LOFIANDA L,PUTRA H,ERIZAL S,et al.Potentially of soybean as bio-catalyst in calcite precipitation methods for improving the strength of sandy soil[J].Architecture,2021,9(7):2317-2325.DOI:10.13189/cea.2021.090719.

[28] JAVADI N,KHODADADI H,HAMDAN N,et al.EICP treatment of soil by using urease enzyme extracted from watermelon seeds[C]∥International Conference on Future Environment and Energy.Virginia:Geotechnical Special Publication,2018:115-124.

[29] YASUHARA H,NEUPANE D,HAYASHI K,et al.Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation[J].Soils and Foundations,2012,52(3):539-549.DOI:10.1016/j.sandf.2012.05.011.

[30] CARMONA J P S F,OLIVEIRA P J V,LEMOS L J L.Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation[J].Procedia Engineering,2016,143:1301-1308.DOI:10.1016/j.proeng.2016.06.144.

[31] CHANDRA A,RAVI K.Application of enzyme-induced carbonate precipitation (EICP) to improve the shear strength of different type of soils[C]∥Problematic Soils and Geoenvironmental Concerns.Singapore:Springer,2021:617-632.DOI:10.1007/978-981-15-6237-2_52.

[32] 朱磊.顆粒級配對酶誘導碳酸鈣沉淀加固遺址土的影響研究[D].蘭州:蘭州大學,2022.DOI:10.27204/d.cnki.glzhu.2022.000774.

[33] OLIVEIRA P J V,FREITAS L D,CARMONA J P S F.Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement[J].Journal of Materials in Civil Engineering,2017,29(4):04016263.DOI:10.1061/(ASCE)MT.1943-5533.0001804.

[34] 吳林玉,繆林昌,孫瀟昊,等.植物源脲酶誘導碳酸鈣固化砂土試驗研究[J].巖土工程學報,2020,42(4):714-720.DOI:10.11779/CJGE202004014.

[35] 張寬,唐朝生,劉博,等.基于新型單相MICP技術改性黏性土力學特性的試驗研究[J].工程地質學報,2020,28(2):306-316.DOI:10.13544/j.cnki.jeg.2019-528.

[36] SONDI I,SALOPEK B.Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases[J].Langmuir: The ACS Journal of Surfaces and Colloids,2005,21(19):8876-8882.DOI:10.1021/la051129v.

[37] KRAJEWSKA B,VAN ELDIK R,BRINDELL M.Temperature-and pressure-dependent stopped-flow kinetic studies of jack bean urease implications for the catalytic mechanism[J].Journal of Biological Inorganic Chemistry,2012,17(7):1123-1134.DOI:10.1007/s00775-012-0926-8.

[38] ZUSFAHAIR Z,DIAN R N,DANIA P,et al.Partial purification and characterization of urease from black-eyed pea (Vigna unguiculata ssp. unguiculata L.) [J].Journal of Fundamental and Applied Sciences,2018,14(1):20-24.DOI:10.11113/MJFAS.V14N1.749.

[39] AHENKORAH I,RAHMAN M M,KARIM M R,et al.A review of enzyme induced carbonate precipitation (EICP): The role of enzyme kinetics[J].Sustainable Chemistry,2021,2(1):92-114.DOI:10.3390/suschem2010007.

[40] NAM I H,ROH S B,PARK M J,et al.Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract[J].Catena,2016,136:53-58.DOI:10.1016/j.catena.2015.07.019.

[41] 郎鈔棚,馬明,邱立冬,等.大豆脲酶促沉碳酸鈣改良砂土地基承載特性模型試驗研究: 基于靜力觸探試驗[J].高校地質學報,2021,27(6):784-788.DOI:10.16108/j.issn1006-7493.2020212.

[42] GOROSPE C M,HAN S H,KIM S G,et al.Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558[J].Biotechnology and Bioprocess Engineering,2013,18(5):903-908.DOI:10.1007/s12257-013-0030-0.

[43] ZHANG Yie,GUO Hongxian,CHENG Xiaohui.Influences of calcium sources on microbially induced carbonate precipitation in porous media[J].Materials Research Innovations,2014,18(S2):79-84.DOI:10.1179/1432891714Z.000000000384.

[44] LIU Dagang,CHENG Huihuang,CHANG P R,et al.Biomimetic soyprotein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive[J].Bioresource Technology,2010,101(15):6235-6241.DOI:10.1016/j.biortech.2010.02.107.

[45] PHUA Y J,ROYNE A.Bio-cementation through controlled dissolution and recrystallization of calcium carbonate [J].Construction and Building Materials,2018,167(10):657-668.DOI:10.1016/j.conbuildmat.2018.02.059.

[46] CUI Mingjuan,LAI Hanjiang,HOANG T,et al.One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement[J].Acta Geotechnica,2020,16(8):1-9.DOI:10.1007/s11440-020-01043-2.

[47] NAFISI A,SAFAVIZADEH S,MONTOYA B M.Influence of microbe and enzyme-induced treatments on cemented sand shear response[J].Journal of Geotechnical and Geoenvironmental Engineering,2019,145(9):06019008.DOI:10.1061/(ASCE)GT.1943-5606.0002111.

[48] KNORR B.Enzyme-induced carbonate precipitation for the mitigation of fugitive dust[D].Arizona:Arizona State University,2014.

[49] GAO Yaqing,HUA Chen,KE Tong.Field test on soybean-urease induced calcite precipitation (SICP) for desert sand stabilization against the wind-induced erosion[J].Sustainability,2022,14(22):15474.DOI:10.3390/su142215474.

[50] 張建偉,王小鋸,李貝貝,等.EICP-木質素聯合固化粉土的試驗研究[J].土木與環境工程學報(中英文),2021,43(2):201-202.DOI:10.11835/j.issn.2096-6717.2020.155.

[51] YANG Yuanjiang,LI Mingdong,TAO Xueqing,et al.The effect of nucleating agents on enzyme-induced carbonate precipitation and corresponding microscopic mechanisms[J].Materials,2022,15(17):5814.DOI:10.3390/ma151 75814.

[52] DAVIS K J,DOVE P M,DE YOREO J J.The role of Mg2+ as an impurity in calcite growth[J].Science,2000,290(5494):1134-1137.DOI:10.1126/science.290.5494.1134.

[53] CHANDRA A,RAVI K.Effect of magnesium incorporation in enzyme-induced carbonate precipitation (EICP) to improve shear strength of soil[J].Advances in Computer Methods and Geomechanics,2020(56):333-346.DOI:10.1007/978-981-15-0890-5_28.

[54] REFAEI M,ARAB M G,OMAR M.Sandy soil improvement through biopolymer assisted EICP[C]∥Geo-Congress 2020: Foundations, Soil Improvement and Erosion.Virginia:American Society of Civil Engineers,2020:612-619.DOI:10.1061/9780784482780.060.

[55] CHEN Tao,SHI Peiheng,LI Yi,et al.Biomineralization of varied calcium carbonate crystals by the synergistic effect of silk fibroin/magnesium ions in a microbial system[J].Cryst Eng Comm,2018,20(17):2366-2373.DOI:10.1039/C8CE00099A.

[56] ZHU Liping,LANG Chaopeng,LI Bingyan,et al.Characteristics of soybean urease induced CaCO3 precipitation[J].Geomechanics and Engineering,2022,31(3):281.DOI:10.12989/gae.2022.31.3.281.

[57] HANDLEY-SIDHU S,SHAM E,CUTHBERT M O,et al.Kinetics of urease mediated calcite precipitation and permeability reduction of porous media evidenced by magnetic resonance imaging[J].International Journal of Environmental Science and Technology,2013,10(5):881-890.DOI:10.1007/s13762-013-0241-0.

[58] CHO G C,DODDS J ,SANTAMARINA J C.Particle shape effects on packing density, stiffness, and strength:? Natural and drushed sands[J].Journal of Geotechnical and Geoenvironmental Engineering,2006,133(5):591-602.DOI:10.1061/(ASCE)1090-0241(2006)132:5(591).

[59] MOGHAL A A B,LATEEF M A,MOHAMMED S A S,et al.Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions[J].Sustainability,2020,12(17):7019.DOI:10.3390/su12177019.

[60] 邊漢亮,張旭鋼,韓一,等.大豆脲酶對Zn2+污染土的修復試驗研究[J].工業建筑,2022,52(11):67-70.DOI:10.13204/j.gyjzG20110216.

[61] MIAO Linchang,WU Linyu,SUN Xiaohao.Enzyme-catalysed mineralisation experiment study to solidify desert sands[J].Scientific Reports,2020,10(1):10611.DOI:10.1038/s41598-020-67566-6.

[62] SUN Xiaohan,MIAO Linchang,WANG Hengxing,et al.Enzymatic calcification to solidify desert sands for sandstorm control[J].Climate Risk Management,2021,33:100323.DOI:/10.1016/j.crm.2021.100323.

[63] LIN Hai,SULEIMAN M T,BROWN D G.Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP)[J].Soils and Foundations,2020,60(4):944-961.DOI:10.1016/j.sandf.2020.07.003.

[64] 張茜,葉為民,劉樟榮,等.基于生物誘導碳酸鈣沉淀的土體固化研究進展[J].巖土力學,2022(2):1-13.DOI:10.16285/j.rsm.2021.1249.

[65] ALIOTTA L,CINELLI P,COLTELLI M.B,et al.Rigid filler toughening in PLA-calcium carbonate composites: Effect of particle surface treatment and matrix plasticization[J].European Polymer Journal,2019,113:78-88.DOI:10.1016/j.eurpolymj.2018.12.042.

[66] DILRUKSHI R A N,KAWASAKI S.Effective use of plant-derived urease in the field of geoenvironmental[J].Journal of Civil and Environmental Engineering,2016,6(1):2.DOI:10.4172/2165-784X.1000207.

[67] CHEN Minjie,LI Yafei,JIANG Xiaoru,et al.Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology[J].Journal of Hazardous Materials,2021,411:125103.DOI:10.1016/j.jhazmat.2021.125103.

[68] ZHU Xuejiao,KUMARI D,HUANG M S,et al.Biosynthesis of CdS nanoparticles through microbial induced calcite precipitation[J].Materials and Design,2016,98:209-214.DOI:10.1016/j.matdes.2016.03.008.

[69] TRIPTI K.pH modulates arsenic toxicity in Bacilluslicheniformis DAS-2[J].Ecotoxicology and Environmental Safety,2016,130:240-247.DOI:10.1016/j.ecoenv.2016.04.029.

[70] CATELANI T,PERITO B,BELLUCCI F,et al.Arsenic uptake in bacterial calcite[J].Geochimica et Cosmochimica Acta,2017,222:642-654.DOI:10.1016/j.gca.2017.11.013.

[71] QIAN Xinyi,FANG Chaolin,HUANG Minsheng,et al.Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueoussolution and soil[J].Journal of Cleaner Production,2017,164:198-208.DOI:10.1016/j.jclepro.2017.06.195.

[72] XU Kai,HUANG Ming,ZHEN Jiajie,et al.Field implementation of enzyme-induced carbonate precipitation technology for reinforcing a bedding layer beneath an underground cable duct[J].Journal of Rock Mechanics and Geotechnical Engineering,2023,15(4):1011-1022.DOI:10.1016/j.jrmge.2022.06.012.

[73] WHIFFIN V S,VAN PAASSEN L A,HARKES M P.Microbial carbonate precipitation as a soil improvement technique[J].Geomicrobiology Journal,2007,24(5):417-423.DOI:10.1080/01490450701436505.

猜你喜歡
重金屬
沉淀/吸附法在電鍍廢水重金屬處理中的應用
重金屬對膨潤土膨脹性的影響
污泥磚重金屬浸出研究
測定不同產地寬筋藤中5種重金屬
11種湘產中藥材中3種重金屬快速檢測方法的建立
獸藥產品的重金屬含量需引起關注
6 種藥材中5 種重金屬轉移率的測定
ICP-AES、ICP-MS測定水中重金屬的對比研究
重金屬銅離子酶聯免疫分析方法的建立
再生水回灌中DOM對重金屬遷移與保留問題研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合