?

海底熱液硫化物中金屬、非金屬和稀有氣體同位素組成的關系及其地質意義

2024-02-27 13:35曾志剛
關鍵詞:金屬

摘要:海底熱液硫化物的同位素組成不僅可以示蹤其來源,也記錄了流體及其沉淀過程。本文分析了全球海底熱液硫化物的金屬(鉛、錸、鋨、鐵、銅、鋅)、非金屬(硫)及其流體包裹體中的稀有氣體同位素組成,探討了硫化物中金屬、非金屬和稀有氣體同位素組成之間的關系。結果表明:海底熱液硫化物中的硫同位素組成與鋨、鐵同位素組成之間,鐵同位素組成與鉛和氦同位素組成之間,存在負相關性;其鋨同位素組成與鐵同位素組成之間,氙同位素組成與鉛、鋨同位素組成之間,則存在正相關性。在巖漿去氣注入流體階段形成的硫化物,具δ34SVCDT值較低(約0‰),3He/4He(>8 Ra)、40Ar/36Ar(>300)和129Xe/132Xe(>0.99)值較高的特點。在流體-巖石相互作用階段,隨著巖石中含鉛礦物的不斷溶解,即流體-巖石相互作用程度的增加,流體中沉淀的黃鐵礦、黃銅礦和閃鋅礦的鉛質量分數增加,伴隨206Pb/204Pb值輕微的減小。在流體-海水混合階段,海水影響的加劇可使硫化物中的鋨質量分數(約0×10-9)急劇降低,δ57Fe值(<—1.6‰)、187Os/188Os值(>1)明顯增大;隨著流體-海水混合作用的增強,硫化物中黃鐵礦的δ34SVCDT值將隨著其流體包裹體中3He/4He、40Ar/36Ar、129Xe/132Xe值輕微降低而升高,而其3He/4He值隨著其130Xe/132Xe值的降低而降低。以上表明,通過綜合分析海底硫化物中金屬、非金屬和稀有氣體的同位素組成和其質量分數,并討論它們之間的關系,可以揭示巖漿去氣、流體-巖石相互作用和流體-海水混合對海底熱液循環的影響,進而了解硫化物沉淀過程中流體-巖石相互作用和流體-海水混合的程度。

關鍵詞:金屬、非金屬和稀有氣體同位素;同位素組成之間的關系;海底熱液硫化物

doi:10.13278/j.cnki.jjuese.20230310 中圖分類號:P736.4;P597 文獻標志碼:A

收稿日期:2023-10-20

作者簡介:曾志剛(1968—),男,研究員,博士生導師,主要從事海底熱液地質學方面的研究,E-mail:zgzeng@qdio.ac.cn

基金項目:國家自然科學基金項目(42330409,42221005,91958213);中國科學院戰略性先導科技專項子課題(XDB42020402);國家重點基礎研究發展計劃(973計劃)項目(2013CB429700);泰山學者工程(ts201511061)

Supported by the National Natural Science Foundation of China (42330409, 42221005, 91958213), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB42020402), the National Basic Research and Development Program of China (2013CB429700) and the Taishan Scholars Program (ts201511061)

The Relationship Between Isotopic Compositions of Metals, Non-Metal, and Rare Gases in Seafloor Hydrothermal Sulfides and Its Geological Significances

Zeng Zhigang1, 2, 3

1. Institute of Oceanology/Key Laboratory of Marine Geology and Environment,? Chinese Academy of Sciences, Qingdao 266071, Shandong,China 2. Laboratory for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266061, Shandong,China 3. College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao? 266400, Shandong,China

Abstract: The isotopic composition of seafloor hydrothermal sulfides can not only trace their sources but also record the fluids and their precipitation processes. This article analyzes the isotopic compositions of metals (lead, rhenium, osmium, iron, copper, zinc), non-metal (sulfur), and rare gases in fluid inclusions of global seafloor hydrothermal sulfides, and explores the relationship between the isotopic compositions of metals, non-metal, and rare gases in sulfides. The results indicate that there is a negative correlation between sulfur isotopic composition and osmium, iron isotopic compositions, as well as between iron, lead, and helium isotopic compositions in seafloor hydrothermal sulfides. There is a positive correlation between osmium isotopic composition and iron isotopic composition, and between xenon isotopic composition and lead, osmium isotopic compositions. During the stage of magma degassing and material injecting fluid, sulfides are formed with the characteristics of low δ34SVCDTvalues (about 0‰) and high3He/4He (>8 Ra),40Ar/36Ar (>300), and129Xe/132Xe (>0.99) ratios. In the stage of fluid-rock interaction, as lead-containing minerals in the rock continue to dissolve, i.e., the degree of fluid-rock interaction increases, the lead content of pyrite, chalcopyrite, and sphalerite precipitated in the fluid increases, accompanied by a slight decrease in the206Pb/204Pb ratios. In the fluid-seawater mixing stage, with the increase of seawater influence degree, the Os content (about 0×10-9) in sulfides can sharply decreased, and the δ57Fe value (<-1.6‰), the187Os/188Os ratio (>1)? significantly increases; With the enhancement of fluid-seawater mixing degree, the δ34SVCDTvalues of pyrite in sulfides will increase with a slight decrease in the3He/4He,40Ar/36Ar, and129Xe/132Xe ratios in its fluid inclusions, while their3He/4He ratios will decrease with a decrease in its130Xe/132Xe ratios. The above indicates that by comprehensively analyzing the isotopic composition and content of metals, non-metal, and rare gases, and discussing their relationships, the effects of magma degassing, fluid-rock interaction, and fluid-seawater mixing on seafloor hydrothermal circulation can be revealed, and the degree of fluid-rock interaction and fluid-seawater mixing during sulfide precipitation can be understood.

Key words: metal, non-metal, and rare gas isotopes;the relationship between isotopic compositions;seafloor hydrothermal sulfide

0 引言

我們曾對海底熱液產物中的硫化物[1-7]、硫酸鹽[8-9]、流體[10]、熱液柱[11-12]、含金屬沉積物[13]、蝕變產物[14-18]以及噴口生物[19]進行了研究,揭示了海底熱液硫化物中的金屬(鉛(Pb)、錸(Re)、鋨(Os)、鐵(Fe)、銅(Cu)、鋅(Zn))[3, 6, 8]、非金屬(硫(S))[8]和稀有氣體(氦(He)、氖(Ne)、氬(Ar)、氪(Kr)、氙(Xe))[1, 5]同位素組成特征及其來源,明確了海底熱液區及其鄰域的巖漿[20-24]、沉積、構造及其板塊俯沖背景,促進了對海底熱液系統的構造演化、成礦作用、流體-巖石相互作用、流體-海水混合、沉積過程以及生物的響應、記錄、作用和適應的深入認識[25]。

海底熱液硫化物的S和Pb同位素組成是探索海底熱液過程、流體-巖石相互作用和巖漿活動的有效示蹤劑[26-31],可用于揭示熱液產物的起源[29-34],特別是硫化物中S和Pb的來源[2, 8, 35-41]。硫化物中的S具有海水、火成巖、巖漿、沉積物中細菌成因硫化物以及地幔與海水來源S的混合等多來源的特征[42-46],且在有沉積物覆蓋的洋中脊,負的δ34S值通常與低S質量分數的硫化物一起出現,其可能是細菌還原硫酸鹽的結果[47-48]。與海底熱液硫化物中S的來源類似,其Pb也具有多來源的特征:1)熱液區的火成巖圍巖[2, 8, 26, 49];2)弧后盆地(BAB)[34, 38]和洋中脊(MOR)[40]的沉積物;3)俯沖板塊來源的Pb[26, 41]。在沉積物缺乏的洋中脊、弧后盆地和島弧上,熱液硫化物中的Pb是在熱液循環過程中從火成巖中遷移出來的[2, 8, 26, 28, 41, 49-50];在有沉積物覆蓋的洋中脊和弧后盆地上,其海底熱液硫化物中的Pb則來源于火山物質(包括洋中脊玄武巖(MORB))中Pb和沉積物中Pb的混合[26, 34, 38]。不僅如此,全球海底熱液硫化物中的Pb同位素組成比其圍巖-火山巖的更均勻,表明火山巖中Pb同位素組成在熱液循環過程中已被均一化,源自海水和沉積物中Pb的貢獻非常低[2, 8, 26, 30, 49-54]。

與海底熱液硫化物中的S和Pb一致,硫化物的Re和Os同位素組成也提供了其來源和成礦條件的信息[55-58]。目前,已結合硫化物中主量元素的含量,分析了海水Os的貢獻[56, 59]以及地殼來源Os與海水來源Os的混合[56, 58],揭示了Re-Os的富集條件,并評價了從熱液流體到海底熱液硫化物沉淀的Os通量[3]。

不僅如此,Fe、Cu和Zn同位素組成也已被廣泛用于示蹤流體的路徑以及海底熱液系統、火山巖和沉積物的同位素分餾及其物質來源[6, 60-65]。包括:通過分析海底熱液系統中硫化物的Fe、Cu和Zn同位素組成特征[6, 60-61, 63, 66-70]及其來源,揭示了流體-巖石相互作用以及流體和海水之間的混合對硫化物中Fe、Cu和Zn同位素組成的影響[71-79],明確了低溫熱液蝕變導致的蝕變洋殼中Cu和Zn同位素分餾有限,而洋中脊巖石在經歷高溫熱液蝕變過程中卻發生了顯著的Cu和Zn同位素分餾[71-73]。

與研究海底熱液硫化物中的金屬和非金屬同位素組成同等重要,開展海底熱液硫化物中稀有氣體的研究是揭示海底熱液系統演化的關鍵[1, 79-81]。此類研究可用于分析流體的時間變異性[80-86],了解噴口流體與洋中脊玄武巖的稀有氣體同位素組成特征[84-89],并可將對氦/熱比值的了解擴展到對地質記錄的揭示[1, 88-94]。迄今為止,已研究了海水和巖漿稀有氣體對硫化物的貢獻,探索了流體-巖石相互作用和流體-海水混合對硫化物中稀有氣體同位素組成的影響,并評估了熱液流體向海底熱液硫化物堆積體的氦和熱通量[5]。

上述可見,我們已對全球海底熱液硫化物中金屬、非金屬和稀有氣體同位素組成的特征及其來源有了初步認識,示蹤了海底熱液活動及其成礦的條件和過程,明確了巖漿去氣、流體-巖石和/或沉積物相互作用、流體-海水混合以及生物活動對海底熱液系統及其多金屬硫化物的影響及制約。盡管如此,目前國內外依然局限于將海底熱液硫化物中的金屬、非金屬和稀有氣體同位素分開來研究,有關將海底熱液硫化物中的多個同位素組成結合起來討論分析依然鮮見。因此,基于海底熱液活動及其熱液硫化物形成過程中金屬、非金屬和稀有氣體同位素并非獨立、分別行動、互不相關的事實,本文將在已有對海底熱液硫化物中金屬、非金屬和稀有氣體同位素研究的基礎上,進一步將硫化物中金屬(Pb、Re、Os、Fe、Cu、Zn)、非金屬(S)和稀有氣體(He、Ne、Ar、Kr、Xe)同位素組成的分析結果結合起來,探討海底熱液硫化物形成過程中金屬、非金屬和稀有氣體同位素之間的內在關系,綜合揭示巖漿去氣、流體-巖石相互作用和流體-海水混合期間金屬、非金屬和稀有氣體同位素的行為。

1 地質概況

全球的海底熱液硫化物主要分布在洋中脊、弧后盆地、島?。↖A)和熱點(hot spot)地質環境的熱液區中。海底熱液區的圍巖既可以是火成巖,也可以是沉積物(例如,東太平洋Juan de Fuca洋脊上的Middle Valley熱液區),且均受上覆海水的影響。其中,來自東太平洋海?。‥PR)13°N、11°N和1°S—2°S附近熱液區,中印度洋脊(CIR)Edmond熱液區,大西洋洋中脊(MAR)13°S附近熱液區和西南印度洋脊(SWIR)A區熱液區的硫化物,其圍巖主要為洋中脊玄武巖 [2-5, 95]。同時,中印度洋脊的Kairei熱液區雖位于玄武巖上,但其熱液循環過程中的流體卻經歷了與附近超鎂鐵質巖石的相互作用[96]。在大西洋洋中脊Logatchev熱液區中,熱液硫化物堆積體與超鎂鐵質巖石和鎂鐵質巖石有關,包括蛇紋石化方輝橄欖巖、蛇紋石化純橄欖巖、輝長巖和含橄欖石玄武巖[3-5, 97]。在北斐濟海盆(NFB)的Sonne 99熱液區,基底巖石主要為玄武巖,且其形成受到了兩種不同來源巖漿的影響[31, 98-100]。此外,硫化物堆積體中既有通過煙囪體流出的高溫(>300℃)流體[101],也有通過丘狀體流出的低溫(<200℃的)流體[97, 100, 102-104]。

2 樣品與數據來源

1998年,德國科學家在使用“太陽”號科考船實施“HYFIFLUX II”項目的SO 134航次過程中,用電視抓斗從北斐濟海盆的Sonne 99熱液區采集了海底熱液硫化物樣品。隨后,2005年、2007年、2008年、2009年和2010年,中國科學家使用“大洋一號”科考船執行DY105-17、DY115-19、DY115-20和DY115-21航次期間,用電視抓斗分別在快速擴張東太平洋海隆13°N、1°S—2°S附近熱液區,中速擴張中印度洋脊的Kairei和Edmond熱液區,慢速擴張大西洋洋中脊Logatchev熱液區,超慢速擴張西南印度洋脊A區中采集了硫化物樣品[3-5, 8](表1),其主要由黃鐵礦±白鐵礦、黃銅礦、閃鋅礦、硬石膏、重晶石、蛋白石,以及少量方鉛礦和無定形二氧化硅組成[3-6, 8],且所研究的洋中脊和弧后盆地硫化物樣品分別由高溫(>300℃)、中溫(300~200℃)和低溫(<200℃的)流體形成[101, 102-107]。

本文所分析的海底熱液硫化物樣品中的金屬(鉛、錸、鋨、鐵、銅、鋅)[3, 6, 8]、非金屬(硫)[8]和稀有氣體[5]同位素組成及其含量數據分別來自作者已發表的論文。

3 硫化物中金屬、非金屬與稀有氣體同位素之間的關系海底熱液硫化物的δ34SVCDT值與3He/4He值(圖1a)、40Ar/36Ar值(圖1b)、129Xe/132Xe值(圖1c)、187Os/188Os值(圖1d)、δ56Fe值(圖2)之間,海底熱液硫化物的Pb質量分數與206Pb/204Pb值(圖3a)、Os質量分數與187Os/188Os值(圖3b)之間,海底熱液硫化物的δ56Fe值與207Pb/204Pb值(圖3c)、δ57Fe值與3He/4He值(圖3d)之間,均存在負相關關系。

海底熱液硫化物的187Os/188Os值與δ57Fe值(圖4)之間,20Ne與132Xe(圖5a)之間,3He/4He值與130Xe/132Xe值(圖5b)之間,136Xe/132Xe值與187Os/188Os值(圖5c)、207Pb/204Pb值(圖5d)之間,則存在正相關關系。

4 討論

4.1 巖漿去氣

本文分析的海底熱液硫化物的δ34S值,其范圍為0.0 ‰~9.6‰,平均值為4.7‰(樣品數量:60),與全球海底熱液硫化物樣品的δ34S值范圍一致(1‰~ 9‰;樣品數量:1 841)[8]。全球海底熱液硫化物、硫酸鹽和蛋白石中流體包裹體的He變化范圍較大(4He值為 0.017 4×10-8~22.1×10-8cm3STP/g)[5],硫化物中流體包裹體的3He/4He值范圍為0.29~13.30 Ra [1, 79-86],大多數硫化物樣品中流體包裹體的4He值顯著高于硫酸鹽礦物(硬石膏和重晶石)和蛋白石樣品[5],其大多數3He/4He值與大氣值相比明顯少放射性成因的He,而與噴口流體的3He/4He值(5.3~8.3 Ra)[87-92]和洋中脊玄武巖(6 ~11 Ra)[93]幾乎一致,這表明海底熱液區硫化物中流體包裹體的氦主要來源于熱液系統下方的巖漿源[83-85],且硫化物的流體包裹體可靠地記錄了原始熱液流體的氦同位素組成特征[85]。此外,海底熱液硫化物中流體包裹體的Ne、Ar、Kr與Xe的質量分數也是可變的,并且與He一樣,可能在一定程度上受到流體包裹體密度或破碎效率變化的影響[5]。硫化物、硫酸鹽和蛋白石中流體包裹體的20Ne、40Ar、84Kr和132Xe值分別為(0.029~5.6)×10-8、(28~3 500)×10-8、(26~2 900)×10-12和(1.7~180)×10-12cm3STP/g[5],且硫化物、硫酸鹽和蛋白石中流體包裹體的Ne、Ar和Xe同位素比值范圍較窄(20Ne/22Ne值為 9.7~10.2;38Ar/36Ar值為 0.187 7~0.191 2;129Xe/132Xe值為 0.979~0.993)[5],與礦物的類型無關[5]。同時,硫化物中流體包裹體的Ne、Ar、Kr和Xe元素質量分數及其比值與大氣值無法區分或接近大氣比值,表明其來源于周圍的海水[1, 79, 83, 85-86],且硫化物中流體包裹體存在的40Ar過剩(可高達2.6%,即40Ar/36Ar值高達303)特征,則可能是地幔物質進入熱液系統的結果[94]。

在巖漿去氣注入流體的階段形成的硫化物,其δ34SVCDT值較低(約0‰),3He/4He(>8 Ra)、40Ar/36Ar(>300)和129Xe/132Xe(>0.99)值較高(圖1a,b,c),且巖漿去氣和/或細菌活動可導致硫化物的δ34S值低于0‰(例如,Lau海盆的Hine-Hina熱液區(全擴張速率為60 mm/a)[42]和Guaymas海盆熱液系統(全擴張速率為45 mm/a)[50]中的海底熱液硫化物)。不僅如此,全球海底熱液硫化物具高He含量的特征[1, 5, 79, 85-86],也是由于循環熱液從巖漿中提取地幔揮發物所致[108],且在單個海底熱液系統中,He含量在短時間尺度上隨巖漿構造過程[109]或熱液系統流體通道的變化而變化[110]。而且,全球海底熱液硫化物的3He/4He值范圍很廣(0.29~13.3 Ra)[5]。其中,來自北斐濟海盆的海底熱液硫化物,其流體包裹體中3He/4He值>7 Ra(113.1GTV電視抓斗樣品的3He/4He值為10.4±1.0 Ra)[5],該值與目前從北斐濟海盆熱液區中噴出的熱液流體的3He/4He值幾乎無法區分(9.04~10.0 Ra)[105],表明北斐濟海盆中的硫化物是在高溫(>200℃)流體條件下形成的,僅被周圍的海水輕微稀釋[105]。而且高溫流體條件下形成的硫化物,其流體包裹體中缺少放射成因的He,則表明熱液循環受到了活動巖漿的影響,而不是僅受<1 Ma洋殼的影響[111-114]。與大氣3He/22Ne值(4.36×10-6)和3He/36Ar值(2.33×10-7[115]相比,海底熱液硫化物的高3He/22Ne值((4.1~260)×10-5)和3He/36Ar值((1.5~90)×10-6[5]也表明He來源于巖漿揮發物的直接去氣[1, 81, 109]。盡管如此,在Juan de Fuca洋脊的Middle Valley熱液區,硫化物中流體包裹體的3He/4He值(5.8~7.1 Ra)低于典型洋中脊噴口流體的3He/4He值(約8 Ra)[88-89],更接近有沉積物覆蓋的Guaymas海盆的噴口流體(7 Ra),表明放射成因He的貢獻來源于沉積物中的孔隙流體或北Juan de Fuca洋脊下方的巖漿系統[80]。同時,巖漿活動的流體路徑變化也可能導致熱液流體化學性質及其Pb同位素組成的變化[116-119]。在東馬努斯海盆中熱液流體的Cu和Zn同位素組成表明,重Cu(δ65Cu= 0.3‰±0.2‰)和Zn(δ66Zn=-0.04‰~0.94‰)同位素的系統富集,可被解釋為熱液系統中亞淺層沉淀/再溶解過程的結果,而不是富含金屬的巖漿流體在一定深度蒸發/冷凝的結果[79]。

4.2 流體-巖石相互作用

在超快速和快速擴張的洋中脊中,海底熱液硫化物中的大多數玄武巖來源S與海水來源S之比在70%~100%之間,在超慢速、慢速和中速擴張洋中脊中,硫化物中玄武巖來源S與海水來源S之比的變化范圍為40%~100%,表明海底熱液硫化物的S同位素組成受流體-玄武巖相互作用和流體-海水混合程度的雙重控制[8],且較大(>50%)的玄武巖來源S與海水來源S之比則表明海底熱液硫化物中的大部分S來自玄武巖[8]。

全球海底熱液硫化物的Pb同位素比值范圍分別為17.541±0.004~19.268±0.001(206Pb/204Pb)、15.451±0.001~15.684±0.001(207Pb/204Pb)和37.557±0.008~38.988±0.002(208Pb/204Pb)(樣品數量:21)[8]。在流體-巖石相互作用階段,隨著巖石中含Pb礦物的不斷溶解,即流體-巖石相互作用程度的增加,致使流體中沉淀的黃鐵礦、黃銅礦和閃鋅礦,其Pb質量分數的增加伴隨著206Pb/204Pb值輕微的減?。▓D3a)。全球海底熱液硫化物中Pb同位素組成非常均勻,范圍很窄,分別落在圍巖-玄武巖的Pb同位素組成范圍內,表明硫化物中的Pb主要來源于玄武巖[8]。此外,海底熱液系統中硫化物的S和Pb同位素組成變化,不僅受S和Pb源的控制,也受到流體過程,包括流體-巖石相互作用、流體-海水混合和海底下熱液滯留時間等過程的綜合影響[8]。

全球海底熱液硫化物的Os和Re質量分數變化范圍分別為(1.70~79.90)×10-12,和(0.10~73.60)×10-9[3],而其187Os/188Os值在0.645~1.209之間變化[3],其187Os/188Os值與礦物類型(如黃鐵礦、黃銅礦、閃鋅礦)之間沒有關系[3],且海底熱液硫化物的187Os/188Os值明顯比MORB更具放射性,大多數硫化物的187Os/188Os值與現代海水的值(約1.06)一致,或略低于現代海水的放射性成因值[3, 108]。同時,海底熱液硫化物的187Re/188Os值變化范圍很大(64~100 334)[3],且硫化物中黃鐵礦和Fe-Cu硫化物礦物的187Re/188Os值通常高于閃鋅礦或富含Zn的硫化物礦物[3]。

Os和Re在玄武巖-流體相互作用過程中屬易遷移的元素[56]。因此,在流體-巖石相互作用過程中,可導致Os和Re在流體中富集,并致使其沉淀的海底熱液硫化物具較高的Os和Re質量分數[3]。隨著流體-玄武巖相互作用程度的增加,海水硫酸鹽還原產生的H2S增加,流體與巖石的187Os/188Os值趨與一致,致使從流體中沉淀的海底熱液硫化物δ34SVCDT值逐漸增加,187Os/188Os值逐漸降低(圖1d)。例如,在大西洋洋中脊Logatchev熱液區,其硫化物的187Os/188Os值(0.645±0.066,MAR05-TVG1-10-2和0.730±0.066,MAR05-TVG1-21)與周圍海水相比,其放射性成因的Os較少,這表明經過流體-巖石相互作用,從流體中沉淀的硫化物受到了源自海水放射性成因Os和源自MORB和/或超鎂鐵質巖石蝕變釋放的非放射性成因Os共同的影響[3, 56, 58]。

海底熱液硫化物的δ56Fe和δ57Fe值分別在-1.96‰~0.11‰和-2.89‰~0.19‰之間,且海底熱液硫化物的δ56Fe、δ57Fe值與礦物類型(黃鐵礦、黃銅礦和閃鋅礦)之間也沒有明顯關系[6],其大多數顯著低于其圍巖-玄武巖的δ56Fe值(0.06‰~0.18‰)[6, 120],與熱液流體的δ56Fe值相似(-1.85‰~-0.14‰)[66-67, 121]。這不僅表明熱液流體為海底熱液硫化物提供了Fe,也為深海提供了輕Fe同位素[66-68, 121]。而且其圍巖-玄武巖中的54Fe更有可能在流體-玄武巖相互作用過程中進入流體中,即圍巖-玄武巖和流體之間的相互作用可導致輕Fe同位素優先從熱液蝕變玄武巖中浸出,而較重的Fe同位素則留在蝕變的洋殼中[61, 122-123],這意味著含有蝕變巖(具有較重的Fe同位素組成)的板塊俯沖成分可對弧后盆地和島弧巖漿源產生影響,從而導致較重的Fe同位素在弧后盆地或島弧火山巖中優先富集[6]。不僅如此,海底熱液硫化物中黃銅礦的δ56Fe值范圍有限,在-0.18‰~0.11‰之間,表明流體-巖石相互作用過程中,黃銅礦中的Fe來源于熱液與玄武巖之間的相互作用,且不僅在圍巖-玄武巖(0.06‰ ~0.18‰)和噴口流體(-1.85‰~-0.14‰)相互作用期間存在輕微的Fe同位素分餾(達0.3‰)[6],還有在黃銅礦沉淀過程中也發生了輕微的Fe同位素分餾[67],進而在高溫流體條件下56Fe和57Fe更有可能進入黃銅礦中[124],致使高溫黃銅礦具δ56Fe和δ57Fe值較高的特征[6]。此外,海底熱硫化物中黃銅礦的δ56Fe值(0.11‰±0.09‰)與圍巖-玄武巖的δ56Fe值(0.06‰~0.18‰)接近,表明Fe主要從圍巖-玄武巖中浸出,在高溫流體條件下進入黃銅礦中,這意味著在高溫玄武巖-流體相互作用過程中沒有發生顯著的Fe同位素分餾[6]。

另一方面,海底熱液硫化物中閃鋅礦的δ66Zn值和δ68Zn值范圍分別為-0.39‰~-0.03‰和-0.77‰~-0.03%[6],顯著低于圍巖-洋中脊玄武巖(δ66Zn值為0.25‰~ 0.51‰)[6]和熱液流體(δ66Zn值為0.00‰~1.33‰)[64],但大多在海水范圍內(δ66Zn值為-0.33‰~0.96‰)[6, 72, 125]。同時,已知平衡同位素分餾是溫度的函數,在較低的溫度下會發生明顯的同位素分餾[126],且實驗研究表明,在30~50℃的溫度范圍內,Zn同位素的變化有限[127]。中印度洋脊Edmond熱液區和北斐濟海盆中的流體溫度分別為273~382℃[100]和285~291℃[105-106, 128],表明在中等和/或低溫流體條件下的流體-玄武巖相互作用過程中,Zn在閃鋅礦中的沉淀將66Zn和68Zn帶出了圍巖-玄武巖 [6],導致在玄武巖-流體相互作用過程中熱液蝕變玄武巖優先富集較輕的Zn同位素,這意味著含有蝕變巖的板塊俯沖成分對巖漿源的影響將導致弧后盆地和島弧火山巖優先富集較輕的Zn同位素。

在中印度洋脊的Edmond熱液區,很多海底熱液硫化物的3He/4He值(1 Ra<3He/4He<7 Ra)與洋中脊玄武巖和大氣的相比,具有較寬的變化范圍[5],且He與較重惰性氣體的含量比值與空氣或空氣飽和海水的值相似[5],表明在流體-巖石相互作用過程中,海底熱液硫化物受到了海水中放射性成因He和熱液系統下地幔釋放的非放射性成因He的雙重影響,其流體包裹體中He是海水和地幔He的混合物[5]。隨著流體-玄武巖相互作用程度的增加,流體的δ57Fe值減小,流體中3He/4He值增加,致使從流體中沉淀的海底熱液硫化物3He/4He值逐漸增加,δ57Fe值逐漸降低(圖3d),且在流體-海水混合的影響下,可使流體的3He/4He值趨于大氣值(1)(圖3d)。此外,隨著流體-玄武巖相互作用程度的增加,不排除流體-海水的混合,流體的δ56Fe值減小,重稀有氣體同位素值增加,流體中海水硫酸鹽還原產生的H2S增加,海水來源的Pb同位素值輕微增加,致使從流體中沉淀的海底熱液硫化物δ34S值(圖2,圖1c)、207Pb/204Pb(圖3c)值逐漸增加和129Xe/132Xe值(圖1c)、δ56Fe值逐漸降低(圖2,圖3c)。

4.3 流體-海水混合

海底熱液硫化物經歷了多階段的熱液活動過程[8]。在煙囪體壁或丘狀體內緩慢的流體-海水混合過程中,海水中硫酸鹽的還原,會產生富含34S的硫化物[45],致使硫化物的S同位素組成偏重[8],且流體在海底熱液系統中的停留時間越長,流體-海水混合過程中將導致海水中硫酸鹽被還原的程度更大[129]。因此,海底熱液硫化物樣品中δ34SVCDT值的變化(0.0‰~9.6‰)可歸因于海底熱液系統中海水硫酸鹽還原產生的H2S的貢獻增加[8]。此外,隨著流體-海水混合程度的增加,沉淀硫化物的δ34SVCDT值逐漸增加(接近21‰)[8],且玄武巖S與海水S之比較?。?50%),則表明海底熱液硫化物中的大部分S來自海水[8]。

海底熱液硫化物中的Os質量分數及其同位素組成也受流體和海水混合程度的控制[3]。在海底熱液系統中,流體-海水混合過程既可以發生在噴口位置,也可以發生在海底下[130-131]。而且硫化物樣品的大多數187Os/188Os值落在狹窄的范圍內(0.968~1.209)[3],接近或在現代海水187Os/188Os值的范圍內(約1.06)[110],且明顯比洋中脊玄武巖更具放射性成因的Os[3],這表明全球海底熱液硫化物中的Os主要來源于海水[3],且硫化物較高的187Os/188Os值[3],也反映了在海水和熱液流體混合過程中結合到硫化物中的海水Os組分比例相對較大,這也為海底熱液系統中存在流體-海水混合過程提供了證據[58]。此外,Re在氧化態的海水中高度可溶(大量海水與熱液混合可導致產生更氧化的流體),致使從氧化態流體中沉淀的硫化物Re質量分數較低,而在還原態熱液流體中Re的流動性較低,可使其從還原態流體中沉淀的硫化物具Re富集的特征[56],且伴隨氧化態的海水與還原態的熱液混合程度的增加,可導致沉淀的硫化物具較低的187Re/188Os值[3]。

不僅如此,流體-海水混合程度的增加,致使流體的溫度由高到低的變化,此過程可使Fe同位素產生明顯的分餾(高達2‰)[6]。海底熱液硫化物的δ56Fe值略低于海水的δ56Fe值(-0.88‰~0.10‰)[132],并與熱液流體的δ56Fe值相似(-1.85‰~-0.14‰)[6, 61, 66–67, 121],表明流體可能是硫化物中輕Fe同位素的來源,且在海水和熱液混合期間54Fe更有可能優先進入黃鐵礦相,致使低溫黃鐵礦的δ56Fe和δ57Fe值降低[6]。此外,硫化物中Fe同位素組成的巨大變化可能受到礦物沉淀速率的影響[6],且在煙囪體環境中熱液流體與海水的混合,可導致黃鐵礦的快速沉淀并產生顯著的Fe同位素動力學分餾[67]。還有在MAR的Lucky Strike熱液區中,硫化物的輕Fe同位素組成(低至3.24‰)可以通過流體-海水混合期間硫化物沉淀過程中的Fe同位素平衡分餾來解釋,這也為北大西洋熱液系統中Fe同位素的非生物分餾提供了證據[63]。而且在EPR 9°N—10°N的熱液區中,流體和硫化物中黃鐵礦的Fe同位素組成不平衡,可以通過流體-海水混合期間黃鐵礦沉淀過程中與流體的Fe同位素交換或洋中脊FeS快速形成黃鐵礦的過程來解釋[61, 67],且隨著海水混入流體比例的增加,流體的δ56Fe值降低,其Os同位素組成與海水趨于一致,致使沉淀的硫化物具有較高的187Os/188Os值和δ57Fe值(圖4)。

海底熱液硫化物中黃銅礦的δ65Cu值在-0.88‰~-0.16‰之間[6],該范圍低于洋中脊玄武巖(δ65Cu值為-0.10‰~0.73‰)[6, 65, 133]和熱液流體(δ65Cu值為0.1‰~0.5‰)[79]。不僅如此,具有較低δ65Cu值的黃銅礦,其和熱液流體的Cu同位素不平衡,且黃銅礦和熱液流體之間發生了顯著的Cu同位素分餾(高達0.7‰)[6],表明在流體-海水混合期間的黃銅礦形成過程中,63Cu優先從熱液流體中去除,并進入到黃銅礦中,而較重的Cu同位素更有可能保留在沉淀黃銅礦的高溫流體中[6, 60, 65],這意味著在流體-海水混合和硫化物沉淀過程中,具有較重Cu同位素組成的熱液流體可能為熱液柱、海水和含金屬沉積物提供重Cu同位素[6]。此外,在流體-海水混合期間,富Cu硫化物的沉淀對熱液煙囪體的δ65Cu值沒有明顯的控制,且初始沉淀的含Cu硫化物氧化可能是熱液系統中Cu同位素分餾的主要原因(高達3‰)[63, 70, 76-77],具重δ65Cu值的洋中脊硫化物可以是高溫流體對已沉淀硫化物進行改造的結果;而具負δ65Cu值的硫化物則是經歷了再結晶過程的結果[63, 69],在弧后盆地(東馬努斯海盆、北斐濟海盆和Lau海盆)和西太平洋島弧環境(湯加島?。?,海底熱液硫化物的δ65Cu值變化可能與熱液噴口區附近的蝕變和氧化還原反應過程中的Cu同位素分餾有關[63, 78]。在海底熱液系統中,溫度效應[69]、多種Zn源的混合[134]和礦物沉淀過程中的動力學Raleigh分餾[135-136]是控制成礦過程中Zn同位素變化及其分餾的潛在原因。由于流體-海水混合和閃鋅礦沉淀過程中的Zn同位素交換,閃鋅礦和熱液流體之間發生了顯著的Zn同位素分餾[6]。然而,在海水和熱液流體的混合過程中,熱液流體中的64Zn更有可能進入閃鋅礦,導致閃鋅礦沉淀后的熱液流體優先富集較重的Zn同位素,而海底熱液硫化物及閃鋅礦則具低δ66Zn值的特征[6]。同時,分析洋中脊噴口流體和煙囪體硫化物的Zn同位素組成表明,熱液流體的δ66Zn值存在較大變化,且流體-海水混合期間閃鋅礦沉淀是導致流體δ66Zn值變化的主要因素[64, 69, 77],這表明在流體-海水混合和硫化物沉淀過程中,具有較重Zn同位素組成的流體也可成為熱液柱、海水和含金屬沉積物中重Zn同位素的來源。

海底熱液硫化物(巴布亞新幾內亞PACMANUS熱液區黃鐵礦和硬石膏)中流體包裹體的3He/4He值降低(0.29~6.91 Ra)[5],也被解釋為是低溫流體和海水混合引起的結果[86]。海底熱液硫化物中流體包裹體的大多數Ne、Ar和Xe同位素比值與現代大氣的值一致[115, 137],或者只是略低或略高[5],它們的比值與洋中脊和洋島玄武巖地幔端元的比值顯著不同,這不僅證實了全球海底熱液硫化物中流體包裹體的Ne、Ar和Xe主要來源于周圍的海水[5],也為硫化物沉淀過程中海水與熱液流體混合提供了證據[80]。此外,海底熱液區的蛋白石在低溫(<200℃)條件下形成[138-139],會泄漏氦氣[140],大多數海底熱液硫化物中流體包裹體的He值明顯高于蛋白石中的He值,且熱液流體中的4He值(10-6~10-5cm3 STP/g)[141]顯著高于海水中的4He值(約3.8×10-8cm3 STP/g),在熱液流體-海水混合過程中致使沉淀蛋白石的低溫流體,其He更容易被周圍的海水稀釋[82],且在低溫環境下He的損失影響了蛋白石中初始熱液3He/4He值的保持。因此,海底熱液硫化物和蛋白石中較低的He值和/或3He/4He值很可能與流體-海水混合過程有關,且在流體-海水混合過程中,伴隨黃鐵礦的沉淀,其流體包裹體中的20Ne值隨著132Xe值的增加而增加(圖5a)以及136Xe/132Xe值隨著207Pb/204Pb值的增加而增加(圖5d)。

以上表明,在流體-海水混合階段隨著海水影響的增加可使硫化物中的Os質量分數(約0×10-12)急劇降低,187Os/188Os值(>1)、δ57Fe值(<-1.6‰)和136Xe/132Xe值明顯增大(圖3b,圖4,圖5c);隨著流體-海水混合作用的增強,硫化物中黃鐵礦的δ34SVCDT值將隨著其流體包裹體中3He/4He、40Ar/36Ar值輕微降低而升高(圖1a,b),而其3He/4He值隨著130Xe/132Xe值的降低而降低(圖5b)。

5 結論

1)海底熱液硫化物中的金屬、非金屬及其流體包裹體中的稀有氣體同位素組成之間存在相關性。其中,海底熱液硫化物中的S與Os、Fe同位素之間,Fe與Pb、He同位素之間,存在負相關性;其Xe與Pb同位素、Os同位素之間則存在正相關性。

2)巖漿活動對海底熱液系統產生了影響。受巖漿去氣作用影響的海底熱液流體,其形成的硫化物具低δ34SVCDT值,高3He/4He、40Ar/36Ar和129Xe/132Xe值的特征。

3)流體-巖石相互作用為海底熱液活動做出了物質貢獻。隨著流體-巖石相互作用程度的增加,巖石中含Pb礦物不斷的溶解,致使流體中沉淀的黃鐵礦、黃銅礦和閃鋅礦,其Pb質量分數的增加伴隨著Pb同位素比值的減小。

4)海底熱液硫化物的同位素記錄了流體-海水混合的信息。隨著流體-海水混合作用的增強可使硫化物中的Os質量分數急劇降低,δ57Fe值、187Os/188Os值明顯增大,且黃鐵礦的δ34SVCDT值將隨著其流體包裹體中稀有氣體同位素比值的降低而升高,而其3He/4He值隨著其130Xe/132Xe值的降低而降低。

5)綜合分析海底熱液硫化物中多同位素組成及其含量的相互關系,不僅可以揭示海底熱液硫化物中金屬、非金屬和稀有氣體同位素的來源,還可以明確硫化物沉淀過程中流體-巖石相互作用和流體-海水混合的程度,進而了解巖漿去氣、流體-巖石相互作用和流體-海水混合對海底熱液活動及其成礦的影響。

致謝:DY105-17、DY115-19、DY115-20和DY115-21航次期間“大洋一號”所有船隊員為樣品采集作出了貢獻并提供了幫助,在此表示感謝!

參考文獻(References):

[1]Zeng Z G, Qin Y S, Zhai S K. He, Ne and Ar Isotope Compositions of Fluid Inclusions in Hydrothermal Sulfides from the TAG Hydrothermal Field Mid-Atlantic Ridge[J]. Science in China:Earth Sciences, 2001, 44(3): 221-228.

[2]Zeng Z G, Chen D G, Yin X B, et al. Elemental and Isotopic Compositions of the Hydrothermal Sulfide on the East Pacific Rise near 13°N[J]. Science China:Earth Sciences, 2010, 53(2): 253-266.

[3]Zeng Z G, Chen S, Selby D,et al. Rhenium-Osmium Abundance and Isotopic Compositions of Massive Sulfides from Modern Deep-Sea Hydrothermal Systems: Implications for Vent Associated Ore Forming Processes[J]. Earth and Planetary Science Letters, 2014, 396: 223-234.

[4]Zeng Z G, Ma Y, Yin X B,et al. Factors Affecting the Rare Earth Element Compositions in Massive Sulfides from Deep-Sea Hydrothermal Systems[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(8): 2679-2693.

[5]Zeng Z G, Niedermann S, Chen S,et al. Noble Gases in Sulfide Deposits of Modern Deep-Sea Hydrothermal Systems: Implications for Heat Fluxes and Hydrothermal Fluid Processes[J]. Chemical Geology, 2015, 409: 1-11.

[6]Zeng Z G, Li X H, Chen S,et al. Iron, Copper, and Zinc Isotopic Fractionation in Seafloor Basalts and Hydrothermal Sulfides[J]. Marine Geology, 2021, 436: 106491.

[7]Zeng Z G, Chen Z X, Qi H Y,et al. Chemical and Isotopic Composition of Sulfide Minerals from the Noho Hydrothermal Field in the Okinawa Trough[J]. Journal of Marine Science and Engineering, 2022, 10(5): 678.

[8]Zeng Z G, Ma Y, Chen S,et al. Sulfur and Lead Isotopic Compositions of Massive Sulfides from Deep-Sea Hydrothermal Systems: Implications for Ore Genesis and Fluid Circulation[J]. Ore Geology Reviews, 2017, 87: 155-171.

[9]Zeng Z G, Chen Z X, Qi H Y. Two Processes of Anglesite Formation and a Model of Secondary Supergene Enrichment of Bi and Ag in Seafloor Hydrothermal Sulfide Deposits[J]. Journal of Marine Science and Engineering, 2022, 10(1): 35.

[10]Zeng Z G, Wang X Y, Chen C T A,et al. Boron Isotope Compositions of Fluids and Plumes from the Kueishantao Hydrothermal Field off Northeastern Taiwan: Implications for Fluid Origin and Hydrothermal Processes[J]. Marine Chemistry, 2013, 157: 59-66.

[11]Zeng Z G, Wang X Y, Qi H Y, et al. Arsenic and??? Antimony in Hydrothermal Plumes from the Eastern Manus Basin, Papua New Guinea[J/OL]. Geofluids, 2018: 6079586. https://doi.org/10.1155/2018/6079586.

[12]Zeng Z G, Wang X Y, Murton B J,et al. Dispersion and Intersection of Hydrothermal Plumes in the Manus Back-Arc Basin, Western Pacific[J/OL]. Geofluids, 2020: 4260806. https://doi.org/10.1155/2020/4260806.

[13]Rong K B, Zeng Z G, Yin X B,et al. Smectite Formation in Metalliferous Sediments near the East Pacific Rise at 13°N[J]. Acta Oceanologica Sinica, 2018, 37(9): 67-81.

[14]Zeng Z G, Wang X Y, Zhang G L, et al. Formation of Fe-Oxyhydroxides from the East Pacific Rise near Latitude 13°N: Evidence from Mineralogical and Geochemical Data[J]. Science in China: Series D: Earth Sciences, 2008, 51(2): 206-215.

[15]Zeng Z G, Ouyang H G, Yin X B,et al. Formation of Fe-Si-Mn Oxyhydroxides at the PACMANUS Hydrothermal Field, Eastern Manus Basin: Mineralogical and Geochemical Evidence[J]. Journal of Asian Earth Sciences, 2012, 60: 130-146.

[16]Zeng Z G, Chen S, Wang X Y,et al. Mineralogical and Micromorphological Characteristics of Si-Fe-Mn Oxyhydroxides from the PACMANUS Hydrothermal Field, Eastern Manus Basin[J]. Science China: Earth Sciences, 2012, 55(12): 2039-2048.

[17]Zeng Z G, Qi H Y, Chen S,et al. Hydrothermal Alteration of Plagioclase Microphenocrysts and Glass in Basalts from the East Pacific Rise near 13°N: An SEM-EDS Study[J]. Science China:Earth Sciences, 2014, 57(7): 1427-1437.

[18]Wang X Y, Zeng Z G, Qi H Y,et al. Fe-Si-Mn-Oxyhydroxide Encrustations on Basalts at East Pacific Rise near 13°N: An SEM-EDS Study[J]. Journal of Ocean University of China, 2014, 13(6): 917-925.

[19]Huang X, Zeng Z G, Chen S,et al. Component Characteristics of Organic Matter in Hydrothermal Barnacle Shells from Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2013, 32(12): 60-67.

[20]Chen J B, Zeng Z G. Metasomatism of the Peridotites from Southern Mariana Fore-Arc: Trace Element Characteristics of Clinopyroxene and Amphibole[J]. Science in China: Series D: Earth Sciences, 2007, 50(7): 1005-1012.

[21]Wang X M, Zeng Z G, Chen J B. Serpentinization of Peridotites from the Southern Mariana forearc[J]. Progress in Natural Science, 2009, 19(10): 1287-1295.

[22]Zeng Z G, Wang Q Y, Wang X M,et al. Geochemistry of Abyssal Peridotites from the Super Slow-Spreading Southwest Indian Ridge near 65°E: Implications for Magma Source and Seawater Alteration[J]. Journal of Earth System Science, 2012, 121(5): 1317-1336.

[23]Zeng Z G, Li X H, Zhang Y X,et al. Lithium, Oxygen and Magnesium Isotope Systematics of Volcanic Rocks in the Okinawa Trough: Implications for Plate Subduction Studies[J]. Journal of Marine Science and Engineering, 2022, 10(1): 40.

[24]Zeng Z G, Li X H, Chen S,et al. Iron-Copper-Zinc Isotopic Compositions of Andesites from the Kueishantao Hydrothermal Field off Northeastern Taiwan[J]. Sustainability, 2022, 14(1): 359.

[25]Zeng Z G, Chen Z X, Zhang Y X,et al. Geological, Physical, and Chemical Characteristics of Seafloor Hydrothermal Vent Fields[J]. Journal of Oceanology and Limnology, 2020, 38(4): 985-1007.

[26]Fouquet Y, Marcoux E. Lead Isotope Systematics in Pacific Hydrothermal Sulfide Deposits[J]. Journal of Geophysical Research: Solid Earth, 1995, 100 (B4):? 6025-6040.

[27]Bjerkgrd T, Cousens B L, Franklin J M. The Middle Valley Sulfide Deposits, Northern Juan de Fuca Ridge: Radiogenic Isotope Systematics[J]. Economic Geology, 2000, 95: 1473-1488.

[28]Kim J, Lee I, Halbach P, et al. Formation of Hydrothermal Vents in the North Fiji Basin: Sulfur and Lead Isotope Constraints[J]. Chemical Geology, 2006, 233: 257-275.

[29]Seal R R II. Sulfur Isotope Geochemistry of Sulfide Minerals[J]. Reviews in Mineralogy and Geochemistry, 2006, 61: 633-677.

[30]Yao H Q, Zhou H Y, Peng X T, et al. Metal Sources of Black Smoker Chimneys, Endeavour Segment, Juan de Fuca Ridge: Pb Isotope Constraints[J]. Applied Geochemistry, 2009, 24: 1971-1977.

[31]Aoyama S, Nishizawa M, Takai K, et al. Microbial Sulfate Reduction within the Iheya North Subseafloor Hydrothermal System Constrained by Quadruple Sulfur Isotopes[J]. Earth and Planetary Science Letters, 2014, 398: 113-126.

[32]McDermott J M, Ono S, Tivey M K, et al. Identification of Sulfur Sources and Isotopic Equilibria in Submarine Hot-Springs Using Multiple Sulfur Isotopes[J]. Geochimica et Cosmochimica Acta, 2015, 160: 169-187.

[33]Halbach P, Nakamura K, Wahsner M, et al. Probable Modern Analogue of Kuroko-Type Massive Sulphide Deposits in the Okinawa Trough Back-Arc Basin[J]. Nature, 1989, 338: 496-499.

[34]Halbach P, Hansmann W, Koppel V, et al. Whole-Rock and Sulfide Lead-Isotope Data from the Hydrothermal JADE Field in the Okinawa Back-Arc Trough[J]. Mineralium Deposita, 1997, 32: 70-78.

[35]Verati C, Lancelot J, Hékinian R. Pb Isotope Study of Black-Smokers and Basalts from Pito Seamount Site (Easter Microplate)[J]. Chemical Geology, 1999, 155: 45-63.

[36]Seal R R Ⅱ, Rye R O, Alpers C N. Stable Isotope Systematics of Sulfate Minerals[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 541-602.

[37]曾志剛,秦蘊珊,趙一陽,等.大西洋中脊TAG熱液活動區中海底熱液沉積物的硫同位素組成及其地質意義[J].海洋與湖沼,2000,31(5):518-529.

Zeng Zhigang, Qin Yunshan, Zhao Yiyang, et al. Sulfur Isotopic Composition of Seafloor Surface Hydrothermal Sediments in the TAG Hydrothermal Field of Mid-Atlantic Ridge and Its Geological Implications[J]. Oceanologia et Limnologia Sinica, 2000, 31 (5): 518-529.

[38]曾志剛,蔣富清,翟世奎,等.沖繩海槽Jade熱液活動區塊狀硫化物的鉛同位素組成及其地質意義[J].地球化學,2000,29(3):239-245.

Zeng Zhigang, Jiang Fuqing, Zhai Shikui, et al. Lead Isotopic Compositions of Massive Sulfides from the Jade Hydrothermal Field in the Okinawa Trough and Its Geological Implications[J]. Geochimica, 2000, 29 (3): 239-245.

[39]Shanks W C. Stable Isotope in Seafloor Hydrothermal Systems: Vent Fluids, Hydrothermal Deposits, Hydrothermal Alteration, and Microbial Processes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43: 469-525.

[40]Cousens B L, Blenkinsop J, Franklin J M. Lead Isotope Systematics of Sulfide Minerals in the Middle Valley Hydrothermal System, Northern Juan de Fuca Ridge[J]. Geochemistry Geophysics Geosystems, 2002, 3(5): 1-16. doi:10.1029/2001GC000257.

[41]Kim J, Lee I, Lee K Y. S, Sr, and Pb Isotopic Systematics of Hydrothermal Chimney Precipitates from the Eastern Manus Basin, Western Pacific: Evaluation of Magmatic Contribution to Hydrothermal System[J]. Journal of Geophysical Research: Solid Earth, 2004, 109: B12210. doi:10.1029/2003JB002912.

[42]Herzig P M, Hannington M D, Arribas A. Sulfur Isotopic Composition of Hydrothermal Precipitates from the Lau Back-Arc: Implications for Magmatic Contributions to Seafloor Hydrothermal Systems[J]. Mineralium Deposita, 1998, 33: 226-237.

[43]Shanks W C Ⅲ, Bischoff J L, Rosenbauer R J. Seawater Sulfate Reduction and Sulfur Isotope Fractionation in Basaltic Systems: Interaction of Seawater with Fayalite and Magnetite at 200-350℃[J]. Geochimica et Cosmochimica Acta, 1981, 45: 1977-1995.

[44]Solomon M, Eastoe C J, Walshe J L, et al. Mineral Deposits and Sulfur Isotope Abundances in the Mount Read Volcanics Between Que River and Mount Darwin, Tasmania[J]. Economic Geology, 1988, 83: 1307-1328.

[45]Peter J M, Shanks W C. Sulfur, Carbon, and Oxygen Isotope Variations in Submarine Hydrothermal Deposits of Guaymas Basin, Gulf of California, USA[J]. Geochimica et Cosmochimica Acta, 1992, 56: 2025-2040.

[46]Arnold M, Sheppard S M F. East Pacific Rise at Latitude 21°N: Isotopic Composition and Origin of the Hydrothermal Sulphur[J]. Earth and Planetary Science Letters, 1981, 56: 148-156.

[47]Goldhaber M B, Kaplan I R. Mechanisms of Sulfur Incorporation and Isotope Fractionation During Early Diagenesis in Sediments of the Gulf of California[J]. Marine Chemistry, 1980, 9: 95-143.

[48]Brunner B, Bernasconi S M. A Revised Isotope Fractionation Model for Dissimilatory Sulfate Reduction in Sulfate Reducing Bacteria[J]. Geochimica et Cosmochimica Acta, 2005, 69: 4759-4771.

[49]Brévart O, Dupré, Allègre C J. Metallogenesis at Spreading Centers: Lead Isotope Systematics for Sulfides, Manganese-Rich Crusts, Basalts, and Sediments from the Cyamex and Alvin Areas (East Pacific Rise)[J]. Economic Geology, 1981, 76: 1205-1210.

[50]Vidal Ph, Clauer N. Pb and Sr Isotopic Systematics of Some Basalts and Sulfides from the East Pacific Rise at 21°N (Project RITA)[J]. Earth and Planetary Science Letters, 1981, 55: 237-246.

[51]Chen J. U, Th and Pb Isotopes in Hot Springs on the Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1987, 92: 11411-11415.

[52]Hegner E, Tatsumoto M. Pb, Sr, and Nd Isotopes in Basalts and Sulfides from the Juan de Fuca Ridge[J]. Journal of Geophysical Research: Solid Earth, 1987, 92 (B11): 11380-11386.

[53]LeHuray A P, Church S E, Koski R A, et al. Pb Isotopes in Sulfides from Mid-Ocean Ridge Hydrothermal Sites[J]. Geology, 1988, 16: 362-365.

[54]Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of High H2and CH4Vent Fuids Issuing from Ultramafic Rocks at the Rainbow Hydrothermal Field (36°14′N, MAR)[J]. Chemical Geology, 2002, 191: 345-359.

[55]Shirey S B, Walker R J. The Re-Os Isotope System in Cosmochemistry and High-Temperature Geochemistry[J]. Annual Review of Earth and Planetary Sciences, 1998, 26: 423-500.

[56]Brügmann G E, Birck J L, Herzig P M, et al. Os Isotopic Composition and Os and Re Distribution in the Active Mound of the TAG Hydrothermal System, Mid-Atlantic Ridge [C]//Proceedings of the Ocean Drilling Program: Scientific Results. TX: College Station (Ocean Drilling Program), 1998: 91-100.

[57]Morelli R M, Creaser R A, Selby D, et al. Re-Os Sulfide Geochronology of the Red Dog Sediment-Hosted Zn-Pb-Ag Deposit, Brooks Range, Alaska[J]. Economic Geology, 2004, 99: 1569-1576.

[58]Ravizza G, Martin C E, German C R, et al. Os Isotopes as Tracers in Seafloor Hydrothermal Systems: Metalliferous Deposits from the TAG Hydrothermal Area, 26°N Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1996, 138: 105-119.

[59]Nozaki T, Kato Y, Suzuki K. Late Jurassic Ocean Anoxic Event: Evidence from Voluminous Sulphide Deposition and Preservation in the Panthalassa[J]. Scientific Reports, 2013, 3: 1889. doi:10.1038/srep01889.

[60]Zhu X K, ONions R K, Guo Y, et al. Determination of Natural Cu-Isotope Variation by Plasma-Source Mass Spectrometry: Implications for Use as Geochemical Tracers[J]. Chemical Geology, 2000, 163(1/2/3/4): 139-149.

[61]Sharma M, Polizzotto M, Anbar A D. Iron Isotopes in Hot Springs Along the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 2001, 194(1/2): 39-51. https://dx.doi.org/10.1016/s0012-821x(01)00538-6.

[62]Rouxel O, Fouquet Y, Ludden J N. Copper Isotope Systematics of the Lucky Strike, Rainbow, and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge[J]. Economic Geology, 2004, 99(3): 585-600. https://dx.doi.org/10.2113/gsecongeo.99.3.585.

[63]Rouxel O, Fouquet Y, Ludden J N. Subsurface Processes at the Lucky Strike Hydrothermal Field, Mid-Atlantic Ridge: Evidence from Sulfur, Selenium, and Iron Isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2295-2311. https://dx.doi.org/10.1016/j.gca.2003.11.029.

[64]John S G, Rouxel O J, Craddock P R, et al. Zinc Stable Isotopes in Seafloor Hydrothermal Vent Fluids and Chimneys[J]. Earth and Planetary Science Letters, 2008, 269(1/2): 17-28. https://dx.doi.org/10.1016/j.epsl.2007.12.011.

[65]Liu S A, Huang J, Liu J, et al. Copper Isotopic Composition of the Silicate Earth[J]. Earth and Planetary Science Letters, 2015, 427: 95-103. https://dx.doi.org/10.1016/j.epsl.2015.06.061.

[66]Severmann S, Johnson C M, Beard B L, et al. The Effect of Plume Processes on the Fe Isotope Composition of Hydrothermally Derived Fe in the Deep Ocean as Inferred from the Rainbow Vent Site, Mid-Atlantic Ridge, 36°14′N[J]. Earth and Planetary Science Letters, 2004, 225(1/2): 63-76. https://dx.doi.org/10.1016/j.epsl.2004.06.001.

[67]Rouxel O, Shanksiii W, Bach W, et al. Integrated Fe- and S-Isotope Study of Seafloor Hydrothermal Vents at East Pacific Rise 9–10°N[J]. Chemical Geology, 2008, 252(3/4): 214-227. https://dx.doi.org/10.1016/j.chemgeo.2008.03.009.

[68]Bennett S A, Rouxel O, Schmidt K, et al. Iron Isotope Fractionation in a Buoyant Hydrothermal Plume, 5°S Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 2009, 73(19): 5619-5634. https://dx.doi.org/10.1016/j.gca.2009.06.027.

[69]Mason T F D, Weiss D J, Chapman J B, et al. Zn and Cu Isotopic Variability in the Alexandrinka Volcanic-Hosted Massive Sulphide (VHMS) Ore Deposit, Urals, Russia[J]. Chemical Geology, 2005, 221(3/4): 170-187. https://dx.doi.org/10.1016/j.chemgeo.2005.04.011.

[70]Markl G, Lahaye Y, Schwinn G. Copper Isotopes as Monitors of Redox Processes in Hydrothermal Mineralization[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4215-4228. https://dx.doi.org/10.1016/j.gca.2006.06.1369.

[71]Vance D, Archer C, Bermin J, et al. The Copper Isotope Geochemistry of Rivers and the Oceans[J]. Earth and Planetary Science Letters, 2008, 274(1/2): 204-213. https://dx.doi.org/10.1016/j.epsl.2008.07.026.

[72]Little S H, Vance D, Walker-Brown C, et al. The Oceanic Mass Balance of Copper and Zinc Isotopes, Investigated by Analysis of Their Inputs, and Outputs to Ferromanganese Oxide Sediments[J]. Geochimica et Cosmochimica Acta, 2014, 125: 673-693. https://dx.doi.org/10.1016/j.gca.2013.07.046.

[73]Huang J, Liu S A, Gao Y, et al. Copper and Zinc Isotope Systematics of Altered Oceanic Crust at IODP Site 1256 in the Eastern Equatorial Pacific[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(10): 7086-7100. https://dx.doi.org/10.1002/2016jb013095.

[74]Chu N C, Johnson C M, Beard B L, et al. Evidence for Hydrothermal Venting in Fe Isotope Compositions of the Deep Pacific Ocean Through Time[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 202-217. https://dx.doi.org/10.1016/j.epsl.2006.02.043.

[75]Beard B L, Johnson C M, Von Damm K L, et al. Iron Isotope Constraints on Fe Cycling and Mass Balance in Oxygenated Earth Oceans[J]. Geology, 2003, 31(7): 629-632. https://dx.doi.org/10.1130/0091-7613(2003)031<0629:iicofc>2.0.co;2.

[76]Shields W R, Goldich S S, Garner E L, et al. Natural Variations in the Abundance Ratio and the Atomic Weight of Copper[J]. Journal of Geophysical Research: Solid Earth, 1965, 70(2): 479-491. https://dx.doi.org/10.1029/jz070i002p00479.

[77]Fernandez A, Borrok D M. Fractionation of Cu, Fe, and Zn Isotopes During the Oxidative Weathering of Sulfide-Rich Rocks[J]. Chemical Geology, 2009, 264(1/2/3/4): 1-12. https://dx.doi.org/10.1016/j.chemgeo.2009.01.024.

[78]P?kala M, Asael D, Butler I B, et al. Experimental Study of Cu Isotope Fractionation During the Reaction of Aqueous Cu(II) with Fe(II) Sulphides at Temperatures Between 40 and 200 ℃[J]. Chemical Geology, 2011, 289(1/2): 31-38. https://dx.doi.org/10.1016/j.chemgeo.2011.07.004.

[79]Turner G, Stuart F M. Helium/Heat Ratios and Deposition Temperatures of Sulphides from the Ocean Foor[J]. Nature, 1992, 357: 581-583.

[80]Stuart F M, Duckworth R, Turner G, et al. Helium and Sulfur Isotopes in Sulfide Minerals from Middle Valley, Northern Juan de Fuca Ridge [C]//Proceedings of the Ocean Drilling Program: Scientific Results. TX: College Station (Ocean Drilling Program), 1994: 387-392.

[81]Stuart F M, Turner G, Duckworth R C, et al. Helium Isotopes as Tracers of Trapped Hydrothermal Fuids in Ocean-Foor Sulfides[J]. Geology, 1994, 22: 823-826.

[82]Jean-Baptiste P, Fouquet Y. Abundance and Isotopic Composition of Helium in Hydrothermal Sulfides from the East Pacific Rise at 13°N[J]. Geochimica et Cosmochimica Acta, 1996, 60: 87-93.

[83]Zeng Z G, Qin Y S, Zhai S K. He, Ne and Ar Isotope Compositions of Fluid Inclusions in Massive Sulfides from the Jade Hydrothermal Field, Okinawa Trough[J]. Acta Oceanologica Sinica, 2004, 23: 655-661.

[84]Hou Z Q, Zaw K, Li Y H, et al. Contribution of Magmatic Fluid to the Active Hydrothermal System in the JADE Field, Okinawa Trough: Evidence from Fluid Inclusions, Oxygen and Helium Isotopes[J]. International Geology Review, 2005, 47: 420-437.

[85]Lüders V, Niedermann S. Helium Isotope Composition of Fluid Inclusions Hosted in Massive Sulfides from Modern Submarine Hydrothermal Systems[J]. Economic Geology, 2010, 105: 443-449.

[86]Webber A P, Roberts S, Burgess R, et al. Fluid Mixing and Thermal Regimes Beneath the PACMANUS Hydrothermal Field, Papua New Guinea: Helium and Oxygen Isotope Data[J]. Earth and Planetary Science Letters, 2011, 304: 93-102.

[87]Lupton J E, Klinkhammer G P, Normark W R, et al. Helium-3 and Manganese at the 21°N East Pacific Rise Hydrothermal Site[J]. Earth and Planetary Science Letters, 1980, 50: 115-127.

[88]Kennedy B M. Noble Gases in Vent Water from the Juan de Fuca Ridge[J]. Geochimica et Cosmochimica Acta, 1988, 52: 1929-1935.

[89]Kodera M, Igarashi G, Ozima M. Noble Gases in Hydrothermal Plumes of Loihi Seamount[J]. Earth and Planetary Science Letters, 1988, 87: 266-272.

[90]Jean-Baptiste P, Charlou J L, Stievenard M, et al. Helium and Methane Measurements in Hydrothermal Fluids from the Mid-Atlantic Ridge: The Snake Pit Site at 23°N[J]. Earth and Planetary Science Letters, 1991, 106: 17-28.

[91]Rudnicki M D, Elderfield H. Helium, Radon and Manganese at the TAG and Snake Pit Hydrothermal Fields, 26° and 23°N, Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1992, 113: 307-321.

[92]Charlou J L, Donval J P, Jean-Baptiste P, et al. Gases and Helium Isotopes in High Temperature Solutions Sampled Before and After ODP 158 Drilling at TAG Hydrothermal Field (26°N, MAR)[J]. Geophysical Research Letters, 1996, 23: 3491-3494.

[93]Kurz M D, Jenkins W J, Schilling J-G, et al. Helium Isotopic Variation in the Mantle Beneath the Central North Atlantic Ocean[J]. Earth and Planetary Science Letters, 1982, 58: 1-14.

[94]Stuart F M, Turner G. Mantle-Derived40Ar in Mid-Ocean Ridge Hydrothermal Fluids: Implications for the Source of Volatiles and Mantle Degassing Rates[J]. Chemical Geology, 1998, 14: 77-88.

[95]Kumagai H, Nakamura K, Toki T, et al. Geological Background of the Kairei and Edmond Hydrothermal Fields Along the Central Indian Ridge: Implications of Their Vent Fluids Distinct Chemistry[J]. Geofluids, 2008, 8: 239-251.

[96]Nakamura K, Morishita T, Bach W, et al. Serpentinized Troctolites Exposed near the Kairei Hydrothermal Field, Central Indian Ridge: Insights into the Origin of the Kairei Hydrothermal Fluid Supporting a Unique Microbial Ecosystem[J]. Earth and Planetary Science Letters, 2009, 280: 128-136.

[97]Petersen S, Kuhn K, Kuhn T, et al. The Geological Setting of the Ultramafic-Hosted Logatchev Hydrothermal Field (14°45′N, Mid-Atlantic Ridge) and Its Influence on Massive Sulfide Formation[J]. Lithos, 2009, 112: 40-56.

[98]Eissen J P, Nohara M, Cotten J, et al. North Fiji Basin Basalts and Their Magma Sources: Part I:Incompatible Element Constraints[J]. Marine Geology, 1994, 116: 153-178.

[99]Nohara M, Hirose K, Eissen J P, et al. The North Fiji Basin Basalts and Their Magma Sources: Part Ⅱ:Sr-Nd Isotopic and Trace Element Constraints[J]. Marine Geology, 1994, 116: 179-195.

[100]Koschinsky A, Seifert R, Halbach P, et al. Geochemistry of Diffuse Low-Temperature Hydrothermal Fluids in the North Fiji Basin[J]. Geochimica et Cosmochimica Acta, 2002, 66: 1409-1427.

[101]Gallant R M, Von Damm K L. Geochemical Controls on Hydrothermal Fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge[J]. Geochemistry Geophysics Geosystems, 2006, 7: Q06018. doi:10.1029/2005GC001067.

[102]Merlivat L, Pineau F, Javoy M. Hydrothermal Vent Waters at 13°N on the East Pacific Rise: Isotopic Composition and Gas Concentration[J]. Earth and Planetary Science Letters, 1987, 84: 100-108.

[103]Michard G, Albarède F, Michard A, et al. Chemistry of Solutions from the 13°N East Pacific Rise Hydrothermal Site[J]. Earth and Planetary Science Letters, 1984, 67: 297-307.

[104]Bowers T S, Campbell A C, Measures C I, et al. Chemical Controls on the Composition of Vent Fluids at 13°–11°N and 21°N, East Pacific Rise[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B5): 4522-4536. https://dx.doi.org/10.1029/jb093ib05p04522.

[105]Ishibashi J I, Grimaud D, Nojiri Y, et al. Fluctuation of Chemical Compositions of the Phase-Separated Hydrothermal Fluid from the North Fiji Basin Ridge[J]. Marine Geology, 1994, 116(1/2): 215-226. https://dx.doi.org/10.1016/0025-3227(94)90177-5.

[106]Ishibashi J I, Wakita H, Nojiri Y, et al. Helium and Carbon Geochemistry of Hydrothermal Fluids from the North Fiji Basin Spreading Ridge (Southwest Pacific)[J]. Earth and Planetary Science Letters, 1994, 128(3/4): 183-197. https://dx.doi.org/10.1016/0012-821x(94)90144-9.

[107]Schmidt K, Koschinsky A, Garbe-Sch?nberg D, et al. Geochemistry of Hydrothermal Fluids from the Ultramafic-Hosted Logatchev Hydrothermal Field, 15°N on the Mid-Atlantic Ridge: Temporal and Spatial Investigation[J]. Chemical Geology, 2007, 242(1/2): 1-21. https://dx.doi.org/10.1016/j.chemgeo.2007.01.023.

[108]Peucker-Ehrenbrink B, Ravizza G. The Marine Osmium Isotope Record[J]. Terra Nova, 2000, 12: 205-219.

[109]Baker E T, Lupton J E. Changes in Submarine Hydrothermal3He/Heat Ratios as an Indicator of Magmatic/Tectonic Activity[J]. Nature, 1990, 346: 556-558.

[110]Butterfield D A, Massoth G J, McDuff R E, et al. Geochemistry of Hydrothermal Fluids from Axial Seamount Hydrothermal Emissions Study Vent Field, Juan de Fuca: Subseafloor Boiling and Subsequent Fluid-Rock Interaction[J]. Journal of Geophysical Research: Solid Earth, 1990, 95: 12895-12921.

[111]Malahoff A, Hammond S R, Naughton J J, et al. Geophysical Evidence for Post-Miocene Rotation of the Island of Viti Levu, Fiji, and Its Relationship to the Tectonic Development of the North Fiji Basin and Lau Basins[J]. Earth and Planetary Science Letters, 1982, 87: 4109-4125.

[112]Auzende J M, Eissen J P, Lafoy Y, et al. Seafloor Spreading in the North Fiji Basin (Southwest Pacific)[J]. Tectonophysics, 1988, 146: 317-351.

[113]Tanahashi M, Kisimoto K, Joshima M, et al. Geological Structure of the Central Spreading System, North Fiji Basin[J]. Marine Geology, 1991, 98: 187-200.

[114]Huchon P, Gracia E, Ruellan E, et al. Kinematics of Active Spreading in the Central North Fiji Basin (Southwest Pacific)[J]. Marine Geology, 1994, 116: 69-87.

[115]Ozima M, Podosek F A. Noble Gas Geochemistry [M]. Cambridge: Cambridge University Press, 2002.

[116]Rubin K H, Macdougall J D, Perfit M R.210Po/210Pb Dating of Recent Volcanic Eruptions on the Sea Floor[J]. Nature, 1994, 368: 841-844.

[117]Von Damm K L, Oosting S E, Kozlowskl R, et al. Evolution of East Pacific Rise Hydrothermal Vent Fuids Following a Volcanic Eruption[J]. Nature, 1995, 375: 47-50.

[118]Fornari D J, Shank T, Von Damm K L, et al. Time-Series Temperature Measurements at High-Temperature Hydrothermal Vents, East Pacific Rise 9°49′–51′N: Evidence for Monitoring a Crustal Cracking Event[J]. Earth and Planetary Science Letters, 1998, 160: 419-431.

[119]Seyfried W E, Seewald J S, Berndt M E, et al. Chemistry of Hydrothermal Vent Fuids from the Main Endeavour Field, Northern Juan de Fuca Ridge: Geochemical Controls in the Aftermath of June 1999 Seismic Events[J]. Journal of Geophysical Research: Solid Earth, 2003, 108 (B9): 2429. doi:10.1029/2002JB001957.

[120]Teng F Z, Dauphas N, Huang S, et al. Iron Isotopic Systematics of Oceanic Basalts[J]. Geochimica et Cosmochimica Acta, 2013, 107: 12-26. https://dx.doi.org/10.1016/j.gca.2012.12.027.

[121]Moeller K, Schoenberg R, Grenne T, et al. Comparison of Iron Isotope Variations in Modern and Ordovician Siliceous Fe Oxyhydroxide Deposits[J]. Geochimica et Cosmochimica Acta, 2014, 126: 422-440. https://dx.doi.org/10.1016/j.gca.2013.11.018.

[122]Polyakov V B, Mineev S D. The Use of M?ssbauer Spectroscopy in Stable Isotope Geochemistry[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 849-865. https://dx.doi.org/10.1016/s0016-7037(99)00329-4.

[123]Johnson C M, Skulan J L, Beard B L, et al. Isotopic Fractionation Between Fe(Ⅲ) and Fe(Ⅱ) in Aqueous Solutions[J]. Earth and Planetary Science Letters, 2002, 195(1/2): 141-153. https://dx.doi.org/10.1016/s0012-821x(01)00581-7.

[124]Butler I B, Nesbitt R W. Trace Element Distributions in the Chalcopyrite Wall of a Black Smoker Chimney: Insights from Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 335-345. https://dx.doi.org/10.1016/s0012-821x(99)00038-2.

[125]Samanta M, Ellwood M J, Sinoir M, et al. Dissolved Zinc Isotope Cycling in the Tasman Sea, SW Pacific Ocean[J]. Marine Chemistry, 2017, 192: 1-12. https://dx.doi.org/10.1016/j.marchem.2017.03.004.

[126]Urey H C. The Thermodynamic Properties of Isotopic Substances [J/OL]. Journal of the Chemical Society, 1947: 562-581. https://dx.doi.org/10.1039/jr9470000562.

[127]Maréchal C N, Sheppard S M F. Isotopic Fractionation of Cu and Zn Between Chloride and Nitrate Solutions and Malachite or Smithsonite at 30° and 50 ℃[J]. Geochimica et Cosmochimica Acta, 2002, 66(Sup.1): A84. https://dx.doi.org/10.1016/S0016-7037(02)01007-4.

[128]Grimaud D, Ishibashi J I, Lagabrielle Y, et al. Chemistry of Hydrothermal Fluids from the 17°S Active Site on the North Fiji Basin Ridge (SW Pacific)[J]. Chemical Geology, 1991, 93(3/4): 209-218. https://dx.doi.org/10.1016/0009-2541(91)90114-7.

[129]Knott R, Fouquet Y, Honnorez J, et al. Petrology of Hydrothermal Mineralization: A Vertical Section Through the TAG Mound [C]//Proceedings of the Ocean Drilling Program: Scientific Results. TX: College Station, (Ocean Drilling Program), 1998: 5-26.

[130]Rona P A, Scott S D. Seafloor Hydrothermal Mineralization: New Perspective[J]. Economic Geology, 1993, 88: 1935-1976.

[131]Zierenberg R A, Fouquet Y, Miller D J, et al. The Deep Structure of a Sea-Floor Hydrothermal Deposit[J]. Nature, 1998, 392: 485-488.

[132]Rouxel O, Maureen A. Iron Isotope Variations in Coastal Seawater Determined by Multicollector ICP-MS[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 135-144. https://dx.doi.org/10.1111/j.1751-908x.2010.00063.x.

[133]Savage P S, Moynier F, Chen H, et al. Copper Isotope Evidence for Large-Scale Sulphide Fractionation During Earths Differentiation[J]. Geochemical Perspectives Letters, 2015, 1(1): 53-64. https://dx.doi.org/10.7185/geochemlet.1506.

[134]Wilkinson J J, Weiss D J, Mason T F D, et al. Zinc Isotope Variation in Hydrothermal Systems: Preliminary Evidence from the Irish Midlands Ore Field[J]. Economic Geology, 2005, 100(3): 583-590. https://dx.doi.org/10.2113/gsecongeo.100.3.583.

[135]Kelley K D, Wilkinson J J, Chapman J B, et al. Zinc Isotopes in Sphalerite from Base Metal Deposits in the Red Dog District, Northern Alaska[J]. Economic Geology, 2009, 104(6): 767-773. https://dx.doi.org/10.2113/gsecongeo.104.6.767.

[136]Gagnevin D, Boyce A J, Barrie C D, et al. Zn, Fe and S Isotope Fractionation in a Large Hydrothermal System[J]. Geochimica et Cosmochimica Acta, 2012, 88: 183-198. https://dx.doi.org/10.1016/j.gca.2012.04.031.

[137]Lee J? Y, Marti K, Severinghaus J P, et al. A Redetermination of the Isotopic Abundances of Atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4507-4512.

[138]Fouquet Y, Auclair G, Cambon P, et al. Geological Setting and Mineralogical and Geochemical Investigations on Sulfide Deposits near 13°N on the East Pacific Rise[J]. Marine Geology, 1988, 84: 145-178.

[139]Dekov V M, Kamenov G D, Abrasheva M D, et al. Mineralogical and Geochemical Investigation of Seafloor Massive Sulfides from Panarea Platform (Aeolian Arc, Tyrrhenian Sea)[J]. Chemical Geology, 2013, 335: 136-148.

[140]Trull T W, Kurz M D, Jenkins W J. Diffusion of Cosmogenic3He in Olivine and Quartz: Implications for Surface Exposure Dating[J]. Earth and Planetary Science Letters, 1991, 103: 241-256.

[141]Fourre E, Jean-Baptiste P, Charlou J L, et al. Helium Isotopic Composition of Hydrothermal Fluids from the Manus Back-Arc Basin, Papua New Guinea[J]. Geochemical Journal, 2006, 40: 245-252.

猜你喜歡
金屬
從發現金屬到制造工具
致命金屬
“金屬的化學性質”同步演練
金屬鈦的制備工藝
“神的金屬”鈦合金SHINE YOUR LIFE
這些金屬不太冷
銅冶煉渣中有價金屬的綜合回收
再生金屬行業喜迎利好
金屬美甲
2015 年7~8 月金屬報價
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合