?

抑郁癥發病的腦功能機制研究進展

2024-04-04 07:17李芃菲肖敏馬雪嬌嚴興科馬重兵
中國醫學創新 2024年5期
關鍵詞:抑郁癥神經元

李芃菲 肖敏 馬雪嬌 嚴興科 馬重兵

【摘要】 抑郁癥是由多種原因導致的精神疾病,其發病機制尚未完全明確。本文從腦功能和結構角度總結抑郁癥的發病機制,發現抑郁癥與海馬、前額葉等腦區密切相關,海馬及前額葉皮質面積、體積減小,神經元形態及超微結構損害是抑郁癥的解剖和結構基礎,血流減少、代謝降低、大腦網絡連接異常、神經電生理活動失衡是抑郁癥的腦功能機制。

【關鍵詞】 抑郁癥 神經元 功能連接 結構連接 神經電生理

Research Progress on Brain Function Mechanism of Onset of Depressive Disorder/LI Pengfei, XIAO Min, MA Xuejiao, YAN Xingke, MA Chongbing. //Medical Innovation of China, 2024, 21(05): -169

[Abstract] Depressive disorder is a mental disease caused by many reasons, and its pathogenesis has not been fully defined. This paper summarizes the pathogenesis of depression disorder from the perspective of brain function and structure, and finds that depression disorder is closely related to brain regions such as hippocampus and prefrontal cortex. The decrease in the area and volume of hippocampus and prefrontal cortex and the damage of neuronal morphology and ultrastructure are the anatomical and structural basis of depression disorder. Decreased blood flow, decreased metabolism, abnormal brain network connectivity and imbalance of neuroelectrophysiological activity are the brain functional mechanisms of depression disorder.

[Key words] Depression disorder Neuron Functional connectivity Structural connectivity Neuroelectrophysiology

抑郁癥是由多種原因導致的精神疾病,表現為顯著而持久的心境低落、興趣減退和快感缺失等,具有高發病率、高復發率、高自殺率及高致殘率等特點[1]。對抑郁癥發病機制的研究多從免疫學、神經遞質、氧化應激、神經營養因子等方面開展[2]。近年來,從腦功能和結構角度探討抑郁癥發病機制的研究日益增多,本文從關鍵腦區皮質面積、體積減小,神經元形態及超微結構損害的解剖和結構,以及血流減少、代謝降低,大腦網絡連接異常,神經電生理活動失衡的腦功能角度,將抑郁癥的發病機制綜述如下。

1 抑郁癥患者大腦結構異常改變

抑郁癥患者的大腦出現局灶性功能和結構異常,涉及海馬、內側前額葉、背外側前額葉、前扣帶回、后扣帶回、楔前葉、杏仁核和尾狀核[3]。海馬和前額葉是抑郁癥發病的關鍵腦區[4]。海馬及前額葉皮質面積、體積減小,神經細胞數量減少、形態異常改變,神經元樹突復雜性改變及突觸丟失等可能是抑郁癥發病的關鍵中樞結構機制。

1.1 海馬及前額葉面積、體積減小

研究表明,抑郁癥患者前額葉皮層厚度、表面積減小[5]。皮層厚度受神經元細胞排列和密度影響,體現了皮層結構的空間變化;而皮層表面積反映皮層柱狀排列細胞的數目,反映皮層體積的改變[6]。抑郁癥患者海馬和前額葉的灰質區域體積減小,且體積變化的程度與抑郁癥的病程和嚴重程度呈正相關[7]。在嚙齒動物應激模型中也觀察到海馬體積減小,而前額葉體積變化沒有明顯的一致性,可能是因為人和嚙齒動物前額葉的細胞結構和相對大小差異較大[8]。海馬和杏仁核聯系緊密,常被稱為海馬-杏仁核復合體,共同完成一系列情感記憶功能[9]。而杏仁核體積變化在抑郁癥患者中存在爭議,但在抑郁動物模型中發現杏仁核體積增大[10]。杏仁核體積的增大與該區域和大腦其他部分的結構協方差增加、突觸蛋白斑點密度增加和抑郁樣行為相關[11]。

1.2 神經元形態及超微結構損害

神經元細胞結構的改變是抑郁癥大腦宏觀結構改變的基礎,并介導了抑郁樣表型的表達。在抑郁癥患者的尸檢腦組織樣本中觀察到神經細胞數量減少、萎縮/肥大、樹突復雜性改變及突觸丟失等現象,其中海馬和前額葉細胞丟失最為明顯[12]。海馬中,神經元胞體減小,堆積密度增加,成熟顆粒細胞數量減少,海馬亞區也存在膠質細胞丟失,特別是星形膠質細胞[13]。有抑郁樣行為的猴子海馬區域的神經纖維層和細胞層體積減小,膠質細胞密度降低,但無神經元數量減少[14]。海馬中神經膠質細胞胞體減小,堆積密度增加,成熟顆粒細胞數量減少[15]。在嚙齒動物應激模型中觀察到膠質細胞密度、標記物和代謝降低[16]。前額葉中,膠質纖維酸性蛋白(glial fibrillary acidic protein, GFAP)mRNA和蛋白質水平均下降,但在其他區域沒有下降,這表明星形膠質細胞的改變可能是局部特異性的[17]。前額葉內少突膠質細胞數量減少,與星形膠質細胞功能受損有關[18]。抑郁大鼠CA1、CA3和齒狀回亞區神經突觸密度降低,海馬樹突狀萎縮[19]。在抑郁動物模型、抑郁癥患者尸檢腦標本中均發現海馬及前額葉突觸減少、突觸密度降低[20]。抑郁癥患者背外側前額葉、海馬、扣帶皮層的突觸密度與抑郁癥的嚴重程度呈負相關[21],同時,突觸功能相關的基因表達減少、突觸信號蛋白水平降低[22]。

2 抑郁癥患者大腦功能異常改變

抑郁癥患者腦血流量顯著減少,表明存在腦損傷,提示認知功能異??赡芘c此相關;同時代謝顯著增強,存在相對過度激活現象,可能是導致抑郁癥患者情緒異常的另一原因[23]。從能量代謝角度來看,抑郁小鼠內側前額葉存在較高的自發活動及較低的產能效率,這種自發活動與產能效率的不匹配,提示抑郁癥存在能量代謝障礙[24]。腦電圖(electroencephalogram,EEG)研究結果顯示,靜息態EEG偏側化程度與抑郁水平呈負相關,從腦成像角度來看,抑郁癥狀及其嚴重程度與關鍵腦區ReHo值呈負相關[25]??蹘Щ?前額葉-頂葉網絡異常及雙側前額葉功能異常是抑郁癥患者認知障礙的重要神經基礎[26]。綜上,血流減少、異常激活、能量代謝障礙和電生理活動失衡可能是抑郁癥發病的關鍵中樞功能機制。

2.1 網絡連接異常

2.1.1 結構連接斷裂 抑郁癥存在結構和功能的連接中斷[27]。區域間出現廣泛的連接中斷可能會導致抑郁癥患者整體網絡的完整性降低,腦白質纖維束(white matter fiber bundle,WMFB)完整性異??赡艽龠M皮層連接區和皮層下區功能障礙,進而導致相應的抑郁癥狀[28]。研究發現,抑郁癥患者默認網絡(default mode network,DMN)和額皮質下網絡中的腦白質(white matter,WM)連接中斷[29]。DMN參與情緒和自我處理的過程,而額葉-皮層下網絡對情緒調節和認知功能至關重要,這些異??赡苁且钟舭Y患者個體功能和行為缺陷的結構基礎[30]。抑郁癥患者白質束存在連接異常,包括扣帶束、鉤狀束、內側前腦束、丘腦前輻射、胼胝體輻射線額部、上縱束、額枕下束、下縱束和皮質脊髓束[31]。抑郁癥患者從前胼胝體到前扣帶的纖維束各向異性分數(fractional anisotropy,FA)值顯著降低,FA值越低,患抑郁癥的風險就越高[32]。

2.1.2 功能連接障礙 抑郁癥與參與情緒處理、執行功能和獎賞處理的多個大腦網絡的異常靜息態功能連接(functional connectivity,FC)有關[33]。抑郁癥患者靜息態網絡內及網絡間的FC模式都有所改變[34]。研究發現,抑郁癥患者執行控制網絡(executive control network, ECN)內存在低連接模式,DMN內存在超鏈接模式;同時ECN-DMN網絡間也存在異常的超鏈接[35]。研究進一步發現,抑郁癥的FC受損是進行性的。首發抑郁癥患者的感覺運動網絡、DMN和背側注意網絡表現出低連接性,而復發性抑郁癥患者的感覺運動網絡、突顯網絡、ECN、DMN和背側注意網絡都表現出高連接性,首發抑郁癥患者表現出的低連接性和復發性抑郁癥患者的高連接性與發作次數和總病程時間呈負相關[36]。

2.2 神經電生理活動失衡

2.2.1 EEG EEG能夠探測大腦皮層神經電活動變化[37]。應用EEG探索抑郁癥潛在的標志物可用于疾病診斷和治療預測[38]。不同頻段與不同大腦機制有關。α波反映大腦的靜息態和放松,有自殺意念的抑郁癥患者在整夜睡眠中α波活動有所增加[39]。α頻段偏側化與趨避模態有關[40],它可以預測特定的癥狀,如煩躁、懶惰[41],焦慮癥可能會改變α頻段偏側化,使抑郁癥難以診斷[42]。β波與焦慮和反芻思維有關,抑郁癥患者大腦左側β波功率值有所降低[43]。θ波與情緒加工有關,抑郁癥患者大腦枕區和頂區θ波活躍度增強[44]。γ波與感覺和情緒波動有關,適當的γ波功率可以保證抑郁癥患者情緒平穩[45]。δ波與深度睡眠有關,抑郁癥患者面對負目標時,在中央頂葉和側電極有更大的δ波幅值[46]。

2.2.2 事件相關電位(event-related potential,ERP) 誘發電位研究采用情緒面孔呈現或工作記憶等多種不同任務,反映抑郁癥被試患者大腦功能的差異[47]。ERP是一種特殊的腦誘發電位,它是個體接受某項刺激(視覺、聽覺或觸覺)后產生的,反映了患者認知過程中大腦的神經電生理變化[48]。以P300為代表的內源性ERP成分與認知心理加工過程密切相關,常被用于抑郁癥患者認知功能損害的評估[49]。P300潛伏期反映大腦對外部目標刺激做出反應時的神經傳導速度,是反映認知功能效率的指標[50]。P300波幅反映大腦信息加工時有效資源動員的程度和受試者對靶刺激的注意程度,隨著靶刺激識別難度增加[51]。研究發現抑郁癥患者P300潛伏期延長、波幅下降,提示抑郁癥患者存在認知功能受損,且額葉腦區與認知功能障礙關系密切[52]。

3 小結

抑郁癥的發生與關鍵腦區功能、結構異常及大腦網絡連接異常等因素密切相關,同時腦連接組學也強調抑郁癥大規模功能和結構腦網絡的拓撲組織中斷涉及全局拓撲、模塊化結構和網絡中樞。

本文總結發現,從大腦結構角度來看,海馬及前額葉皮質面積、體積減小,神經細胞數量減少、形態及超微結構損害,神經元樹突復雜性改變及突觸丟失;從大腦功能角度來看,大腦網絡功能連接障礙、結構連接斷裂,神經元電活動傳導、整合異常,進而導致中樞內環境紊亂,出現抑郁癥狀。

抑郁癥的特征是結構和功能的連接中斷,然而,結構與功能的關系仍不清楚。海馬-前額葉連通性改變也會導致抑郁癥患者認知缺陷,未來可關注海馬和前額葉的結構和連通性變化,進一步深入研究。抑郁癥還與大腦網絡的異常拓撲組織有關,包括整體完整性和區域連通性的破壞。未來應進行多模態成像研究,以確定抑郁癥的結構和功能異常之間的拓撲關系。

參考文獻

[1] MALHI G S, MANN J J.Depression[J].Lancet,2018,392(10161):2299-2312.

[2] KENNIS M,GERRITSEN L,VAN D M,et al.Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis[J].Mol Psychiatry,2020,25(2):321-338.

[3] ROLLS E T.Attractor cortical neurodynamics, schizophrenia, and depression[J].Transl Psychiatry,2021,11(1):215.

[4] PRICE R B,DUMAN R.Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model[J].Mol Psychiatry,2020,25(3):530-543.

[5]牟靜平,成財,梅蘭,等.抑郁癥灰白質表面積性別差異研究[J].磁共振成像,2021,12(1):21-26,37.

[6] HANFORD L C,NAZAROV A,HALL G B,et al.Cortical thickness in bipolar disorder:a systematic review[J].Bipolar Disord,2016,18(1):4-18.

[7] HAN K M,KIM A,KANG W,et al.Hippocampal subfield volumes in major depressive disorder and bipolar disorder[J].Eur Psychiatry,2019,57:70-77.

[8] SARABDJITSINGH R A,LOI M,JOELS M,et al.Early life stress-induced alterations in rat brain structures measured with high resolution MRI[J/OL].PLoS One,2017,12(9):e0185061.https://pubmed.ncbi.nlm.nih.gov/28945761/.

[9] ZHANG L Q,HU X Y,HU Y B,et al.Structural covariance network of the hippocampus-amygdala complex in medication-na?ve patients with first-episode major depressive disorder[J].Psychoradiology,2022,2(4):190-198.

[10] GROGANS S E,FOX A S,SHACKMAN A J.The amygdala and depression: a sober reconsideration[J].Am J Psychiatry,2022,179(7):454-457.

[11] NIKOLOVA Y S,MISQUITTA K A,ROCCO B R,et al.Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species[J].Transl Psychiatry,2018,8(1):26.

[12] CHEN F,BERTELSEN A B,HOLM I E,et al.Hippocampal volume and cell number in depression, schizophrenia, and suicide subjects[J].Brain Res,2020,1727:146546.

[13] WANG H,HE Y,SUN Z,et al.Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression[J].J Neuroinflammation,2022,19(1):132.

[14] ZHOU B,ZHU Z,RANSOM B R,et al.Oligodendrocyte lineage cells and depression[J].Mol Psychiatry,2021,26(1):103-117.

[15]COBB J A,O'NEILL K,MILNER J,et al.Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder[J].Neuroscience,2016,316:209-220.

[16] DU P A,ONORATO D,EIBEN I,et al.Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice[J]. Brain Behav Immun,2021,91:24-47.

[17] DURKEE C,KOFUJI P,NAVARRETE M,et al. Astrocyte and neuron cooperation in long-term depression[J].Trends Neurosci,2021,44(10):837-848.

[18] TANTI A,LUTZ P E,KIM J,et al.Evidence of decreased gap junction coupling between astrocytes and oligodendrocytes in the anterior cingulate cortex of depressed suicides[J].Neuropsychopharmacology,2019,44(12):2099-2111.

[19] FRIES G R,SALDANA V A,FINNSTEIN J,et al.Molecular pathways of major depressive disorder converge on the synapse[J].Mol Psychiatry,2023,28(1):284-297.

[20] PAREKH P K,JOHNSON S B,LISTON C. Synaptic mechanisms regulating mood state transitions in depression[J].Annu Rev Neurosci,2022,45:581-601.

[21] HOLMES S E,SCHEINOST D,FINNEMA S J,et al.Lower synaptic density is associated with depression severity and network alterations[J].Nat Commun,2019,10(1):1529.

[22] GRANT S.Synapse diversity and synaptome architecture in human genetic disorders[J].Hum Mol Genet,2019,28(R2):219-225.

[23]陳嘉文,郁蕓,韓新煥,等.抑郁癥靜息態腦功能影像的腦區激活可能性分析[J].南京醫科大學學報(自然科學版),2020,40(11):1704-1712,1724.

[24]張競予,劉愷,曾善美,等.慢性不可預知溫和刺激小鼠內側前額葉的能量代謝障礙及功能磁共振成像[J].南方醫科大學學報,2021,41(4):521-528.

[25] TANG C,ZHANG Y,ZHAI Z,et al.Mechanism of depression through brain function imaging of depression patients and normal people[J].J Healthc Eng,2022,2022:1125049.

[26] KANG S G,CHO S E.Neuroimaging biomarkers for predicting treatment response and recurrence of major depressive disorder[J].Int J Mol Sci,2020,21(6):2148.

[27] ARULASS A R,KITZBICHLER M G,MORGAN S E,et al.Dysconnectivity of a brain functional network was associated with blood inflammatory markers in depression[J].Brain Behav Immun,2021,98:299-309.

[28] BEKHBAT M,LI Z,MEHTA N D,et al.Functional connectivity in reward circuitry and symptoms of anhedonia as therapeutic targets in depression with high inflammation: evidence from a dopamine challenge study[J].Mol Psychiatry,2022,27(10):4113-4121.

[29] HOFLICH A,MICHENTHALER P,KASPER S,et al.Circuit mechanisms of reward, anhedonia, and depression[J].Int J Neuropsychopharmacol,2019,22(2):105-118.

[30] GRAY J P,MULLER V I,EICKHOFF S B,et al.Multimodal abnormalities of brain structure and function in major depressive disorder: a meta-analysis of neuroimaging studies[J].Am J Psychiatry,2020,177(5):422-434.

[31] KOSHIYAMA D,FUKUNAGA M,OKADA N,et al.White matter microstructural alterations across four major psychiatric disorders: mega-analysis study in 2937 individuals[J].Mol Psychiatry,2020,25(4):883-895.

[32] VULSER H,PAILLERE MARTINOT M L,ARTIGES E,et al.Early variations in white matter microstructure and depression outcome in adolescents with subthreshold depression[J].Am J Psychiatry,2018,175(12):1255-1264.

[33] CHIN FATT C R,JHA M K,COOPER C M,et al.Effect of intrinsic patterns of functional brain connectivity in moderating antidepressant treatment response in major depression[J].Am J Psychiatry,2020,177(2):143-154.

[34] GUDAYOL-FERRE E,PERO-CEBOLLERO M,GONZALEZ-GARRIDO A A,et al.Changes in brain connectivity related to the treatment of depression measured through fMRI: a systematic review[J].Front Hum Neurosci,2015,9:582.

[35] KAISER R H,ANDREWS-HANNA J R,WAGER T D,et al.Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity[J].JAMA Psychiatry,2015,72(6):603-611.

[36] LIU J,FAN Y, LI L Z,et al.The neuroprogressive nature of major depressive disorder: evidence from an intrinsic connectome analysis[J].Transl Psychiatry,2021,11(1):102.

[37] ZHANG J,LIU D,ZHONG D,et al.Specificity study of visualization analysis of electroencephalogram diagnosis of depression based on CiteSpace[J].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2021,38(5):919-931.

[38] DE AGUIAR NETO F S, ROSA J L G.Depression biomarkers using non-invasive EEG: a review[J].Neurosci Biobehav Rev,2019,105:83-93.

[39] DOLSEN M R,CHENG P,ARNEDT J T,et al.Neurophysiological correlates of suicidal ideation in major depressive disorder: hyperarousal during sleep[J].J Affect Disord,2017,212:160-166.

[40] LEE P F,KAN D,CROARKIN P,et al.Neurophysiological correlates of depressive symptoms in young adults: a quantitative EEG study[J].J Clin Neurosci,2018,47:315-322.

[41] NELSON B D,KESSEL E M,KLEIN D N,et al.Depression symptom dimensions and asymmetrical frontal cortical activity while anticipating reward[J].Psychophysiology,2018,55(1):10.

[42] NUSSLOCK R,SHACKMAN A J,MCMENAMIN B W,et al.Comorbid anxiety moderates the relationship between depression history and prefrontal EEG asymmetry[J].Psychophysiology,2018,55(1):10.

[43] SPIRONELLI C,MAFFEI A,ROMEO Z,et al.Evidence of language-related left hypofrontality in major depression: an EEG beta band study[J].Sci Rep,2020,10(1):8166.

[44] CAULFIELD K A.Is accelerated, high-dose theta burst stimulation a panacea for treatment-resistant depression?[J].J Neurophysiol,2020,123(1):1-3.

[45] FITZGERALD P J,WATSON B O.Gamma oscillations as a biomarker for major depression: an emerging topic[J].Transl Psychiatry,2018,8(1):177.

[46] LIU M,ZHOU L,WANG X,et al.Deficient manipulation of working memory in remitted depressed individuals: behavioral and electrophysiological evidence[J].Clin Neurophysiol,2017,128(7):1206-1213.

[47] BURKHOUSE K L,OWENS M,FEURER C,et al.Increased neural and pupillary reactivity to emotional faces in adolescents with current and remitted major depressive disorder[J].Soc Cogn Affect Neurosci,2017,12(5):783-792.

[48] KLUMPP H,SHANKMAN S A.Using event-related potentials and startle to evaluate time course in anxiety and depression[J].Biol Psychiatry Cogn Neurosci Neuroimaging,2018,3(1):10-18.

[49] RUOHONEN E M,ALHAINEN V,ASTIKAINEN P.Event-related potentials to task-irrelevant sad faces as a state marker of depression[J].Biol Psychol,2020,149:107806.

[50] RUPPRECHTER S,STANKEVICIUS A,HUYS Q,et al.Abnormal reward valuation and event-related connectivity in unmedicated major depressive disorder[J].Psychol Med,2021,51(5):795-803.

[51] FELDMANN L,PIECHACZEK C E,PEHL V,et al.State or trait? Auditory event-related potentials in adolescents with current and remitted major depression[J].Neuropsychologia,2018,113:95-103.

[52] ZHOU L,WANG G,NAN C,et al.Abnormalities in P300 components in depression: an ERP-sLORETA study[J].Nord J Psychiatry,2019,3(1):1-8.

猜你喜歡
抑郁癥神經元
《從光子到神經元》書評
躍動的神經元——波蘭Brain Embassy聯合辦公
三種抗抑郁癥藥物治療伴軀體疼痛癥狀的抑郁癥患者的對比研究
對一例因抑郁癥有自殺傾向的案例分析
文拉法辛聯合米氮平治療老年抑郁癥的效果及安全性
西酞普蘭治療抑郁癥的療效及安全性
抑郁癥患者腦電圖檢查的臨床應用
基于二次型單神經元PID的MPPT控制
毫米波導引頭預定回路改進單神經元控制
神經元模型的穩定性分析與Hopf分岔控制
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合