?

品質因數與共振頻率對無線電能傳輸的影響

2015-02-23 10:53燕,余亮,李琳,梁
電子技術應用 2015年3期
關鍵詞:品質因數共振頻率輸出功率

董 燕,余 亮,李 琳,梁 齊

(合肥工業大學 電子科學與應用物理學院,安徽 合肥230026)

品質因數與共振頻率對無線電能傳輸的影響

董 燕,余 亮,李 琳,梁 齊

(合肥工業大學 電子科學與應用物理學院,安徽 合肥230026)

諧振耦合式無線電能傳輸技術是一種新興電能傳輸方式,提高傳輸功率和效率已成為其應用發展的瓶頸問題。通過仿真與實驗探究了提高頻率和改善線圈參數兩種不同提高系統品質因數的方法對能量傳輸效率、功率與傳輸距離之間的影響規律。結果表明,提高系統共振頻率可明顯提高系統能量有效傳輸距離,但導致最高輸出功率明顯下降,而對傳輸效率影響不明顯;改善線圈參數可顯著提高最高輸出功率,而對輸出效率和有效傳輸距離影響不明顯。系統頻率響應仿真與實驗結果顯示,小幅偏離共振頻率點引起輸出功率急劇下降。系統共振頻率隨接收端與發射端間耦合系數增加出現分裂現象,造成能量傳輸功率下降。

諧振耦合;品質因數;頻率響應;頻率分裂

0 引言

無線電能傳輸概念最早由尼古拉·特斯拉提出并開展實驗研究[1]。與傳統的有線供電技術相比[2],無線電能傳輸可實現電源與用電負載間完全的電氣隔離,避免接觸放電等安全隱患,具有安全、可靠、靈活等無可比擬的優點[3]。經過多年的研究發展,無線電能已衍生微波、無線電波、激光、超聲波等輻射傳輸模式和電磁感應、諧振耦合兩種非輻射傳輸模式[4],它們都有各自的優缺點[5-6]。

電磁感應式是過去二十幾年來無線電能傳輸技術發展的主要形式,目前已有電動牙刷、電動剃須刀等商業化產品推向市場。雖然感應式無線電能傳輸的效率一般較高,能達到80%甚至90%,但其傳輸距離很短,使其不能滿足最廣泛的應用需求;在此背景下,MIT的Marin Soljacic教授團隊提出利用磁共振耦合方式提高傳輸距離的思想,先后實現了2 m、60 W至5 m、800 W的無線能量傳輸[7],從而掀起了磁諧振耦合式無線電能傳輸技術的研究熱潮。相較電磁感應傳輸模式,該模式有效能量傳輸距離明顯提高,已進入中程距離的傳輸范圍,應用范圍將更加廣泛,但其傳輸效率和功率存在較大下降,效率僅能達到 40%左右,且隨著傳輸距離的增加而急劇下降。因此,如何有效提高傳輸功率和效率,是目前磁諧振耦合無線電能傳輸技術的發展瓶頸。對此技術的研究無論是在國內還是在國際上目前仍處于起步階段,耦合模理論[8-9]、電路理論[10]等理論模型已相繼指出保證諧振系統工作在共振頻點附近是系統進行高效率能量傳遞的基本條件,在其基礎上提高品質因數可提高系統傳輸效率。

本文采用電路理論及仿真技術分析了提高共振能量傳輸效率的方法,并通過實驗對提高頻率和改善線圈參數兩種不同提高系統品質因數的方法對能量傳輸效率、功率與傳輸距離之間的影響規律,這對于合理設計線圈參數和驅動電路具有十分重要的指導價值。最后通過頻率響應和頻率分裂的仿真分析揭示了系統工作在共振頻率點的重要性。

1 理論分析

諧振耦合式無線電能傳輸通過具有相同諧振頻率的兩個線圈共振實現電能傳輸,工作過程為:發射電路產生高頻信號供給發射線圈,線圈中交變電流在諧振體(線圈加外接電容)周圍產生高頻交變磁場;當接收線圈與發射線圈的諧振頻率一致時,接收線圈與發射線圈產生共振,線圈之間開始能量傳遞;負載電路把接收線圈中的能量轉換為適合負載工作的電壓。諧振系統可分為串聯諧振方式與并聯諧振方式,與電磁感應耦合相同,諧振耦合按電容的接入方式可分為 SS、SP、PS、PP 4種[11]。本文以SS型為例進行分析。圖1為相應的等效電路圖。其中 R1、R2、C1、C2都為線圈在高頻下的寄生參數,L1、L2為線圈的電感量,Rs為驅動電路等效電阻,RL為負載的電阻值。

圖1 等效電路圖

兩線圈諧振時諧振角頻率 ω=(L1C1)-1/2=(L2C2)-1/2。列KVL方程推導出[12-13]接收端的功率與效率:

其中發射端與接收端的耦合系數為:k=M(L1L2)-1/2,電路品質因數為:Q1=wL1(RS+R1)-1,Q2=wL2(R2+RL)-1。

M為兩線圈之間的互感[14],當兩端的線圈采用密繞空心線圈,可用下面的互感公式計算系統兩端的互感:

其中,μ0為真空磁導率,N1、N2為收發線圈的匝數,r1、r2為收發圈的半徑,D為兩線圈之間的距離。

計算 dPL/dk=0,得[15]:

即當k=Ko時,系統達到耦合臨界點,此時的輸出功率為系統的最大值。其中從 k=M(L1L2)-1/2式中可以看出k與D3成反比,即 Ko值越小,同等的輸出功率下傳輸距離越遠;從Ko式可看出提高系統的Q值可以減小在最大功率點的耦合系數,也就是使最大功率出現點的距離增加,而在相同的距離下提高輸出功率進而提高系統的傳輸效率。

2 仿真與實驗

用電路軟件繪制如圖1所示的等效電路圖并進行仿真。根據表1所示,通過提高諧振頻率或者改變線圈參數所得到的系統品質因數,得出如圖2(a)所示的不同Q值對輸出功率影響的曲線圖。

對參數進行合理配置,保證在改變系統諧振頻率時電路參數不變,而在改變線圈參數時系統頻率不變,給發射端線圈提供20 V的穩壓電源。測量在提高系統諧振頻率和增加線徑后的接收端的輸出電壓,并計算出對應的輸出功率繪制圖 2(b)。系統參數如表 1所示,不同方式改善的Q值具體值如表2所示。

圖2 提高諧振頻率與線徑對功率的影響

表1 諧振系統參數

表2 線圈和電路Q值

圖2給出了通過提高諧振頻率增加電路Q值和通過增加線圈線徑提高線圈Q值對輸出功率的影響。從圖2(a)的初始系統曲線可知,初始系統的最高輸出功率為3.2 W,最高輸出功率點在 3.53 cm處;用提高工作頻率的方法把電路的Q值提高后發現,系統的最高輸出功率點右移到 4.1 cm,但最高輸出功率降為 2.5 W,這與頻率增加導致的線圈等效阻抗增加有關;改變繞制線圈的線徑來提高線圈的Q值,從增加線徑曲線可知,最高輸出功率提高到 3.46 W,但最高功率發生點左移到3.1 cm。

從圖2(a)中還可以看出3種不同Q值的電路最大輸出功率對應的距離分別為 3.5 cm、4.1 cm、3.1 cm,由此算的Ko值分別為 0.24、0.09、0.337,這與式(3)的計算相符。

從圖2(b)中可以看出,3種不同 Q值對應的輸出功率曲線與仿真曲線基本相符,但輸出功率比圖3(a)中的整體偏小,分析原因是由于具體實驗測試中存在接觸電阻,而在仿真中這些不可控的因素沒有考慮在內而造成的。同時在具體實驗中線圈采用手工繞制,使發射端與接收端的線圈電感有些不可忽略的偏差,而且線圈的電感和空載Q值是測量值,會有一定的誤差,這都是造成實驗不如仿真理想的原因。

從式(2)中效率與k的關系式中可知效率是耦合系數k的遞減函數[13],即隨著k的減小而減小。而k與距離D3成反比,所以系統效率是隨距離增大而減小的,這種理論結果在仿真中得到了驗證,如圖3(a)是不同系統品質因數下對系統效率影響的仿真曲線,圖3(b)是相對應的實驗曲線。從圖 3(a)的仿真曲線可以看出,提高諧振頻率系統效率有所提高,而通過改善線圈參數后提高的系統 Q值輸出效率卻是下降的。圖3(b)從 3 cm以后基本符合仿真規律,但當發射端與接收端的距離<3 cm后,系統頻率都是下降的,這與仿真不符,當兩端線圈很近時雙方的相互的反射電阻增大是其主要原因。

圖3 不同Q值對系統效率的影響

諧振耦合式無線電能傳輸是基于發射端與接收端的線圈諧振頻率一致產生共振實現能量傳遞的,保證高效率傳輸的關鍵點在于使系統工作在共振頻率點上[5],本文也在仿真與實驗上驗證了這一點,具體如圖4所示。圖4中仿真曲線是仿真的頻率響應曲線,從圖中可知系統的共振頻率點為668 kHz,共振頻率點的輸出功率為3.2 W;實驗中共振頻率點為 648 kHz,最高輸出功率為2.1 W;仿真與實驗間的共振頻率點之間的差異是由于在實際的工作電路中,通電后器件在工作中產生的熱量會使器件的值發生漂移,同時密繞的線圈一般忽略線圈自身分布電容,但實際上還是對電路諧振頻率有一定影響。圖4證明本系統能量傳輸是基于共振而不是傳統的電磁感應。

圖4 頻率響應

文獻[9]提到當 k〉Ko,即當耦合系數大到一定值時,接收端負載電壓的頻率響應特性會出現兩個峰值點,而在原固有頻率點出現凹谷。同時當 Q1≠Q2時,需滿足 k/ Ko≥[1/2(Q1/Q2+Q2/Q1)]1/2時才會出現頻率分裂,文章中發生頻率分裂時的耦合系數值 k=0.42,此時峰值高度下降,如圖5所示。在仿真中也觀測到頻率分裂現象,出現頻率分裂的峰谷下降(在本系統中 Q1≠Q2),這驗證了文獻的理論分析。且當兩端品質因數相差越大時,發生頻率分裂后峰值下降幅度增大。

圖5 頻率分裂

在實際的實驗裝置中,左邊是用多股漆包線制的半徑為3.5 cm的基本線圈,右邊是大線徑的漆包線繞制的高Q值的線圈。

綜上分析得知,雖然系統傳輸效率隨著耦合系數k增加而單調增加,但傳輸功率卻有個最大值。所以并不是k越大越好,當k大于一定值時會產生頻率分裂,導致系統失諧,使傳輸功率急速降低。另外用提高頻率的方式提高系統品質因數Q值可以獲得比較好的效率,提高最大功率點的傳輸距離,但最高輸出功率下降,這與頻率增加使系統的高頻等效電阻增加有關;改變線圈參數提高系統Q值有較好的最大輸出功率,但效率有所降低,這是因為本文采用增加線徑方式提高線圈Q值,在相同頻率下線圈的等效電阻比原來小,也就是減小了公式中 R1、R2的值,這使系統的輸出功率增加。在實際的設計中要考慮到這一點,根據實際需要權衡好輸出功率與效率的關系,優化參數,在保證輸出功率和傳輸距離的同時兼顧傳輸效率。系統偏離共振頻率點會造成系統傳輸能力急劇下降,且當系統兩端的偶合系數大于一定值時,會發生頻率分裂,這會影響系統能量的有效傳輸,特別是當兩端的品質因數不相同時,頻率分裂的同時伴隨著峰值的下降,可以通過優化系統參數使系統的臨界耦合系數Ko大于1,這可以有效地預防系統頻率分裂的發生,因為系統在實際工作中耦合系數的最大值也不超過1。

3 結語

本文介紹了諧振耦合式無線電能傳輸技術的基本原理和在實際應用中的優勢,通過提高頻率和改變線圈參數兩種提高系統品質因數方法對系統輸出功率和效率的影響進行分析,并對產生這種影響的原因作了探討。由于諧振耦合式無線電能傳輸技術是基于共振,仿真與實驗都表明保證系統工作在共振頻率點是實現能量高效傳輸的關鍵,同時在仿真試驗中觀察到頻率分裂現象,通過分析提出了防止頻率分裂的方法。通過以上的仿真與實驗分析,對如何優化參數實現諧振耦合式無線電能的高效傳輸具有一定的借鑒意義。

[1]BARRET J P,DONNELLEY M R R.Electricity at the columbian exposition[Z].1894:168-169.

[2]張文波,高強,程大偉,等.變電站在線監測系統中無線傳感器網絡的 RETX算法[J].電力系統自動化,2012,36 (10):86-89.

[3]張建華,黃學良.利用超聲波方式實現無線電能傳輸的可行性的研究[J].電工電能新技術,2011,30(2):66-69.

[4]陳凱楠,趙爭鳴,張藝明.磁耦合諧振式無線電能傳輸技術新進展[J].中國電機工程學報,2012,33(3):1-11.

[5]翟淵,孫躍,戴欣,等.磁共振模式無線電能傳輸系統建模與分析[J].中國電機工程學報,2012,32(12):155-160.

[6]曹津平,劉建明,李祥珍.面向智能配用電網絡的電力無線專網技術方案[J].電力系統自動化,2013,37(11):76-80.

[7]ANDRE K.Wireless power transfer via strongly coupled magnetic resonances[J].Sciencexpress,2007,317(5834):83-86.

[8]KARALIS A,JOANNOPOULOS D J,SOLJACIC M.Efficient wireless non-radiative mid-range energy transfer[J].Annals of Physics,2008,323(1):34-48.

[9]IMURA T,OKABE H,HORI Y.Basic experimental study on helical antennas of wireless power transfer for electric vehicles by using magnetic resonant couplings[C].Dearborn,MI,United states:IEEE Computer Society,2009.

[10]曲立楠.磁耦合諧振式無線能量傳輸機理的研究[D].哈爾濱:哈爾濱工業大學,2012.

[11]李松林.基于電磁感應耦合的無線電能傳輸的應用研究[Z].2011.

[12]傅文珍,張波,丘東元.頻率跟蹤式諧振耦合電能無線傳輸系統研究[J].變頻器世界,2009(8):41-46.

[13]毛銀花.用于無線傳感器網絡的磁共振式無線能量傳輸系統[D].哈爾濱:哈爾濱工業大學,2012.

[14]MAZLOUMAN S J,MAHANFAR A,KAMINSKA B.Midrange wireless energy transfer using inductive resonance for wireless sensors[C].Simon Fraser University,2009:517-522.

[15]HUNTER D.Non-radiative resonant wireless energy transfer[D].University of Saskatchewan Saskatoon,2013.

Effect of quality factor and resonant frequency on wireless energy transfer system

Dong Yan,Yu Liang,Li Lin,Liang Qi
(School of Electronic Science&Applied Physics,Hefei University of Technology,Hefei 230026,China)

Wireless energy transfer based on resonant has been an emerging power transmission technology,increasing its transmit power and efficiency is the bottleneck for its practical application.This paper investigates the effect of quality factor(Q)of the circle and the circuit on transmission efficient and power through simulation and experiments.The results show that high Q circuit can markedly increase the energy transfer distance and decrease the maximum transfer power,but not obviously affect the transfer efficiency.High Q circle could greatly increase the maximum transfer power,however not distinctly affect the transfer efficiency and transfer distance.The transfer power would be sharply decreased when the input frequency slightly departs from the resonant frequency of the system.Simulation and experiments show that the resonant frequency would be split when the coupling of the emission coil and the receiver coil is larger than a certain value,and simultaneously the transfer power would be decreased.

magnetic resonant coupling;quality factor;frequency response;frequency splitting

TN7

:A

:0258-7998(2015)03-0133-04

10.16157/j.issn.0258-7998.2015.03.035

2014-11-18)

董燕(1984-),女,碩士研究生,主要研究方向:無線供電、微納材料與器件。

梁齊(1958-),通信作者,男,副教授,主要研究方向:半導體薄膜材料與器件,E-mail:liangqi@126.com。

猜你喜歡
品質因數共振頻率輸出功率
Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance
頻率與含水率對殘膜—土壤介電常數的影響
淺談中波發射機輸出阻抗網絡的品質因數
基于反共振頻率的復合材料損傷檢測理論研究
適用于智能電網的任意波形輸出功率源
基于雙層BP神經網絡的光伏電站輸出功率預測
薄膜電感器的研究分析
分布式發電系統并網逆變器輸出功率的自適應控制
鈸式換能器的共振特性研究*
大全集團對其光伏組件產品提供25年輸出功率線性質保服務
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合