?

乳桿菌調節腸道屏障實驗模型的研究進展

2016-04-08 14:50許奇王剛田豐偉張秋香劉小鳴印伯星房東升趙建新張灝陳衛
食品與發酵工業 2016年2期
關鍵詞:動物模型

許奇,王剛*,田豐偉,張秋香,劉小鳴,印伯星,房東升,趙建新,張灝,陳衛*

1(江南大學 食品學院,江蘇 無錫,214122) 2(揚州市揚大康源乳業有限公司,江蘇 揚州,225004)

?

乳桿菌調節腸道屏障實驗模型的研究進展

許奇1,王剛1*,田豐偉1,張秋香1,劉小鳴1,印伯星2,房東升2,趙建新1,張灝1,陳衛1*

1(江南大學 食品學院,江蘇 無錫,214122) 2(揚州市揚大康源乳業有限公司,江蘇 揚州,225004)

摘要乳桿菌是一類被廣泛應用于發酵食品和保健品中的益生菌,因其具有促進腸道屏障發育、調節腸道免疫功能、降低腹瀉風險等作用而備受關注。許多研究表明了乳桿菌屬的益生菌具有改善腸道屏障的作用,其調節作用主要表現在穩定或加強腸道黏膜屏障,產生拮抗微生物活性物質,增強非特異性免疫應答等。目前針對乳桿菌對腸道健康的調節已有很多模型,該文主要概述了體外實驗模型包括Caco-2、HT-29和T-84等細胞模型,以及體內實驗模型包括小鼠、肉雞和仔豬模型。各種模型的建立與優化,為乳桿菌等益生菌影響腸道屏障作用的機理提供了很好的研究手段。

關鍵詞乳桿菌;腸道屏障;細胞模型;動物模型

腸道是消化和吸收營養物質的重要器官,同時又能保護機體免受食物中抗原、病原微生物及其產生的有害代謝產物的損害,是維持體內環境穩定的天然屏障[1-2]。腸道屏障由物理屏障、化學屏障、微生物屏障以及免疫屏障組成,各自具有不同的生物學功能及分子調控機制,通過各自的信號通路有機地結合在一起,共同防御外來病原對機體的侵襲[3-4]。腸道黏膜與共生細菌、外來微生物以及腸上皮緊密聯系從而影響宿主免疫系統,其中腸上皮是許多病原體侵襲的入口[5-6]。腸黏膜屏障一旦受損,可能引發腸道炎癥反應,如炎癥反應進一步放大,則可能導致器官衰竭并發展至多個器官功能障礙綜合征,甚至死亡[7]。盡管有很多研究報道乳桿菌能通過調節腸道上皮細胞和細胞間連接從而調節腸上皮屏障,但腸道屏障功能障礙及修復機制仍不清楚[8]。已有充分實驗證明一些乳桿菌能提升乳糖消化率,防止在炎癥性腸病術后的結腸袋炎復發,另外還有研究證實乳桿菌對兒童感染性腸胃炎及抗生素相關性腹瀉疾病有治療功效[9-11]。此外,乳桿菌還能夠參與營養物質跨膜轉運和保護腸上皮細胞完整性等腸道屏障功能相關基因的調節[12-14]。由于乳桿菌能夠激活宿主細胞的特定基因,因此可以利用多種細胞及動物模型,通過對其基因表達變化的檢測篩選一些對腸道屏障具有促進及修復作用的乳桿菌。越來越多的研究建立起了各種細胞及動物模型,為探索乳桿菌等益生菌影響腸道屏障作用的機理提供了很好的研究手段。

1乳桿菌對腸道屏障的調節作用

乳桿菌屬的益生菌屬于革蘭氏陽性無芽孢菌,微需氧,一般為細長的桿狀、大多呈鏈狀排列[15]。應用在食品發酵中的主要菌種有:同型發酵乳桿菌,如植物乳桿菌、干酪乳桿菌和鼠李糖乳酸桿菌;異型發酵乳桿菌,如短乳桿菌等[16-17]。乳桿菌通常定植在人或動物的口腔和腸道中,調節機體免疫力,并預防一些胃腸道疾病的發生[18]。因為乳桿菌普遍存在于人的消化道中,且與人類飲食生活密切相關,所以其安全性、保健功能備受關注。

1.1植物乳桿菌

研究表明,植物乳桿菌在腸道的定植能力相比于伊氏乳桿菌、格氏乳桿菌和敏捷乳桿菌等其他乳桿菌更強[19]。2/3從口腔和直腸分離得到的植物乳桿菌菌株,能夠表達甘露糖特異性黏附素,增強其對人結腸細胞系HT-29粘附能力,該特性優于其他腸道乳桿菌[20]。因此,這類植物乳桿菌能夠與致病菌(包括大腸桿菌)競爭甘露糖特異性受體,從而減少致病菌對腸道上皮細胞的粘附,防止腸道感染[21]。研究發現,從人體唾液中分離的植物乳桿菌 NCIMB 8826在正常小鼠體內不會引起組織炎癥反應以及穿越腸道屏障的反常易位,而且給患有結腸炎的小鼠喂食植物乳桿菌 NCIMB 8826之后能夠減少腸道固有微生物的易位[22]。另有研究表明,在人體腸道微生態模擬環境中,植物乳桿菌 E98能抑制革蘭氏陰性厭氧菌的生長,除了具有很強的粘附能力,還有調節腸道屏障的功能[23]。據報道,從發酵食品中分離的植物乳桿菌137(HK-LP)能夠誘導小鼠白細胞介素-12的強烈表達,從而抑制結腸癌的發生以及腫瘤細胞在小鼠體內的轉移。而給小鼠飼喂HK-LP的實驗證明其抑制了免疫球蛋白IgE的產生,緩解由食物中過敏原導致的過敏反應,還可增強腸道屏障功能[24]。此外,給小鼠飼喂植物乳桿菌 WH 13-1后,其機體非特異性免疫功能得到增強[25]。而植物乳桿菌CRL 778則能誘導小鼠腸上皮的IgM+細胞和派伊爾結(Peyer patch)中的免疫細胞成熟,并增強腸道和支氣管中IgA+和CD4+T細胞的免疫功能[26]。而在基因水平的研究表明,植物乳桿菌MB452能夠影響腸道屏障中緊密連接蛋白的基因表達量,如改變Occludin蛋白的相關基因[27]。

1.2干酪乳桿菌

部分研究表明,腸道上皮細胞受到病原體細菌感染時,一些益生菌株能促進機體產生病原體特異性和非特異性的sIgA,但并不提高機體對這些益生菌有特異性的sIgA的分泌量。如干酪乳桿菌能夠使小鼠IgA和白細胞介素-6的分泌量增加,但并不使小鼠產生對干酪乳桿菌特異性的抗體[28]。Kononkx等[29]的研究發現,干酪乳桿菌W56通過產生熱休克蛋白70(Hsp70),不僅提高了腸道屏障細胞跨膜電阻值,還修復了由沙門氏菌引起的腸道黏膜損傷。ZUZANA等[30]的研究發現,灌胃干酪乳桿菌可顯著降低由葡聚糖硫酸酯鈉(DSS)導致的BALB/C小鼠結腸炎,但在SCID小鼠中并未有此結果。進一步的研究指出干酪乳桿菌提高了腸系膜淋巴結中CD4+FoxP3+的數量,減少促炎癥因子腫瘤壞死因子-α、干擾素-γ和在派伊爾結及大腸中白細胞介素-10的產生,同時改變了腸道微生物群組成。此外,干酪乳桿菌還可以通過抑制NF-κB信號通路以阻止RAW 264.7細胞中由脂多糖誘導的腫瘤壞死因子-α的表達[31-33]。

1.3 鼠李糖乳桿菌

鼠李糖乳桿菌LGG在腸道中黏著率高,已證明其能夠耐受動物消化道環境并定植于腸道中,克羅恩病人口服鼠李糖乳桿菌,有防止由炎癥反應引起的腸道屏障損傷的作用,減少腸道感染,預防和治療腹瀉[34]。有研究發現,鼠李糖乳桿菌對于豬的腸道黏膜粘附,能夠競爭性地抑制病原體如大腸桿菌等對腸道黏膜的黏附,并通過調節免疫因子表達量及針對有害菌抗體的分泌量,顯著地降低斷奶仔豬腹瀉的發生率[35]。在健康的受試體試驗中發現,鼠李糖乳桿菌可提高白細胞介素-10的表達量,從而抑制腸道細菌刺激CD4+T細胞分泌產生的腫瘤壞死因子-α,白細胞介素-6和干擾素-γ等細胞因子所引起的腸上皮屏障功能損害[36]。而ANTONELLA等[37]的實驗結果則表明,LGG能抑制由醇溶蛋白誘導的毒性作用從而起到預防或者治療胃腸道疾病的作用,其機制是通過參與誘導表皮防御和提高乳果糖通量及Zonulin蛋白表達量,值得注意的是,只有活的LGG與醇溶蛋白才能顯著地上調ZO-1、Claudin-1和Occludin的基因表達。LIU等[38]通過豬的體內實驗發現鼠李糖乳桿菌能通過上調豬的腸道上皮細胞中Toll樣受體的表達、下調炎癥因子白細胞介素-6的產生和MUC3黏蛋白的合成,降低了細胞炎癥以及輪狀病毒菌的侵染。而另外的實驗也證明了鼠李糖乳桿菌可以抑制T-84細胞和人結腸腺癌HT-29細胞的炎癥反應,且有調節腸上皮細胞屏障的功能[39]。

2研究乳桿菌調節腸道屏障功能的細胞模型

由于宿主機體及腸道內菌群構成復雜,研究腸道內微生物與宿主之間的相互作用難度很大,體外模型可以在一定程度上避免這些困難。如Caco-2人結腸腺癌細胞株和HT-29、SW620等人結腸癌細胞株已經被廣泛應用,其中腸上皮細胞培養技術已被廣泛用于研究益生菌對腸道屏障調節功能的研究,然而嚴格厭氧的微生物在適合黏膜上皮細胞培育的環境中卻難以生存,因而導致益生菌活性失效,所以在實驗研究中必須采取特殊的預處理[40]。腸上皮細胞是消化道中消化、吸收營養物質的主要功能性細胞,主要抵御病原菌入侵宿主或者防止致炎性物質刺激,在維持宿主腸道黏膜天然和獲得性免疫系統中起著重要的作用。目前體外培養腸上皮細胞已成為深入研究動物腸道功能、病理及細胞分化的重要途徑。

2.1Caco-2細胞模型

人體結腸腺癌細胞Caco-2分離自人的結腸腺癌,可進行多次傳代培養,成熟的 Caco-2 能在體外培養的條件下自發進行腸樣上皮分化,分化后的細胞間形成緊密連接結構,與小腸上皮細胞相似,表現出與小腸上皮細胞相似的腸腔頂端絨毛和底端腸壁側,并能夠表達一些標志性酶,隨著培養時間增長容易出現極性,特別適合用于檢測跨膜電阻值[41]。由于 Caco-2 細胞的這些特性,已被作為一種成熟的細胞模型及有效的研究工具被廣泛應用,成為研究外源性化學物體外應答的人體腸道模型系統[42]。利用Caco-2細胞模型系統,Seth等[43]研究發現,鼠李糖乳桿菌分泌的p40和p75具有保護上皮細胞緊密連接和緩解H2O2誘導的腸道屏障紊亂的作用。

2.2HT-29細胞模型

HT-29具有腸道上皮細胞的一些特性,并且能夠形成粘液層,而相比之下Caco-2細胞單層模型則不具有粘液層,所以通常作為評價乳桿菌等益生菌在人體腸道中黏附力的實驗模型細胞[44]。SUN等[45]用活菌數為108CFU/mL的嗜酸乳桿菌Bar 13益生菌,在HT-29細胞模型中發現其可以通過抑制白細胞介素-8的合成,從而抑制腸道急性炎癥反應。而O'Hara等[46]則采用嬰兒雙岐桿菌35624和唾液乳桿菌UCC118預處理HT-29細胞,發現NF-κB的活化程度被減弱以及白細胞介素-8的合成被減少,從而減緩由鼠傷寒沙門氏桿菌引起的促炎癥反應。RESTA等[47]的研究發現,嗜酸乳桿菌可通過維持或增強細胞骨架蛋白以及提高緊密連接蛋白的磷酸化而提高HT-29細胞的跨膜電位。

2.3T-84細胞模型

由于T-84細胞免疫專一性強,所以MICHAIL等[48]選擇將腸上皮T-84單層細胞與植物乳桿菌共培養,用于研究腸道屏障受到乳桿菌刺激后產生的免疫反應。研究結果顯示,植物乳桿菌不僅降低了致病性大腸桿菌對上皮細胞的黏附,還減少了中性粒細胞的遷移。SHERMAN[49]的研究顯示,嗜酸乳桿菌和鼠李糖乳桿菌可以競爭性黏附于T-84細胞,減少細胞表面的黏附位點,從而阻止如致病性大腸桿菌等病原微生物的黏附及入侵。另外,NEBOT等[50]建立了基礎和炎癥性T84細胞模型來評價植物乳桿菌對腸道屏障的影響,發現植物乳桿菌抑制了由革蘭氏陰性細菌如大腸桿菌、痢疾桿菌和霍亂弧菌等的脂多糖所導致的腸道通透性增加,降低了腫瘤壞死因子與TLR-4的表達量,同時上調了腸道屏障中緊密連接蛋白ZO-1和occludin的表達量。

3研究乳桿菌調節腸道屏障功能的動物模型

近年來,人們生活壓力提升以及飲食結構改變,導致炎癥性腸病(inflammatory bowel disease,IBD)在全世界的患病率正逐年上升,該病是消化系統自身免疫性慢性炎癥性疾病,其發病機理和對腸道健康的影響尚未完全清楚,因此引起了廣大研究人員的關注[51]。隨之,IBD動物模型的實驗也已廣泛開展,這些動物模型在新藥物評價方面起到重要作用,同時也是用來研究腸道屏障破壞機制的很好的模型。其中動物模型主要分為以下五類[52]:基因敲除型、轉基因型、誘導結腸炎型、自發性結腸炎型和過繼性轉移型,前三種模型因動物容易獲取且價格合適、腸炎的發生與腸道菌群關系密切,所以在研究中應用較多。

3.1 小鼠模型

有研究使用自發腸腺瘤ApcMin/+小鼠模型研究腸道屏障紊亂。該模型在Apc基因引入一個無義突變,由于Apc蛋白功能缺失,這種小鼠易自發腸道多發性腺瘤。研究使用FITC標記的右旋糖酐的滲透率來檢測腸道屏障的完整性,酶檢測法測定血糖和甘油三酯以及酶聯免疫吸附測定法檢測白細胞介素-6,結論是多發性腺瘤的發展與腸道屏障功能障礙、腸系膜淋巴結肥大以及血漿內毒素濃度增大密切相關[53]。研究表明,將選擇性定植的植物乳桿菌LP299v連續4周灌胃無菌IL-10基因敲除型小鼠,只能輕度地激活小鼠免疫系統。若預先用植物乳桿菌LP299v灌胃IL-10-/-無菌小鼠,再將小鼠移入SPF級環境,并繼續灌胃LP299v,能明顯減輕小鼠結腸的炎性反應,這可能與植物乳桿菌預先占據腸道粘附位點和調節腸道內菌群結構從而增強了腸黏膜的屏障功能有關[54]。而LKHAGVADORJ等[55]將臨床分離得到的耐甲氧苯青霉素金黃色葡萄球菌灌胃小鼠,建立致病小鼠模型,使用短雙歧桿菌聯合卡那霉素與頭孢菌素治療,發現益生菌治療組致病菌向腸淋巴結和肝臟移位明顯減少,益生菌可抑制致病菌在腸道的定植,減輕致病菌毒力、增強抗生素的治療效果。VIDAL[56]等在萬古霉素耐藥腸球菌感染大鼠模型中使用鼠李糖乳桿菌Lcr35,結果顯示乳桿菌能有效地降低多重耐藥菌在腸道的定植,提高治愈率。另外,化學誘導型動物模型已經被用來研究益生菌對急性和慢性腸炎的作用,其中DSS小鼠模型的應用最為廣泛。大量研究表明乳桿菌屬益生菌對DSS誘導的腸炎小鼠腸道屏障損傷有改善作用[57]。以上研究表明小鼠模型可以用來研究乳桿菌等益生菌對腸道屏障功能的影響,但是采用常規的動物在研究過程中容易受到動物模型自身腸道復雜菌群的影響,為了更好地研究益生菌與宿主之間的相互作用,提出了建立腸道微生態可控動物模型。已有研究報道定植在無菌小鼠內的多形擬桿菌可影響包括與黏膜屏障,腸道屏障發育、轉換異源物質以及營養質物的吸收等相關功能基因的表達[58]。

3.2 肉雞模型

通過禽類動物模型的建立,得到并鑒定了許多具有調節家禽腸道微生態、拮抗病原感染功能的益生菌株。肉雞模型是最常用的模型,已有報道在雞飼料里添加乳桿菌培養物能顯著降低肉雞沙門氏菌的感染率[59]。目前,在肉雞飼料中添加乳桿菌的研究呈現增加的趨勢,如有研究表明,用添加最小劑量為108CFU/g益生菌制劑(含嗜酸乳桿菌和干酪乳桿菌)的肉仔雞日糧進行飼養,可顯著降低肉雞腸道中空腸彎曲桿菌的數量[60]。另外,一些從健康的肉雞腸道分離出的益生菌,如雙歧桿菌、唾液乳桿菌和羅伊氏乳桿菌等,通過將其添加到飲水及飼料中進行飼喂,一方面提高肉雞體重并促進生長,這種作用類似于灌胃藥物阿維霉素的效果;另一方面這些乳桿菌調節盲腸中微生物菌群結構和細菌糖酵解酶的活性,起到提高腸道屏障功能的作用[61]。有研究顯示,飼料中添加乳桿菌比通過飲水飼喂對于肉雞的增重效果更為顯著。此外,在雛雞時飼喂乳桿菌可調節腸道上皮細胞基因表達,促進雞腸道屏障發育[62]。

3.3 仔豬模型

仔豬腸道屏障功能正常是食物正常消化吸收的基礎,其中仔豬腸道受應激損傷的程度可以通過檢測腸絨毛的發育程度來反映,同時,也作為評定乳桿菌等益生菌是否能減輕應激損傷和促進腸道修復的較為靈敏的指標,了解乳桿菌對仔豬腸道屏障的調節機制有助于預防和控制仔豬斷奶應激綜合癥,也可以運用于配制乳仔豬飼料[63]。研究表明,乳桿菌培養物能夠降低新生仔豬的死亡率以及糞便中腸毒性大腸桿菌的數量。腸炎沙門氏菌感染的仔豬用乳酸桿菌灌胃后,后腸段及糞便中病原體的數量顯著降低。而鼠李糖乳酸桿菌則被證明能有效緩解大腸桿菌k88引起的斷奶后仔豬腹瀉,這種作用可能是通過調節腸道微生態、宿主細胞因子水平以及提高宿主針對有害菌的抗體的產生量實現的[64-65]。BOCOURT等[66]的研究顯示,鼠李糖乳桿菌可以提高乳豬胸腺和小腸的重量,對仔豬腸道屏障穩定性具有顯著促進作用。另據GIANGA等[67]的研究,乳桿菌復合制劑能夠改善斷奶仔豬的腸道屏障功能并降低腹瀉程度,作用機制與回腸和結腸中乳酸與乙酸含量的提高有關。

4 展望

研究顯示,乳桿菌屬的幾種益生菌能夠增強腸道上皮的屏障功能。腸上皮屏障功能增強的機制包括多個方面:誘導黏液蛋白的分泌、促進緊密連接結構形成、上調具有細胞保護功能的熱休克蛋白表達及防止上皮細胞凋亡[68]。許多研究證明,益生菌是通過與腸道黏膜免疫系統的交互作用來增強腸道上皮屏障功能,盡管乳桿菌對上皮細胞發揮保護作用的一些信號途徑已經被揭示,但乳桿菌發揮調節作用的具體機制如受體等仍不完全清楚,有關乳桿菌調節腸道上皮屏障的作用機制仍有待進一步的深入研究,實驗模型也有待進一步開發[69]。另外,借助新的分子生物學技術,研究者能夠更準確地識別腸道微生物區系并且發現新的有益腸道共生菌。這些新的研究手段的運用,有助于開發對人體腸道屏障有益的乳桿菌制劑[70]。雖然乳桿菌對腸道屏障功能影響的研究進展迅速,但仍有許多亟待解決的問題:乳桿菌引發上皮細胞遷移的具體機制仍不清楚,進一步研究乳桿菌引起腸上皮遷移的信號通路,有助于研究者尋找適當的措施以提高腸道屏障的完整性;乳桿菌如何耐受人體胃酸、膽汁酸及胰液,以確保有足夠數量的活菌到達腸道發揮作用;此外乳桿菌調節腸道屏障的效應分子仍不清楚,因此將其相關效應分子分離、純化并確定功能,可以進一步深入揭示乳桿菌對腸道健康影響的分子機制[71]。

參考文獻

[1]BOURL Loux P,KOLETZKO B,GUARNER F. The intestine and its microflora are partners for the protection of the host[J].American Journal of Clinical Nutrition,2003,78(4):675-682.

[2]HIROSHI A,MICHINAGA O,MINSOO K,et al. Bacteria and host interactions in the gut epithelial barrier[J].Nature Chemical Biology,2012,8:36-45.

[3]MACPHERSON A J,HARRIS N L.Interactions between commensal intestinal bacteria and the immune system[J].Nature Reviews Immunology,2004,4:478-485.

[4]THUIJLS G,de HAAN JJ,DERIKX JP,et al.Intestinal cytoskeleton degradation precedes tight junction loss following hemorrhagic shock[J].Shock,2009,31(2):164-169.

[5]ISOLAURI E,SALMINEN S.PROBIOTICS, gut inflammation and barrier function[J].Gastroenterology Clinics of North America,2005,34(3):437-451.

[6]CHEROUTRE H,MADAKAMUTIL L.Acquired and natural memory T cells join forces at the mucosal front line[J].Nat Rev Immunol,2004,4(4):290-300.

[7]ASHIDA H,OGAWA M,KIM M.Bacteria and host interactions in the gut epithelial barrier[J].Nature Chemical Biology,2012,8(01):36-45.

[8]QIN H,ZHANG Z,HANG X,et al.L.plantarumpreventsEnteroinvasiveEscherichiacoli-induced tight junction proteins changes in intestinal epithelial cells[J].BMC Microbiol,2009,9:63.

[9]WEIZMAN Z.Probiotics therapy in acute childhood diarrhoea[J].Lancet,2010,376(9737):233.

[10]KUHBACHER T,OTT S J,HELWI G U,et al. Bacterial and fungal microbiota in relation to probiotic therapy (VSL #3) in pouchitis[J].Gut, 2006,55(6):833-841.

[11]GAUDIER E,MICHEL C,SEGAIN J P,et al.The VSL #3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium-sulfate-induced colitis or reinforce the mucus barrier in mice[J].Journal of Nutrition,2005,135(12):2 753-2 761.

[12]MOLLICA A,STEFANUCCI A,COSTANTE R.Role of formyl peptide receptors (FPR) in abnormal inflammation responses involved in neurodegenerative diseases[J].Anti-inflammatory & Anti-allergy Agents in Medicinal Chemistry,2012,11(1):20-36.

[13]SHIMAZU T,VILLENA J,TOHNO M,et al.ImmunobioticLactobacillusjenseniielicits anti-inflammatory activity in porcine intestinal epithelial cells by modulating negative regulators of Toll-like receptor signaling pathway[J].Infection and Immunity,2012,80(1):276-288.

[14]BIBILONI R,FEDORAK R N,TANNOCK G W,et al.VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis[J].American Journal of Gastroenterol,2005,100:1 539-1 546.

[15]LEBEER S,VANDERLEYDEN J,DE K,et al.Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens[J].Nature Reviews Microbiology,2010,8(3):171-184.

[16]ZHAO J F,XU L Y,WANG Y Z.Homofermentative production of optically pureL-lactic acid from xylose by genetically engineeredEscherichiacoliB[J].Microbial Cell Factories,2013,12:57.

[17]PATRICIA B,FACUNDO C,MERCEDESMILESI.Technological and probiotic role of adjunct cultures of non-starter lactobacilli in so cheeses[J].Food Microbiology,2012,30(1):45-50.

[18]RUBIO R,JOFRE A,MARTIN B.Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages[J].Food Microbiology,2014,38:303-311.

[19]SIEZEN R J,VAN E F H,KLEEREZEM M,et al.Genome data mining of lactic acid bacteria:the impact of bioinformatics[J].Current Opinion in Cardiology,2004,15:105-115.

[20]KLEEREBEZEM M,BOEKHORST J,VAN K R,et al.Complete genome sequence ofLactobacillusplantarumWCFS1[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(4):1 990-1 995.

[21]Ahrne S,NOBAEK S,JEPPSSON B,et al.The normalLactobacillusfloraof healthy human rectal and oral mucosa[J].Journal of Applied Microbiology,1998,85(1):88-94.

[22]PAVAN S,DESREUMANUX P,MERCENIER A.Use of mouse models to evaluate the persistence, safety, and immune modulation capacities of lactic acid bacteria[J].Clinical and Diagnostic Laboratory Immunology,2003,10(4):696-701.

[23]FUMIKO H,MASAFUMI,TOMOKAZU A,et al. Improvement of constipation and liver function by plant-derived lactic acid bacteria: A double-blind randomized trial[J].Nutrition,2010,26(4):367-374.

[24]HIROSE Y,MUROSAKI S,FUJIKI T.Lipoteichoic acids onLactobacillusplantarumcell surfaces correlate with induction of interleukin-12p40 production[J].Microbiology and Immunology,2010,54(3):143-151.

[25]YANPING W,NV X,AODENG X,et al.Effects ofLactobacillusplantarumMA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet[J].Applied Microbiology and Biotechnology,2009,84(2):341-347.

[26]DALLAGNOL A M,CATALAN C A N,MERCADO M I.Effect of biosynthetic intermediates and citrate on the phenyllactic and hydroxyphenyllactic acids production byLactobacillusplantarumCRL 778[J].Journal of Applied Microbiology,2011,111(6):1 447-1 455.

[27]UKENA S N,SINGH A,DRINGENBERG U,et al.ProbioticEscherichiacoliNissle 1917 inhibits leaky gut by enhancing mucosal integerity[J].Plos One,2007,2(12):e1308.

[28]GALDEANO C M,PERDIGON G.The probiotic bacteriumLactobacilluscaseiinduces activation of the gut mucosal immune system through innate immunity[J].Clinical and Vaccine Immunology,2006,13(2):219-226.

[29]KONONKX J F J G,PETER C J,JOSHUA J M,et al.Probiotic bacteria induced improvement of the mucosal integrity of enterocyte-like Caco-2 cells after exposure toSalmonellaenteritidis857[J].Journal of Funcitional Foods,2010,161(52):372-382.

[30]ZAKOSTELSKA Z,KVERKA M,KLIMESOVA K.Lysate of ProbioticLactobacilluscaseiDN-114 001 Ameliorates colitis by strengthening the gut barrier function and changing the gut microenvironment[J].Plos One,2011,6(11):1-11.

[31]MILETI E,MATTEOLI G,ILIEV ID,et al.Comparison of the immunomodulatory properties of three probiotic strains ofLactobacilliusing complex culture systems: prediction for in vivo efficacy[J].PLoS One,2009,4:e7056.

[32]LEE JM,HWANG KT,JUN WJ,et al.Antiinflammatory effect of lactic acid bacteria: inhibition of cyclooxygenase-2 by suppressing nuclear factor-kappa B in Raw264.7 macrophage cells[J].Journal of Microbioly and Biotechnoly,2008,18:1 683-1 688.

[33]MATSUMOTO S,HARA T,HORI T.Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells[J].Clinical And Experimental Immunology,2005,140(3):417-426.

[34]DONATO KA,GAREAU MG,WANG YJ,et al.LactobacillusrhamnosusGG attenuates interferon-γ and tumour necrosis factor-α-induced barrier dysfunction and pro-inflammatory signalling[J].Microbiology,2010,156: 3 288-3 297.

[35]ZHANG Lu,XU Yong-qian,LIU Hao-yu,et al.Evaluation ofLactobacillusrhamnosusGG using anEscherichiacoliK88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses[J].Veterinary Microbiology,2010,141(1-2):142-148.

[36]SCHULTZ M,LINDE H J,LEHN N.Immunomodulatory consequences of oral administration ofLactobacillusrhamnosusstrain GG in healthy volunteers[J].Journal of Dairy Research,2003,70(2):165-173.

[37]ORLANDO A,LINSALATA M,NOTARNICOLA M.LactobacillusGG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines[J].BMC Microbiology,2014,14:19.

[38]LIU Fang-ning,LI Guo-hua,WEN Ke,et al.Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics[J].Viral Immunology,2010,23(2):135-149.

[39]GHADIMI D,VRESE M,HELLER K J,et al.Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integritiy of polarized intestinal epithelial cells[J].Inflammatory Bowel Diseases,2010,16(3): 410-427.

[40]SCHWANK G,KOO B K,SASSELLI V.Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients[J].Cell Stem Cell,2013,13(6):653-658.

[41]CAO Xue-fei,LIN hai-xia,MUSKHELISHVILI L.Tight junction disruption by cadmium in aninvitrohuman airway tissue model[J].Respiratory research,2015,16(1):191.

[42]SAMBUY Y,ANGELIS I,RANALDI G,et al.The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics[J].Cell Biology and Toxicology,2005,21(1):1-26.

[43]SETH A,YAN F,POLK D B,et al.Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism[J].American Journal of Physiology Gastrointestinal and Liver Physiology,2008,294(4): G1 060-1 069.

[44]SONG Tae-Suk,KIM Ji-Youn,KIM Ki-Hwan,et al.Invitroevaluation of probiotic lactic acid bacteria isolated from dairy and non-dairy environments[J].Food Science and Biotechnology,2010,19(1):19-25.

[45]SUN J,Le G W,SHI Y H.Factors involved in binding ofLactobacillusplantarumLp6 to rat small intestinal mucus[J].Letter in Applied Microbiology,2007,44(1):79-85.

[46]O HARA A M,O REGAN P,FANNING A.Functional modulation of human intestinal epithelial cell responses byBifidobacteriuminfantisandLactobacillussalivarius[J].Immunology,2006,118(2):202-215.

[47]RESTA L S,DAS S,BATRA SK.Muc17 protects intestinal epithelial cells from enteroinvasiveE.coliinfection by promoting epithelial barrier integrity[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,2011,300(6):G1 144-G1 155.

[48]MICHAIL S,ABERNATHY F.Lactobacillusplantaruminhibits the intestinal epithelial migration of neutrophils Induced by enteropathogenicEscherichiacoli[J].Journal of Pediatric Gastroenterology and Nutrition,2003,36:385- 391.

[49]SHERMAN P M,OSSA J C,JOHNSON H K.Unraveling mechanisms of action of probiotics[J].Nutrition in Clinical Practice,2009,24:10-14.

[50]NEBOT V M,HARKAT C,BZIOUECHE H.Multispecies probiotic protects gut barrier function in experimental models[J].World Journal of Gastroenterology,2014,20(22):6 832-6 843.

[51]LEVESQUE B G,SANDBORN W J,Ruel J.Converging goals of treatment of inflammatory bowel disease from clinical trials and practice[J].Gastroenterology,2015,148(1):37-U455.

[52]JURJUS A R,KHOURY N N,REIMUND J M.Animal models of inflammatory bowel disease[J].Journal of Pharmacological and Toxicological Methods,2004,50(2):81-92.

[53]PUPPA M J,WHITE J P,SATO S C.Gut barrier dysfunction in the ApcMin/+ mouse model of colon cancer cachexia[J].Biochimica et Biophysica Acta,2011,1812(12):1 601-1 606.

[54]SCHULTZ M,VELTKAMP C,DIELEMAN LA.Lactobacillusplantarum299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice[J].Inflammatory Bowel Diseases,2002,8(2):71-80.

[55]LKHAGVADORJ E,NAGATA S,WADA M,et al.Anti-infectious activity of synbiotics in a novel mouse model of methicillin-resistantStaphylococcusaureusinfection[J].Microbiol Immunol,2010,54(5):265-275.

[56]VIDAL M,FORESTIER C,Charbonnel N,et al.Probiotics and intestinal colonization by vancomycin-resistant enterococci in mice and humans[J].Journal of Clinical Microbiology,2010,48(7):2 595-2 598.

[57]VETRANO S,CORREALE C,BORRONI E M.Colifagina, a novel preparation of 8 lysed bacteria ameliorates experimental colitis[J].International Journal of Immunopathology and Pharmacology,2008,21(2):401-407.

[58]BACKHED F,DING H,WANG T.The gut microbiota as an environmental factor that regulates fat storage[J].Proceedings of the National Academy of Sciences,2004,101(44):15 718-15 723.

[59]HIGGINS SE,HIGGINS J P,WOLFENDEN A D,et al.Evaluation of a Lactobacillus-based probiotic culture for the reduction ofSalmonellaenteritidisin neonatal broiler chicks[J].Poultry Sciences,2008,87(1):27-31.

[60]WILLIS WL,REID L.Investigating the effects of dietary probiotic feeding regimens on broiler chicken production andCampylobacterjejunipresence[J].Poultry Sciences,2008,87(4):606-611.

[61]MOUNTZOURIS K C,TSIRTSIKOS P,KALAMARA E,et al.Evaluation of the efficacy of a probiotic containingLactobacillus,Bifidobacterium,Enterococcus, andPediococcusstrains in promoting broiler performance and modulating cecal microflora composition and metabolic activities[J].Poultry Sciences,2007,86(2):309-317.

[62]TIMMERMAN H M,VELDMAN A,van den ELSEN E,et al.Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics[J].Poultry Sciences,2006,85(8):1 383-1 388.

[63]TANG M,LAARVELD B,VAN K A G,et al.Effect of segregated early weaning on postweaning small intestinal development in pigs[J].Journal of Animal Science,1999,77(12):3 191-3 200.

[64]GENOVESE K J,ANDERSON R C,HARVEY R B,et al.Competitive exclusion ofSalmonellafrom the gut of neonatal and weaned pigs[J].Journal of Food Protection,2003,66(8):1 353-1 359.

[65]ZHANG Lu,XU Yong-qian,LIU Hao-yu,et al.Evaluation ofLactobacillusrhamnosusGG using anEscherichiacoliK88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses[J].Veterinary Microbiology,2010,141(1-2):142-148.

[66]BOCOURT R,LOURDES S,JUANA D.Effect of the probiotic activity ofLactobacillusrhamnosuson physiological indicators of suckling pigs[J].Cuban Journal of Agricultural Science,DEC 2004a,38(4):403-408.

[67]GIANG H H,VIET O T,OGLE B,et al.Effects of different probiotic complexes of lactic acid bacteria on growth performance and gut environment of weaned piglets[J].Livestock Science,2010,133(1-3):182-184.

[68]DELCENSERIE V,MARTEL D,LAMOUREUX M.Immunomodulatory effects of probiotics in the intestinal tract[J].Current Issues in Molecular Biology,2008,10:37-53.

[69]NEBOT-VIVINUS M,HARKAT C,BZIOUECHE H.Multispecies probiotic protects gut barrier function in experimental models[J].World Journal of Gastroenterology,2014,20(22):6 832-6 843.

[70]WALKER W A,GOULET O,MORELLI L.Progress in the science of probiotics: from cellular microbiology and applied immunology to clinical nutrition[J].European Journal of Nutrition,2006,45(1):1-18.

[71]OKANO K,TANAKA T,OGINO C.Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives and limits[J].Applied Microbiology and Biotechnology,2010,85(3):413-423.

Current progress in research models for influence ofLactobacilluson intestinal barrier

XU Qi1,WANG Gang1*,TIAN Feng-wei1,ZHANG Qiu-xiang1,LIU Xiao-ming1,YIN Bo-xing2,FANG Dong-sheng2,ZHAO Jian-xin1,ZHANG Hao1,CHEN Wei1*

1( School of Food Science and Technology, Jiangnan University, Wuxi 214122,China)2( Kangyuan Dairy Co. Ltd., Yangzhou University, Yangzhou 225004,China )

ABSTRACTLactobacillus is a kind of probiotics which has been widely used in fermented foods and health foods for its function of promoting the development of intestinal barrier, regulating the intestinal immune function, reducing the risk of diarrhea and so on. Many studies have shown that the Lactobacillus has the role of improving the intestinal barrier such as stabling or strengthening the intestinal mucosal barrier, producing antagonistic microbial active substances, and enhancing non-specific immune response. There are many models established for the evaluation of the regulation effects of Lactobacillus on intestinal barrier. The experimental models in vitro including Caco-2, HT-29 and T-84 cell model, as well as experimental models in vivo including mouse, chicken and pigs model were reviewed in this article. Establishment and optimization of various models provide a good tool for researches on the mechanism of the influence on intestinal barrier by Lactobacillus.

Key wordsLactobacillus; intestinal barrier; cell model; animal model

收稿日期:2015-09-24,改回日期:2015-11-10

基金項目:國家自然科學基金-青年科學基金項目(項目編號31301407)

DOI:10.13995/j.cnki.11-1802/ts.201602043

第一作者:碩士研究生(王剛副教授,陳衛教授為通訊作者,E-mail:wanggang@jiangnan.edu.cn,chenwei66@jiangnan.edu.cn)。

猜你喜歡
動物模型
基于網絡藥理學和動物模型驗證研究瀉白散治療新型冠狀病毒肺炎的潛在作用
肥胖中醫證候動物模型研究進展
胃癌前病變動物模型復制實驗進展
濕熱證動物模型造模方法及評價研究
潰瘍性結腸炎動物模型研究進展
獼猴子宮腺肌病動物模型建立初探
膽石癥實驗動物模型及其中藥治療研究進展
糖尿病性視網膜病變動物模型研究進展
卵巢功能早衰動物模型的建立及其評價指標的研究進展
定喘止哮顆粒對支氣管哮喘動物模型的影響
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合