?

過表達三角褐指藻蘋果酸酶基因提高E.coli脂肪酸合成能力研究?

2016-06-16 02:55呂娜娜朱葆華楊官品潘克厚
關鍵詞:原核表達脂肪酸

呂娜娜, 朱葆華??, 鹿 琳, 楊官品, 潘克厚,3

(1. 中國海洋大學海水養殖教育部重點實驗室應用微藻生物學研究室,山東 青島 266003;2. 中國海洋大學海洋生命學院,山東 青島 266003;3. 國家實驗室海洋漁業與食物產出功能實驗室,山東 青島 266100)

過表達三角褐指藻蘋果酸酶基因提高E.coli脂肪酸合成能力研究?

呂娜娜1, 朱葆華1??, 鹿琳1, 楊官品2, 潘克厚1,3

(1. 中國海洋大學海水養殖教育部重點實驗室應用微藻生物學研究室,山東 青島 266003;2. 中國海洋大學海洋生命學院,山東 青島 266003;3. 國家實驗室海洋漁業與食物產出功能實驗室,山東 青島 266100)

摘要:為驗證三角褐指藻(Phaeodactylum tricornutum)蘋果酸酶基因的功能,本研究將PtME1插入pET-30a中得到重組質粒pET30a-PtME1。IPTG誘導后,攜帶pET30a-PtME1的大腸桿菌BL21(DE3)高效表達一分子量約為72 kDa的可溶性重組蛋白。重組蛋白經Ni SephroseTM6 Fast Flow系統純化,酶活力達75.18 U/mg。GC-MS分析顯示表達PtME1提高了大腸桿菌脂肪酸合成能力,其C14∶0、C16∶0、C18∶1及總脂肪酸含量較對照分別提高了34.8%、69.9%、54.2%和50.2%,C16∶1產量是對照的5.6倍。研究結果表明,NADP依賴型蘋果酸酶能為大腸桿菌脂肪酸合成及脂肪酸去飽和提供充足的NADPH,為進一步研究該酶在藻體內的功能奠定了基礎。

關鍵詞:三角褐指藻; 蘋果酸酶; 脂肪酸; 原核表達

引用格式:呂娜娜, 朱葆華, 鹿琳, 等. 過表達三角褐指藻蘋果酸酶基因提高E.coli脂肪酸合成能力研究[J]. 中國海洋大學學報(自然科學版), 2016, 46(5): 65-69.

LV Na-Na, ZHU Bao-Hua, LU Lin, et al. Overexpression of malic enzyme gene fromPhaeodactylumtricornutumpromotes fatty acids production inEscherichiacoli[J]. Periodical of Ocean University of China, 2016, 46(5): 65-69.

NADP 依賴型蘋果酸酶(NADP-malic enzyme, EC1.1.1.40)普遍存在于各種生物中,參與多種代謝途徑。該酶催化蘋果酸氧化脫羧,生成丙酮酸和CO2,還原NADP+[1]。植物中,NADP-ME可分為光合型和非光合型[2-3]。光合型NADP-ME主要為C4植物Rubisco 酶提供CO2, 非光合型 NADP-ME則參與植物防御反應,穩定細胞內pH,為細胞合成代謝提供 NADPH 和丙酮酸[4]。富油微生物、植物NADP-ME參與油脂積累的報道較多。例如: 蓖麻子非光合型NADP-ME為長鏈脂肪酸合成提供碳和NADPH[5-6]。擬南芥基因組存在4個NADP-ME基因,其中,NADP-ME4參與脂肪酸合成[7]。卷枝毛霉(Mucorcircinelloides)有6種NADP-ME亞型,其中,亞型IV與油脂積累有關[8]。多種產油微生物及植物蘋果酸酶基因已被克隆并驗證了功能[9-12]。然而,關于藻類蘋果酸酶基因的克隆和功能驗證卻鮮有報道, Shang等[13]克隆并分析了巴夫杜氏藻(Dunaliellaparva)的蘋果酸酶基因,但未進行深入研究。

三角褐指藻(Phaeodactylumtricornutum)全基因組測序已完成[14],細胞壁硅含量很少,被廣泛用于硅藻生態學、生理學、生物化學和分子生物學研究。該藻油脂含量較高,能大量合成并積累PUFAs,特別是EPA[15],是規?;a生物柴油的優良候選藻種[14-15]。

為驗證三角褐指藻蘋果酸酶基因功能,本研究用RT-PCR技術分離了三角褐指藻蘋果酸酶基因cDNA (PtME1),并在大腸桿菌中進行了表達;對融合蛋白進行了純化,據純化蛋白底物特異性和大腸桿菌脂肪酸組成變化驗證了三角褐指藻蘋果酸酶基因功能。研究結果為深入探索蘋果酸酶在三角褐指藻脂肪酸合成過程中的作用,進而為用基因工程手段調控三角褐指藻油脂積累研究奠定了基礎。

1材料與方法

1.1 三角褐指藻培養

三角褐指藻(P.tricornutumPT-01)由中國科學院水生生物研究所饋贈,用無菌f/2海水培養基在(20±1)℃、27.5~37.5 (mol photons·m-2·s-1光強(12 h光照∶12 h黑暗)下靜置培養。

1.2 引物設計與合成

據P.tricornutum蘋果酸酶基因設計PCR引物,并引入酶切位點NcoI和SaII (見表1),下游引物加入6xHis標簽,便于重組蛋白純化。引物由上海生工生物工程技術服務有限公司合成。

表1 PtME1擴增引物

注:下劃線示引入的限制性酶切位點,雙下劃線示加入的6個His的密碼子。Underlined bases indicate the digested nucleotide sequences of the restriction enzyme, double underlined ones show the joined six His codons.

1.3 PtME1克隆及表達載體構建

三角褐指藻總RNA提取采用Total RNA Kit I試劑盒(Omega公司)。用TransScript? One-Step gDNA Removal and cDNA Synthesis SuperMix (全式金公司)反轉錄合成cDNA。用TaqDNA polymerase(Takara公司)擴增PtME1。用pET30a(由中國科學院青島生物能源與過程研究所咸漠老師饋贈)構建重組質粒。宿主菌E.coliBL21(DE3)購自全式金公司。限制性內切酶及膠回收試劑盒購自Fermentas公司。

PCR反應條件為94 ℃預變性1 min,94 ℃ 30 s,63 ℃ 30 s,72 ℃ 2 min, 30個循環,最后72 ℃延伸10 min。PCR產物用膠回收試劑盒(Omega公司)切膠純化,構建重組質粒pET30a-PtME1,連同pET30a質粒分別轉化至E.coliBL21(DE3),在含100μg/mL卡那霉素LB平板上37℃過夜培養。挑取抗性克隆,提取重組質粒酶切鑒定,測序驗證。

1.4 重組蛋白誘導表達和純化

將重組菌株(含pET30a-PtME1質粒)、含pET30a質粒菌株(作為對照)分別按1∶50接種量接種到含50μg/mL卡那霉素LB液體培養基中,37 ℃,200 r/min震蕩培養至OD600nm約0.6~0.8,加入IPTG至終濃度0.5 mmol/L,30 ℃誘導4 h。在4℃,8 000 r/min離心8 min收集菌體,PBS重懸洗滌一次,沉淀加10 mL磷酸緩沖液(20 mmol/L 磷酸鈉,500 mmol/L NaCl,pH=7.4),冰浴超聲,處理3 s,停8 s,共10 min,功率80 W,上清即為粗酶液,取部分上清進行SDS-PAGE檢測,剩余部分用Ni SephroseTM6 Fast Flow系統(GE公司)純化蛋白。

1.5 重組ME酶活性的測定

按文獻[18]配置酶活性測定最適體系(50 mmol/L, pH=7.5 Tris-HCl, 1 mmol/L MgCl2, 0.5 mmol/L NADP+, 10 mmol/L L-malate)。取870 μL反應溶液和30 μL純化酶液于1 mL石英比色皿中,混勻,立即置于紫外分光光度計中,在室溫下連續監測1 min內340 nm 下的吸收值的變化。每分鐘催化產生1 μmol NADPH 定義為一個酶活力單位。蛋白濃度采用 Bradford 蛋白濃度定量試劑盒(索萊寶公司)。

其中:Vt為反應體系總體積(9×10-4L) ;Vs為加入樣品體積(0.03 mL);ε:為在測定條件下NADPH的摩爾消光系數,6.22×103L·mol-1·cm-1;d為光程(1 cm);df為稀釋因子,106;C為在溶液中酶的濃度,mg/mL。

1.6 重組子脂肪酸組成分析和含量測定

將2種重組菌(分別含pET30a質粒和 pET30a-PtME1質粒)接種至M9基本培養基中,37 ℃,200 r/min震蕩培養至OD600nm約0.6~0.8,加入IPTG至終濃度0.5 mmol/L,同時加入蘋果酸至終濃度15 mmol/L,30℃誘導24 h。離心收集菌液,冷凍干燥用于脂肪酸的測定。取40 mg菌粉于15 mL試管中,參照文獻[19]加入3 mL萃取劑(甲醇∶氯仿 = 1∶2),充分渦旋震蕩萃取細胞總脂,再加入5 mL皂化試劑(水∶甲醇=1∶4,含6%NaOH),同時加入100 μL濃度為2 mg/mL的十五烷酸(Sigma公司)作為內標進行定量,60℃水浴1 h,最后加入2 mL甲酯化試劑(12%三氟化硼-甲醇溶液),60 ℃水浴30 min,冷卻后用1 mL色譜純正己烷震蕩萃取脂肪酸甲酯,然后在氣相-質譜儀上檢測(GCMS-QP2010,島津,日本)。氣相條件,色譜柱:Rxi-1MS(30 m×0.25 mm,0.25 μm)毛細管柱;升溫程序:初始溫度 150 ℃ ,以15 ℃/min 升至200 ℃ ,再以2 ℃/min升至250 ℃ ;進樣口溫度:250 ℃ ;載氣(He) 流量:1 mL/min;自動進樣,進樣體積1 μL,分流比20∶1;溶劑切除時間:2.5 min。質譜條件:電子轟擊離子源,離子源溫度230 ℃ ,接口溫度280 ℃ ,電子能量70 eV,質量掃描范圍45~500 m/z。

2結果與分析

2.1 三角褐指藻蘋果酸酶基因的克隆

PtME1(XM_002177854.1,見圖1(a))的DNA擴增片段與預期大小一致。重組質粒雙酶切獲得的片段與菌落PCR產物長度長度一致(見圖1(c)),說明重組質粒所連接的為目的條帶,且酶切完全。

2.2 重組蛋白的誘導表達及純化

將重組質粒pET30a-PtME1轉化至E.coliBL21(DE3) 感受態細胞,IPTG誘導4 h后,破菌上清經SDS-PAGE檢測發現在72 kD處有一條特異條帶(見圖2),與預期蛋白大小相符,對照無特異條帶,表明PtME1已在大腸桿菌BL21(DE3)中正確表達。

((a)基因組擴增產物;M,DNA marker DL 2000;1,PCR產物。(b)質粒;M,DNA marker DL 2000;1,質粒pET30a;2,重組質粒pET30a-PtME1。(c) 重組質粒酶切和PCR擴增;M,DNA marker DL 2000;1,重組質粒pET30a-PtME1雙酶切;2,PCR產物(目的片斷)。(a)The genome amplification products: M, DNA marker DL 2000; lane 1, PCR products. (b) Plasmid: M, DNA marker DL 2000; lane 1, plasmid pET30a; lane 2, recombinant plasmid pET30a-PME1. (c) Enzyme digestion of recombinant plasmid and PCR amplification: M, DNA marker DL 2000; lane 1,double digestion of recombinant plasmid pET30a-PtME1; lane2, PCR products.)

圖1基因組ME1擴增(a),質粒圖譜(b),重組

質粒pET30a-ME1酶切(c)

Fig.1PtME1 amplified fromP.tricornutum

genomic DNA (a), plasmid (b), and double digestion

of recombinant plasmid pET30a-PtME1 (c)

(M.蛋白質marker; 1. 純化His-PtME1; 2. 含pET30a-PtME1重組子經0.5mmol/L IPTG誘導后的細胞破碎上清液; 3. 含 pET-30a對照經0.5mmol/L IPTG誘導后的細胞破碎上清液。M, Protein marker; lane 1, the purified His-PME1; lane 2, the supernatant of cell disruption of the recombinant inducing by 0.5mmol/LIPTG; lane 3, the supernatant of cell disruption of the control inducing by 0.5mmol/LIPTG.)

圖2三角褐指藻ME1融合蛋白的誘導表達和純化

Fig.2 Induced expression and purification of recombinant

protein fromP.tricornutumME1 gene

2.3 重組ME酶活力測定

大腸桿菌BL21(DE3)也能合成NADP-ME,重組NADP-ME1活性需要純化后測定。粗酶液經Ni SephroseTM6 Fast Flow純化系統純化得到目的蛋白,用建立的蘋果酸酶酶活性測定體系,測定340 nm下吸光度酶活力掃描圖(見圖3),表明重組酶具有很高活性,通過計算酶活力可達75.18 U/mg。

圖3 蘋果酸酶活力曲線

2.4 重組子脂肪酸組成和含量

以C15脂肪酸作為內標,對2種重組菌株脂肪酸產量進行定量分析。結果表明,重組菌株和對照菌株主要合成4種脂肪酸,即C14∶0、C16∶0、C16∶1和C18∶1(見圖4)。重組菌株脂肪酸C14∶0、C16∶0、C18∶1及總脂肪酸含量較對照分別提高了34.8%、69.9%、54.2%和50.2%,胞內總脂產量達到122.68 mg/g, 重組菌株C16∶1產量是對照的5.6倍。結果表明PtME1表達不改變大腸桿菌脂肪酸種類,但能夠顯著提高脂肪酸含量。

(黑色柱和灰色柱分別代表重組菌株和對照。 Black and grey bars represent recombinant and the control, respectively.)

圖4PtME1表達對大腸桿菌脂肪酸組成和含量的影響

Fig.4Effects of expressingPtME1 on the

composition and content of fatty acids inE.coliBL21 (DE3)

3討論

脂肪酸合成過程中碳鏈的延伸不僅需要連續供給乙酰CoA,還需要提供足夠的NADPH[19]。在新生脂肪酸碳鏈延伸時每一個乙酰CoA需消耗2個NADPH用于還原反應。但脂肪酸合成及去飽合所需NADPH主要由NADP依賴型蘋果酸酶提供。這一結論在酵母和真菌中得到廣泛證實。如在構巢曲霉(Aspergillusnidulans)中敲除ME后,在低氮環境下不含ME菌株的油脂積累量只有野生菌株的一半[20]。在卷枝毛霉(Mucorcircinelloides)中過表達ME基因不僅使油脂的含量增加了2.5倍,同時不飽和脂肪酸的比例也有增加[21],而在卷支毛霉的培養基中加入蘋果酸酶的抑制劑-芝麻酚后,該菌幾乎失去油脂積累能力,從不加抑制劑的24%降低到1%~2%[22]。這些研究結果表明當蘋果酸酶活性被抑制時,油脂積累量也大幅降低。而在富油微生物(霉菌、細菌、微藻)中對油脂代謝途徑和轉基因研究中也發現ME是提高油脂含量最有潛力的目標基因之一[23-24]。但針對三角褐指藻蘋果酸酶的研究還沒有報道。因此,探索三角褐指藻蘋果酸酶功能對全面認識NADPH對脂肪酸積累作用至關重要。

本研究分離了一條三角褐指藻蘋果酸酶基因的cDNA,并在大腸桿菌中進行了表達,通過鎳柱純化獲得目的蛋白并驗證了其底物特異性,證明該蛋白是NADP依賴型ME且具有較高的酶活力。GC-MS分析顯示,大腸桿菌重組子胞內總脂含量提高了50.2%,產量達到122.68 mg/g, 這與文獻中報道的結果一致[18-19],即過量表達蘋果酸酶基因可提高宿主菌的總脂肪酸含量。本研究中,重組細菌飽和脂肪酸占總脂肪酸的百分含量由對照的36.3%提高到39.7%,不飽和脂肪酸的百分含量由對照的9.3%提高到15.5%(數據未顯示),其中重組細菌C16∶1的含量顯著提高,這表明過量表達的蘋果酸酶確實為脂肪酸的合成以及碳鏈的去飽和提供了足夠的NADPH。這些結果雖已證明ME與大腸桿菌油脂積累有關,但ME與油脂積累的直接關系尚不明確。一方面,脂肪酸積累所需的NADPH并非全部由蘋果酸酶提供[21],另一方面,蘋果酸酶催化蘋果酸氧化脫羧反應的產物既有NADPH還有丙酮酸,過表達蘋果酸酶基因提高大腸桿菌油脂含量,不僅與胞內NADPH含量的增加有關,可能也與丙酮酸的含量提高有關[25]。一般認為,脂肪酸合成的碳源主要來自糖酵解產生的丙酮酸氧化脫羧生成的乙酰輔酶A,因此,蘋果酸酶催化生成的丙酮酸能否為脂肪酸的合成提供碳源,有多大的比例能用來合成脂肪酸都有待進一步實驗研究。

對三角褐指藻蘋果酸酶功能初步探索使我們清楚地認知了異源表達該酶可提高細菌總脂肪酸含量。但該蛋白的細胞定位以及在藻體內對脂肪酸積累的影響等需要更進一步研究。我們擬在三角褐指藻細胞中調控該基因表達,遺傳修飾三角褐指藻,提高其脂肪酸合成效率。

參考文獻:

[1]Chang G G, Tong L. Structure and function of malic enzymes, a new class of oxidative decarboxylases [J]. Biochemistry, 2003, 42(44): 12721-12733.

[2]Edwards G E, Andreo C S. NADP-malic enzyme from plants [J]. Phytochemistry, 1992, 31(6): 1845-1857.

[3]Drincovich M F, Casati P, Andreo C S. NADP-malic enzyme from plants: A ubiquitous enzyme involved in different metabolic pathways [J]. FEBS Letters, 2001, 490(1): 1-6.

[4]Casati P, Drincovich M F, Edwards G E, et al. Malate metabolism by NADP-malic enzyme in plant defense [J]. Photosynthesis Research, 1999, 61(2): 99-105.

[5]Smith R G, Gauthier D A, Dennis D T, et al. Malate-and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm [J]. Plant Physiology, 1992, 98(4): 1233-1238.

[6]Shearer H L, Turpin D H, Dennis D T. Characterization of NADP-dependent malic enzyme from developing castor oil seed endosperm [J]. Archives of Biochemistry and Biophysics, 2004, 429(2): 134-144.

[7]Wheeler M C G, Tronconi M A, Drincovich M F, et al. A comprehensive analysis of the NADP-malic enzyme gene family ofArabidopsis[J]. Plant Physiology, 2005, 139(1): 39-51.

[8]Song Y, Wynn J P, Li Y, et al. A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation inMucorcircinelloides[J]. Microbiology, 2001, 147(6): 1507-1515.

[9]Zhang Y, Adams I P, Ratledge C. Malic enzyme: The controlling activity for lipid production? Overexpression of malic enzyme inMucorcircinelloidesleads to a 2. 5-fold increase in lipid accumulation [J]. Microbiology, 2007, 153(7): 2013-2025.

[10]Wynn J P, bin Abdul Hamid A, Ratledge C. The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi [J]. Microbiology, 1999, 145(8): 1911-1917.

[11]Santos M M, Raghevendran V, K?tter P, et al. Manipulation of malic enzyme inSaccharomycescerevisiaefor increasing NADPH production capacity aerobically in different cellular compartments [J]. Metabolic Engineering, 2004, 6(4): 352-363.

[12]Wheeler M C G, Tronconi M A, Drincovich M F, et al. A comprehensive analysis of the NADP-malic enzyme gene family ofArabidopsis[J]. Plant Physiology, 2005, 139(1): 39-51.

[13]Shang C H, Zhu S N, Yuan Z H, et al. Molecular cloning and characterization analysis of malic enzyme gene fromDunaliellaparva[C].//Advanced Materials Research, 2012, 347: 2536-2540.

[14]Bowler C, Allen A E, Badger J H, et al. ThePhaeodactylumgenome reveals the evolutionary history of diatom genomes [J]. Nature, 2008, 456(7219): 239-244.

[15]Tonon T, Harvey D, Larson T R, et al. Identification of a very long chain polyunsaturated fatty acid Δ4-desaturase from the microalgaPavlovalutheri[J]. FEBS Letters, 2003, 553(3): 440-444.

[16]Horst I, Parker B M, Dennis J S, et al. Treatment ofPhaeodactylumtricornutumcells with papain facilitates lipid extraction [J]. Journal of Biotechnology, 2012, 162(1): 40-49.

[17]Dillschneider R, Steinweg C, Rosello-Sastre R, et al. Biofuels from microalgae: Photoconversion efficiency during lipid accumulation [J]. Bioresource Technology, 2013, 142: 647-654.

[18]孟鑫, 尚宏麗, 鄭益. 過量表達蘋果酸酶對E.coli脂肪酸合成能力的影響 [J]. 食品工業科技, 2013, 34(12): 207-209.

Meng X, Shang H L, Zheng Y. Effect of overexpression of malic enzyme on fatty acid production ofEscherichiacoli[J]. Science and Technology of Food Industry, 2013, 34(12): 207-209.

[19]Meng X, Yang J, Cao Y, et al. Increasing fatty acid production inE.coliby simulating the lipid accumulation of oleaginous microorganisms [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(8): 919-925.

[20]Wynn J P, Ratledge C. Malic enzyme is a major source of NADPH for lipid accumulation byAspergillusnidulans[J]. Microbiology, 1997, 143(1): 253-257.

[21]Ratledge C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: A reappraisal and unsolved problems [J]. Biotechnology Letters, 2014, 36(8): 1557-1568.

[22]Wynn J P, Kendrick A, Ratledge C. Sesamol as an inhibitor of growth and lipid metabolism inMucorcircinelloidesvia its action on malic enzyme [J]. Lipids, 1997, 32(6): 605-610.

[23]程萬, 林輝, 趙宇華, 等. 蘋果酸酶調控微生物油脂積累的研究進展 [J]. 科技通報, 2010, 26(6): 853-857.

Cheng W, Lin H, Zhao Y H, et al. Research Progress on malic enzyme regulating the accumulation of microbial oils [J]. Bulletin of Science and Technology, 2010, 26(6): 853-857.

[24]Radakovits R, Jinkerson R E, Darzins A, et al. Genetic engineering of algae for enhanced biofuel production [J]. Eukaryotic Cell, 2010, 9(4): 486-501.

[25]Sauer U, Eikmanns B J. The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria: We dedicate this paper to Rudolf K. Thauer, Director of the Max-Planck-Institute for Terrestrial Microbiology in Marburg, Germany, on the occasion of his 65th birthday [J]. FEMS Microbiology Reviews, 2005, 29(4): 765-794.

責任編輯高蓓

Overexpression of Malic Enzyme Gene fromPhaeodactylumtricornutumPromotes Fatty Acids Production inEscherichiacoli

LV Na-Na1, ZHU Bao-Hua1, LU Lin1, YANG Guan-Pin2, PAN Ke-Hou1, 3

(1.Lab of Applied Microalgae Biology, The Key Laboratory of Aquaculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; 2. College of Marine Life Sciences, Ocean Univesity of China, Qingdao 266003, China; 3.Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China)

Abstract:The marine diatom Phaeodactylum tricornutum has been shown to be a potential producer of biodiesel due to its fast growth, lipid accumulation capability and established genetic tools. Thus, it is possible to genetically manipulate the key genes involved in fatty acids synthesis in microalgae to improve traits to achieve both high lipid and high biomass for industrial production. Malic enzyme (ME) catalyzes the oxidative decarboxylation of L-malate to yield pyruvate, CO2 and NADPH in the presence of a divalent metal ion. It is a widely distributed enzyme involved in different metabolic pathways in prokaryotic and eukaryotic microorganisms. To date, there have been a few studies that have focused on the role of MEs in lipid accumulation, mainly in plants and mammals; however, little is known about the role of these enzymes in microalgae. The full-length cDNA of malic enzyme gene was isolated from P. tricornutum and named as PtME1. It is 1 917 bp in length, encoding 437 amino acids with a molecular mass of 72 kD. In order to verify its function, the recombinant plasmid pET30a-PtME1 was built by inserting PtME1 into pET-30a. Upon IPTG induction, soluble recombinant protein was obtained with high efficiency in E.coli BL21 (DE3) harboring pET30a-PtME1. Recombinant protein was purified by Ni SephroseTM6 Fast purification Flow system and showed a single band about 72 kDa on SDS-PAGE gel. The specific activity of purified enzyme protein was measured, which reached 75.18 U per milligram protein. GC-MS analysis revealed that increased expression of the ME gene leads to increased biosynthesis of fatty acids in the recombinant strain, the contents of C14∶0, C16∶0, C18∶1 and total fatty acids were increased by 34.8%, 69.9%, 54.2% and 50.2%, respectively. The content of C16∶1 was increased by 5.6 fold compared with that of the control. Research results indicated that over-expression of PtME1 in E.coli has improved the capacity of fatty acid synthesis in Escherichia coli. The NADP-ME in lipid biosynthesis is to supply enough NADPH for both biosynthesis and desaturation of fatty acids in E.coli. These results also laid foundation for further research of the malic enzyme in P. tricornutum.

Key words:P. tricornutum; malic enzyme gene; fatty acid; prokaryotic expression

基金項目:? 國家重點基礎研究發展計劃項目(2011CB200901);國家科技支撐計劃項目(2011BAD14B01)資助

收稿日期:2015-09-16;

修訂日期:2015-11-10

作者簡介:呂娜娜(1988-),女,碩士生。E-mail: lvnanabest@163.com ??通訊作者: E-mail: zhubaohua@ouc.edu.cn

中圖法分類號:Q341

文獻標志碼:A

文章編號:1672-5174(2016)05-065-05

DOI:10.16441/j.cnki.hdxb.20150322

Supported by the Major State Basic Research Development Program of China (2011CB200901); the National Technical Supporting Project Foundation (2011BAD14B01)

猜你喜歡
原核表達脂肪酸
短鏈脂肪酸衍生化檢測方法研究進展
揭開反式脂肪酸的真面目
慧眼識油 吃出健康
揭開反式脂肪酸的真面目
n-3多不飽和脂肪酸改善糖脂代謝的研究進展
人FOXA1蛋白的原核表達、純化及蛋白互作分析
柑橘CitSERK—LIKE基因原核表達載體的構建與表達
信號分子與葉銹菌誘導下小麥病程相關蛋白1基因的表達分析
花生AhSOS2基因原核表達載體的構建及表達
氣相色譜法分析中華絨螯蟹4個部位中總脂肪酸和游離脂肪酸含量與組成
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合