?

大黃魚(Larimichthyscrocea)IL-10基因的克隆與表達分析

2017-04-13 05:17鄭維兵慕鵬飛丁連帥楊思司敖敬群艾春香陳新華
海洋學報 2017年4期
關鍵詞:大黃魚內含子脾臟

鄭維兵,慕鵬飛,丁連帥,楊思司,敖敬群,艾春香,陳新華*

(1. 國家海洋局第三海洋研究所 海洋生物遺傳與資源重點實驗室,福建 廈門 361005;2. 廈門大學 海洋與地球學院,福建 廈門 361005)

大黃魚(Larimichthyscrocea)IL-10基因的克隆與表達分析

鄭維兵1,慕鵬飛2,丁連帥1,楊思司1,敖敬群1,艾春香2,陳新華1*

(1. 國家海洋局第三海洋研究所 海洋生物遺傳與資源重點實驗室,福建 廈門 361005;2. 廈門大學 海洋與地球學院,福建 廈門 361005)

白細胞介素10(Interleukin 10,IL-10)是一種抗炎細胞因子,可以抑制機體免疫反應。本研究經過分析大黃魚基因組數據庫發現了IL-10同源基因,并對其cDNA編碼區序列和基因組DNA序列進行了克隆分析。大黃魚IL-10(LycIL-10)基因由5個外顯子和4個內含子構成,其序列全長1 869 bp,其開放閱讀框(ORF)長555 bp,編碼184個氨基酸,其N端的22個氨基酸殘基為預測的信號肽,成熟肽由162個氨基酸殘基組成,包含了脊椎動物IL-10標志性保守序列。LycIL-10的氨基酸序列同其他已知物種的IL-10氨基酸序列的一致性為26.49%~77.01%。Real-time PCR分析發現LycIL-10在檢測的組織中為組成型表達,在脾臟和肌肉中轉錄水平相對較高。三聯滅活細菌疫苗和聚肌苷酸胞苷酸(poly(I∶C) )刺激后,大黃魚頭腎和脾臟中LycIL-10 mRNA的轉錄水平會顯著升高,表明LycIL-10可能參與抑制大黃魚由細菌和病毒引起的炎癥反應。

大黃魚;白細胞介素10;分子克??;實時定量 PCR;表達分析

1 引言

白細胞介素10(Interleukin-10, IL-10),又稱細胞因子合成抑制因子,最初因其由Th2細胞分泌,并可以抑制Th1細胞合成與分泌IL-2和IFN-γ而被發現,是一種有效的抗炎因子,主要由單核/巨噬細胞和Th2細胞合成分泌[1—2]。除此之外,T細胞的其他亞群、B細胞、嗜酸性粒細胞、上皮細胞、角質細胞、間質細胞、自然殺傷性細胞(NK細胞)和腫瘤細胞等也可以分泌IL-10[3]。由于IL-10可以抑制T細胞和NK細胞活性而被廣泛研究,隨著研究深入,發現其主要是通過抑制活性氧(ROS)和NO產生、降低MHC II和一些巨噬細胞分泌的炎癥因子(IL-1、TNF-α、IL-12和環氧酶2等)的表達從而抑制機體針對病原體入侵產生的免疫反應[4—11]。在T細胞分化的過程中IL-10也發揮重要作用,其通過抑制Th1細胞因子IFN-γ和IL-2的表達來促進T細胞向Th2分化[12—13]。

目前已經有多種哺乳動物的IL-10基因被克隆并研究[14—16],哺乳動物IL-10含6個α螺旋和2個分子內二硫鍵,通常以非共價鍵結合形成同源二聚體的形式來發揮其功能[17—18]。IL-10受體(IL-10R)含有兩個亞基,IL-10R1和IL-10R2。IL-10首先與IL-10R1結合,形成IL-10/IL-10R1復合體,IL-10與IL-10R1的構象發生改變,然后與IL-10R2結合[19—22]。IL10與受體結合后通過激活接頭蛋白Jak1(與IL-10R1結合)和Tyk2(與IL-10R2結合)來激活轉錄因子STAT3,在特定細胞中也可以激活STAT1和STAT5[23]。這些轉錄因子形成同源或者異源二聚體后進入細胞核促進細胞因子信號傳導抑制因子3(SOCS3)的轉錄表達,SOCS3通過抑制促炎因子的轉錄表達來發揮IL-10抑制炎癥反應的作用[24—26]。

有研究表明多種哺乳動物病毒也含有IL-10基因,例如Epstein-Barr病毒(EBV)、巨細胞病毒(CMV)、馬皰疹病毒2型和羊口瘡病毒[14,27—28]。這些病毒的IL-10可以與宿主的IL-10受體結合,并發揮宿主IL-10的生物學功能,通過此來抑制宿主的免疫反應從而達到逃避宿主免疫系統攻擊的目的[29]。目前普遍認為病毒IL-10基因是其入侵宿主后從宿主獲得的完全的或者不完全的IL-10轉錄剪切體。

Zou等運用生物信息學方法分析紅鰭東方鲀(Fugurubripes)的基因組首次發現了魚類的IL-10基因[29]。近年來,已經有多種魚類的IL-10基因被發現,包括虹鱒(Oncorhynchusmykiss)、斑馬魚(Daniorerio)、鱈魚(Gadusmorhua)、鯉魚(Cyprinuscarpio)、美國黑鱸(Dicentrarchuslabrax)、白鰱(Hypophthalmichthysmolitrix)和金魚(CarassiusauratusL.)[30—37]。在虹鱒中發現了氨基酸序列一致性高達92%的兩個IL-10基因,而其他魚類均只發現了一個IL-10基因[37]。在金魚中,被滅活的殺鮭氣單胞菌(Aeromonassalmonicida)激活的單核細胞與IL-10充分孵育后,其TNF-α1、TNF-α2、 IL-1β1、IL-10、CXCL_8/IL-8和NADPH氧化組建件p47(phox)表達量均下降,而經過IL-10預處理后,單核細胞則不會被殺鮭氣單胞菌或者IFN-γ激活而產生活性氧中間產物(ROI)[36]。另外金魚的IL-10可以誘導STAT3磷酸化并且入核,STAT3入核后迅速促進SOCS3的轉錄表達[36]。研究表明鯉魚的IL-10可以抑制PMA和LPS對中性粒細胞和巨噬細胞的激活作用,并可以抑制巨噬細胞中MHC抗原呈遞相關基因的轉錄表達[38]。一個IL-10同源基因在錦鯉孢疹病毒(Koi herpesvirus, Khv)中被發現,此病毒的IL-10基因與鯉魚IL-10基因具有中等的相似度,并含有一個信號肽,研究發現其對病毒的復制和病毒的毒性都不是必須的[39]。錦鯉孢疹病毒IL-10(Khv IL-10)刺激斑馬魚胚胎后,發現lyz+(溶菌酶表達陽性)細胞數目增多,當IL-10R1基因表達被沉默之后,這一功能又被屏蔽,說明其可以利用斑馬魚的IL-10R1,并具有和斑馬魚IL-10相似的功能[40]。最新研究表明Khv IL-10與其宿主IL-10一樣,可以通過STAT3信號通路發揮抗炎功能[41]。目前已有許多大黃魚細胞因子被研究,例如IL-1β、IL-6、IL-8、IL-17A/F、IFN-γ和CXCL8等[42—46],但未見針對大黃魚IL-10的相關研究。通過對大黃魚基因組分析,我們發現了一個IL-10同源基因[47]。進一步克隆了LycIL-10基因的cDNA全長并分析了其cDNA序列和其編碼蛋白的氨基酸序列特征,還對大黃魚IL-10的組織分布和誘導表達特點進行了研究。

2 材料與方法

2.1 實驗魚

實驗用大黃魚購自福建省福州市連江縣下嶼村,體長為(20±1.76)cm,體質量為(100±21.5)g。采樣時養殖水域溫度為(20±3)℃。

2.2 疫苗制備

副溶血弧菌(Vibrioparahaemolyticus)、溶藻弧菌(Vibrioalginolyticus)、嗜水汽單胞菌(Aeromonashydrophila)均為實驗室從大黃魚病魚中分離所得[48]。實驗時將菌種從-80℃冰箱取出平板劃線活化,然后挑取單菌落接種至LB培養基中,培養至OD600至0.5左右,收集菌體,用無菌PBS洗滌菌體兩次后將菌體重懸制備成菌體懸液(3×109cfu/mL),最后將3種菌的懸液等體積混合。高壓滅活后制成三聯滅活細菌疫苗,保存于4℃冰箱備用。Poly(I∶C)粉末溶解于無菌PBS,調整濃度至1 mg/mL,保存于-20℃冰箱備用。

2.3 樣品采集

健康大黃魚組織樣品采集:將健康大黃魚置于50 mg/L的MS-222中麻醉,待大黃魚處于麻醉狀態后先抽取大黃魚血液,后取大黃魚脾臟、腦、腎臟、肝臟、皮膚、肌肉、心臟、鰓以及小腸等組織樣品,置于液氮中速凍,運回實驗室后轉移至-80℃冰箱保存。

三聯滅活細菌疫苗刺激組及poly(I∶C)刺激組樣品采集:首先以腹腔兩點注射的方法將三聯滅活細菌疫苗和poly(I∶C)儲存液分別注射健康的大黃魚,每尾魚注射200 μL,每種溶液注射35尾魚。另用等體積PBS注射作為對照。在注射后在0 h、6 h、12 h、24 h和48 h等時間點,每個時間點取5尾大黃魚,首先置于50 mg/L 的MS-222中麻醉,待大黃魚處于麻醉狀態后取脾臟和頭腎組織樣品并迅速置于液氮速凍,運回實驗室后轉移至-80℃冰箱保存。

2.4 RNA提取以及cDNA第一鏈的制備

同一組的5尾大黃魚,每尾取10~20 mg組織混合后加入1 mL Trizol (Life Technology),用勻漿器勻漿,根據Trizol法提取RNA操作指南提取總RNA。提取后的總RNA經DNase I(TaKaRa)處理,酚/氯仿/異戊醇(25∶24∶1)(索萊寶科技有限公司)再次抽提。最后按照逆轉錄酶M-MLV (RNase H-)(TaKaRa)說明書將RNA逆轉錄為第一鏈cDNA后保存于-20℃冰箱備用。

2.5 大黃魚IL-10基因克隆

根據大黃魚基因組預測的LycIL-10 cDNA序列(GenBank登錄號為XM_010738826.1)及基因組DNA序列(GenBank登錄號為JPYK01015197.1),利用Primer Premier 5.0軟件設計引物P1、P2(引物序列見表1)進行PCR擴增LycIL-10基因開放閱讀框(ORF)和基因組DNA序列,引物(生工生物工程(上海)股份有限公司)序列如下(表1)。使用TransStart Fast Pfu Fly DNA聚合酶(全式金生物技術有限公司)進行PCR反應,反應件如下:95℃預變性3 min;然后按95℃變性30 s,58℃退火30 s,cDNA為模板時72℃延伸30 s,基因組DNA為模板時延伸90 s,進行35個循環;72℃終延伸10 min。瓊脂糖(Biowest)凝膠電泳檢測PCR產物大小正確后,用膠回收試劑盒(Omega Bio-Tek)回收目的條帶,經平末端加A尾試劑盒(TaKaRa)加A尾后連接至pMD20-T載體(TaKaRa)中,轉化EscherichiacoliDH5α感受態細胞,用氨芐青霉素(生工生物工程(上海)股份有限公司)抗性平板篩選陽性菌落,并經菌落PCR初步驗證后,送至上海美吉生物醫藥科技有限公司進行測序驗證。

表1 引物序列表

2.6 生物信息學分析

通過SignalP 4.0和NetNGlyc 1.0在線程序(http://www.cbs.dtu.dk/services/SignalP/)和(http://www.cbs.dtu.dk/services/NetNGlyc/)分別預測LycIL10信號肽序列和天冬酰胺糖基化位點。從NCBI數據庫收集其他物種的IL-10同源序列,利用DNAMAN 軟件進行多序列比對分析,并用MEGA 6.0(Molecular Evolution Genetics Analysis)軟件通過近鄰法(Neighbor-Joining)構建系統進化樹。

2.7 大黃魚IL-10基因表達分析

為研究LycIL-10 mRNA在健康大黃魚器官或組織中的表達,通過實時熒光定量PCR(Real-time PCR),利用引物P3和P4(序列見表1)檢測LycIL-10 mRNA在健康大黃魚脾臟、血液、腦、腎臟、肝臟、皮膚、肌肉、心臟、鰓及小腸中的轉錄水平。為研究大黃魚受到免疫刺激后LycIL-10 mRNA的誘導表達特征,取經過三聯滅活細菌疫苗或poly(I∶C)刺激后的大黃魚頭腎及脾臟組織(采樣方法見2.3),提取總RNA制備第一鏈cDNA,利用表1中引物(P3/P4,β-actinF/β-actinR)進行Real-time PCR。Real-time PCR反應條件如下:95℃預變性30 s;95℃變性5 s,58℃退火15 s,72℃延伸20 s,40個循環,實驗數據采用2-ΔΔCT法進行分析。

以上實驗均重復3次,實驗結果利用Graph Pad Prism 5進行分析及繪圖,采用雙尾T檢驗法進行統計學分析,P<0.05時視為差異顯著,P<0.01即為差異極顯著。

3 結果

3.1 大黃魚IL-10基因的克隆與序列分析

通過分析大黃魚基因組數據,我們獲得了大黃魚IL-10的cDNA編碼區序列以及基因組DNA序列,GenBank登陸號分別為XM_010738826.1 和JPYK01015197.1。利用Primer Premier 5.0軟件設計引物,分別以大黃魚脾臟cDNA和肌肉基因組為模板,通過PCR擴增獲得了與預測大小一致的目的片段,測序結果顯示擴增得到的目的片段序列與GenBank對應序列一致。LycIL-10基因組DNA序列全長1 869 bp(圖1)由5個外顯子和4個內含子構成(圖2)。內含子的剪切位點(5’GT-內含子-CAG-3’)如圖1所示。

圖1 LycIL-10的核苷酸序列及氨基酸序列分析Fig.1 Analysis of nucleotide and deduced amino acid sequences of LycIL-10起始密碼子和終止密碼子以灰色背景顯示,方框中的DNA序列GT和CAG為內含子的剪切位點;加下劃線部分為預測的信號肽序列,橢圓形中的氨基酸殘基為預測的N糖基化位點Features highlighted with gray include the start and stop codon, Splice sites, GT and CAG, of the intron are shown in boxes; the putative signal peptide is underlined, a potential glycosylation site is circled with ellipse

圖2 人、小鼠、虹鱒、紅鰭東方鲀、斑馬魚和大黃魚IL-10的基因組結構比較Fig.2 Comparison of the genomic organization of IL-10 genes in human, mouse, rainbow trout, fugu rubripes, zebrafish, large yellow croaker人(Homo sapiens, DQ217938.1)、小鼠(Mus musculus, M84340.1)、虹鱒(Oncorhynchus mykiss, AB118099.1)、紅鰭東方鲀(Takifugu rubripes, AJ539537.1)、斑馬魚(Danio rerio, AY887900.1)和大黃魚IL-10的基因組結構比較,其中黑色方框代表外顯子黑色線條代表內含子,外顯子長度標在其上方Comparison of the genomic organization of IL-10 in human (Homo sapiens, DQ217938.1), mouse (Mus musculus, M84340.1), rainbow trout (Oncorhynchus mykiss, AB118099.1), fugu rubripes (Takifugu rubripes, AJ539537.1) and zebrafish (Danio rerio, AY887900.1) and large yellow croaker. Black boxes represent exons, thin lines joining them are introns and the numerals on the black boxes depict the length of the corresponding exons

圖3 LycIL-10與其他脊椎動物IL-10氨基酸多序列比對Fig.3 Alignment of LycIL-10 with IL-10 from other vertebrates通過DNAMAN軟件對LycIL-10與其他脊椎動物IL-10進行氨基酸多序列比對分析。相同氨基酸用黑色背景標示(一致性等于100%),保守序列則使用紅色(一致性大于等于75%)及藍色(一致性大于等于50%)背景標示。紅色方框所示為在魚類保守的而其他高等脊椎動IL-10物所沒有的兩個半胱氨酸,箭頭所指區域分別為信號肽和IL-10保守結構域Multiple alignment of the predicted LycIL-10 translation with other known IL-10 molecules, generated by the DNAMAN software. Black background denote conserved amino acids, whilst red (identity no less than 75%) or blue (identity no less than 50%) denote conservative substitutions. Two fish-specific cysteine residues are surrounded by a red outline. The signal peptide and IL-10 family signature residues marked by the double sided arrow

圖4 魚類及其他脊椎動物的IL-10系統進化樹Fig.4 Phylogenetic tree of IL-10 from fish and other vertebrate species進化樹中各物種IL-10氨基酸序列的GenBank登錄號為:鯽魚IFN-γ(Carassius auratus, ACG68885.1);人IL-10(Homo sapiens, NP_000563.1);小家鼠IL-10(Mus musculus,NP_034678.1);家犬IL-10(Canis familiaris, ABY86619.1);家貓IL-10(Felis catus, NP_001009209.1);家兔IL-10(Oryctolagus cuniculus, NP_001075514.1);野豬IL-10(Sus scrofa, NP_999206.1);原雞IL-10(Gallus gallus, NP_001004414.2);紅鰭東方鲀IL-10(Takifugu rubripes, CAD62446.1);鱸魚IL-10(Dicentrarchus labrax, CAK29522.1);斑馬魚IL-10(Danio rerio, NP_001018621.2);青斑河豚IL-10(Tetraodon nigroviridis, AAP57415.1);熱帶爪蟾IL-10(Xenopus tropicalis, NP_001165400.1);虹鱒IL-10(Oncorhynchus mykiss, BAD20648.1);鯉魚IL-10(Cyprinus carpio, BAC76885.1)Accession numbers of Genbank used for sequences of IL-10: crucian IFN-γ (Carassius auratus, ACG68885.1); human IL-10 (Homo sapiens, NP_000563.1); house mouse IL-10 (Mus musculus, NP_034678.1); dog IL-10 (Canis familiaris, ABY86619.1); domestic cat IL-10 (Felis catus, NP_001009209.1); rabbit IL-10 (Oryctolagus cuniculus, NP_001075514.1); pig IL-10 (Sus scrofa, NP_999206.1); chicken IL-10 (Gallus gallus, NP_001004414.2); fugu rubripes IL-10 (Takifugu rubripes, CAD62446.1); European seabass IL-10 (Dicentrarchus labrax, CAK29522.1); zebrafish IL-10 (Danio rerio, NP_001018621.2); spotted green pufferfish IL-10 (Tetraodon nigroviridis, AAP57415.1); tropical clawed frog IL-10 (Xenopus tropicalis, NP_001165400.1); rainbow trout IL-10 (Oncorhynchus mykiss, BAD20648.1); common carp IL-10 (Cyprinus carpio, BAC76885.1)

圖5 LycIL-10 mRNA在不同組織中的相對轉錄水平Fig.5 Relative transcription level of LycIL-10 mRNA in different tissues

圖6 三聯滅活細菌疫苗和 poly(I∶C)刺激后大黃魚的脾臟和頭腎中LycIL-10 mRNA的表達分析Fig.6 Expression modulation analysis of LycIL-10 mRNA in spleen and head kidney of large yellow croaker after inactivated trivalent bacterial vaccines and poly (I∶C) stimulation

LycIL-10 ORF基因的序列全長555 bp,編碼184個氨基酸,經SignalP 4.0在線預測其N端22個氨基酸殘基為信號肽序列,糖基化位點在線預測顯示其第146位的天冬酰胺為一個潛在N糖基化位點(圖1)。成熟的LycIL-10分子包含162個氨基酸殘基,預測其分子量約為18.73 kD,等電點(pI)為6.07。多序列比對發現大黃魚IL-10與其他魚類IL-10的氨基酸序列具有較高的一致性(43.78%~77.01%),與哺乳動物、鳥類以及兩棲類IL-10的氨基酸序列一致性較低(26.49%~29.41%)。其中大黃魚IL-10第156~172位氨基酸殘基“GLYKAMGELNLLFNYIE”屬于IL-10家族標志性保守序列“G-X2-KA-X2-[DE]-X-D[ILV]-[FLY]-[FILMV]-X2-[ILMV][EKQR] ”(圖3)。系統進化分析發現,魚類的IL-10聚為一支,而鳥類哺乳動物以及兩棲類的IL-10聚為一支(圖4)。另外,LycIL-10擁有兩個在魚類IL-10保守而在其他脊椎動物IL-10中沒有的兩個半胱氨酸殘基序列(Cys-26,Cys-31)。

3.2 大黃魚IL-10組織分布分析

利用Real-time PCR分析發現LycIL-10 mRNA在健康大黃魚各個組織中均有轉錄,但在不同組織之間其轉錄水平差異較大。在腦中LycIL-10 mRNA的轉錄水平最低,在肌肉和脾臟中轉錄水平較高,分別為腦中的83.5和148.7倍,在鰓、肝臟、血液和小腸等組織中LycIL-10 mRNA轉錄水平分別為腦中的11.9、11.3、11.1和10.1倍,在腎臟、心臟和皮膚中分別為腦中的3.5、3.7和5.8倍(圖5)。

3.3 大黃魚IL-10基因的誘導表達分析

經過滅活三聯滅活細菌疫苗和poly(I∶C)刺激后,LycIL-10 mRNA的轉錄水平在大黃魚脾臟和頭腎中均有顯著上調(圖6)。三聯滅活細菌疫苗刺激后,脾臟和頭腎的LycIL-10 mRNA的轉錄水平在刺激后6 h顯著上調,脾臟在刺激后12 h達到最高,為0 h的69.3倍,頭腎中則在24 h達到最高,為0 h的62.9倍。在poly(I∶C)刺激后,大黃魚脾臟和頭腎的LycIL-10 mRNA轉錄水平也在刺激后6 h顯著上調,脾臟中LycIL-10 mRNA的轉錄水平在刺激后48 h達到最高,頭腎在刺激后24 h達到最高,分別為0 h的25.0和25.5倍。

4 討論

IL-10作為一種重要的抗炎因子,在高等哺乳動物、鳥類、兩棲類和魚類已經被廣泛研究,而有關大黃魚IL-10基因的研究目前尚未見報道。本文根據大黃魚基因組數據得到了LycIL-10基因的cDNA序列及基因組DNA序列,經PCR擴增后測序結果與基因組數據中結果一致。經分析發現LycIL-10基因由5個外顯子和4個內含子構成,這與哺乳動物以及已知魚類如紅鰭東方鲀、虹鱒、斑馬魚、鯉魚以及大西洋鱈魚的基因組結構一致,并且各個外顯子長度比較保守,而各個內含子長度差異比較大,一般而言小鼠和人等哺乳動物的IL-10基因內含子比較長,魚類的IL-10基因內含子較哺乳動物短,而在魚類中虹鱒IL-10基因的內含子長度與哺乳動物比較相似[29—31,33,35]。LycIL-10基因ORF序列全長555 bp,推測其編碼184個氨基酸,經SignalP在線預測其N端22個氨基酸殘基為信號肽序列,糖基化位點在線預測顯示其146位的天冬酰胺是一個潛在N糖基化位點。小鼠和虹鱒的IL-10均含一個預測的糖基化位點,紅鰭東方鲀IL-10則有2個預測的糖基化位點,研究表明原核大腸桿菌表達的重組小鼠IL-10具備所有小鼠IL-10的生物學功能,這說明糖基化位點可能對IL-10發揮其生物學功能不是必需的[1,5]。多序列比對發現LycIL-10包含了在脊椎動物中保守的4個半胱氨酸(Cys-30,Cys-80,Cys-130,Cys-136),和兩個魚類中保守的半胱氨酸(Cys-26,Cys-31),目前還沒有研究表明這兩個半胱氨酸對魚類IL-10結構和功能方面的作用。LycIL-10具有IL-10家族的特征序列“G-X2-KA-X2-[D,E]-X-D[ILV]-[FLY]-[FILMV]-X2-[ILMV][EKQR]”,這一段序列在所有脊椎動物的IL-10中都是保守的。LycIL-10基因編碼的氨基酸序列與人IL-10的氨基酸序列的一致性為27.57%,與其他已知的哺乳動物和鳥類以及兩棲類IL-10的氨基酸序列的一致性為26.49%~29.41%,與已知的其他魚類的IL-10氨基酸序列有較高的一致性,為43.78%~77.01%,系統進化樹結果與此結果一致。

Real-time PCR檢測結果顯示,LycIL-10 mRNA在脾臟中轉錄水平最高,在肌肉中次之,在鰓、小腸、肝臟和血液中的表達為中等,在皮膚、心臟、腎臟和腦中的轉錄水平均較低。在金魚中,IL-10 mRNA的轉錄水平也是在脾臟中最高,這可能是因為在魚類中脾臟是一個主要的免疫器官,富含T細胞較多,而IL-10對于T細胞分化有重要作用[36]。鰓和小腸中IL-10 mRNA的轉錄水平中等,可能是由于它們都是魚類重要的粘膜免疫器官,其組織微環境波動較大,IL-10可能對于維持這兩個組織的免疫穩態有重要作用[49]。在斑馬魚和虹鱒中,IL-10 mRNA則是在腎臟中的轉錄水平最高在肌肉中轉錄水平較低,而在大黃魚中LycIL-10 mRNA在腎臟中的相對轉錄水平較低而在肌肉中轉錄水平較高,魚類的腎臟在魚類免疫方面發揮重要作用,但是LycIL-10 mRNA在腎臟的轉錄水平并不高,這一結果可能與魚自身的一些生理特征和所處環境有關[31,33]。

IL-10是一個有效的抗炎因子,可以有效抑制炎癥反應,避免由于獲得性免疫過強而引起的組織損傷,主要在炎癥反應中后期發揮作用[50]。副溶血弧菌、溶藻弧菌、嗜水汽單胞菌均為大黃魚致病菌,這3種細菌經過滅活后制備的三聯滅活細菌疫苗可以誘導大黃魚產生類似細菌引起的炎癥反應[48]。Poly(I∶C)為雙鏈RNA類似物,與雙鏈RNA病毒相似,可以誘導大黃魚產生類似病毒引起的炎癥反應[51]。脾臟和頭腎均為大黃魚重要的免疫器官,在先天性免疫和獲得性免疫方面均發揮重要作用。大黃魚脾臟和頭腎中LycIL-10 mRNA的轉錄水平在受到三聯滅活疫苗刺激后分別在12 h和24 h達到最高,在受到poly(I∶C)刺激后分別在48 h和24 h達到最高。大黃魚在受到細菌或者poly(I∶C)刺激后在6 h、12 h一些炎癥早期的細胞因子如IL-1β和IL-17的轉錄水平即達到最高[43,45]。而LycIL-10 mRNA轉錄水平則在受到免疫刺激后24 h、48 h達到最大,表明其可能在免疫刺激晚期發揮抑制炎癥反應的作用,這與IL-10在人和哺乳動物里的研究結果一致[50]。在斑馬魚和虹鱒中,經LPS刺激后其IL-10 mRNA的轉錄水平在頭腎中亦均上升,大西洋鱈魚經過poly(I∶C)刺激后,其頭腎中IL-10 mRNA轉錄水平顯著升高,這些結果與我們的實驗結果一致,說明魚類IL-10可能在抑制細菌和病毒引起的炎癥反應中發揮一定作用[35,37,40]。另外分析發現三聯滅活細菌疫苗刺激后大黃魚脾臟和頭腎的LycIL-10 mRNA的轉錄水平上調倍數均高于poly(I∶C)刺激后LycIL-10 mRNA的上調倍數。說明LycIL-10可能在抗細菌引起的炎癥反應方面發揮更重要的作用。

5 結論

本文首次報道了LycIL-10基因,分析了LycIL-10基因的序列特征,并通過多序列比對以及進化分析闡明了LycIL-10氨基酸序列的基本結構特點。本文研究了LycIL-10 mRNA在各個健康組織中的轉錄水平。首次闡明了大黃魚受免疫刺激后LycIL-10 mRNA的表達特征,結果表明LycIL-10可能在在抗細菌引起的炎癥反應中起著重要作用。本研究為進一步了解LycIL-10的特征及功能奠定了基礎。

[1] Moore K W, de Waal Malefyt R, Coffman R L, et al. Interleukin-10 and the interleukin-10 receptor[J]. Annual Review of Immunology, 2001, 19(1): 683-765.

[2] Fiorentino D F, Bond M W, Mosmann T R. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones[J]. The Journal of Experimental Medicine, 1989, 170(6): 2081-2095.

[3] Thomson A W, Lotze M T. The Cytokine Handbook, Two-volume Set[M]. 4th ed. London: Gulf Professional Publishing, 2003.

[4] Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukin 10[J]. The Journal of Experimental Medicine, 1991, 174(6): 1549-1555.

[5] Ding L, Shevach E M. IL-10 inhibits mitogen-induced T cell proliferation by selectively inhibiting macrophage costimulatory function[J]. The Journal of Immunology, 1992, 148(10): 3133-3139.

[6] Fiorentino D F, Zlotnik A, Mosmann T R, et al. IL-10 inhibits cytokine production by activated macrophages[J]. The Journal of Immunology, 1991, 147(11): 3815-3822.

[7] Fiorentino D F, Zlotnik A, Vieira P, et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells[J]. The Journal of Immunology, 1991, 146(10): 3444-3451.

[8] Aste-Amezaga M, Ma Xiaojing, Sartori A, et al. Molecular mechanisms of the induction of IL-12 and its inhibition by IL-10[J]. The Journal of Immunology, 1998, 160(12): 5936-5944.

[9] Gazzinelli R T, Oswald I P, James S L, et al. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages[J]. The Journal of Immunology, 1992, 148(6): 1792-1796.

[10] Mertz P M, DeWitt D L, Stetler-Stevenson W G, et al. Interleukin 10 suppression of monocyte prostaglandin H synthase-2. Mechanism of inhibition of prostaglandin-dependent matrix metalloproteinase production[J]. The Journal of Biological Chemistry, 1994, 269(33): 21322-21329.

[11] Niiro H, Otsuka T, Kuga S, et al. IL-10 inhibits prostaglandin E2production by lipopolysaccharide-stimulated monocytes[J]. International Immunology, 1994, 6(4): 661-664.

[12] de Waal Malefyt R, Yssel H, de Vries J E. Direct effects of IL-10 on subsets of human CD4+T cell clones and resting T cells. Specific inhibition of IL-2 production and proliferation[J]. The Journal of Immunology, 1993, 150(11): 4754-4765.

[13] Groux H, Bigler M, de Vries J E, et al. Inhibitory and stimulatory effects of IL-10 on human CD8+T cells[J]. The Journal of Immunology, 1998, 160(7): 3188-3193.

[14] Vieira P, de Waal-Malefyt R, Dang M N, et al. Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(4): 1172-1176.

[15] Villinger F, Brar S S, Mayne A, et al. Comparative sequence analysis of cytokine genes from human and nonhuman primates[J]. The Journal of Immunology, 1995, 155(8): 3946-3954.

[16] Hash S M, Brown W C, Rice-Ficht A C. Characterization of a cDNA encoding bovine interleukin 10: kinetics of expression in bovine lymphocytes[J]. Gene, 1994, 139(2): 257-261.

[17] Syto R, Murgolo N J, Braswell E H, et al. Structural and biological stability of the human interleukin 10 homodimer[J]. Biochemistry, 1998, 37(48): 16943-16951.

[18] Walter M R, Nagabhushan T L. Crystal structure of interleukin 10 reveals an interferon gamma-like fold[J]. Biochemistry, 1995, 34(38): 12118-12125.

[19] Yoon S I, Logsdon N J, Sheikh F, et al. Conformational changes mediate interleukin-10 receptor 2 (IL-10R2) binding to IL-10 and assembly of the signaling complex[J]. The Journal of Biological Chemistry, 2006, 281(46): 35088-35096.

[20] Liu Y, Wei S H, Ho A S, et al. Expression cloning and characterization of a human IL-10 receptor[J]. The Journal of Immunology, 1994, 152(4): 1821-1829.

[21] Tan J C, Braun S, Rong Hong, et al. Characterization of recombinant extracellular domain of human interleukin-10 receptor[J]. The Journal of Biological Chemistry, 1995, 270(21): 12906-12911.

[22] Tan J C, Indelicato S R, Narula S K, et al. Characterization of interleukin-10 receptors on human and mouse cells[J]. The Journal of Biological Chemistry, 1993, 268(28): 21053-21059.

[23] Wehinger J, Gouilleux F, Groner B, et al. IL-10 induces DNA binding activity of three STAT proteins (Stat1, Stat3, and Stat5) and their distinct combinatorial assembly in the promoters of selected genes[J]. FEBS Letters, 1996, 394(3): 365-370.

[24] Auernhammer C J, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(12): 6964-6969.

[25] Berlato C, Cassatella M A, Kinjyo I, et al. Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation[J]. The Journal of Immunology, 2002, 168(12): 6404-6411.

[26] Qin Hongwei, Wilson C A, Roberts K L, et al. IL-10 inhibits lipopolysaccharide-induced CD40 gene expression through induction of suppressor of cytokine signaling-3[J]. The Journal of Immunology, 2006, 177(11): 7761-7771.

[27] Hsu D H, de Waal Malefyt R, Fiorentino D F, et al. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1[J]. Science, 1990, 250(4982): 830-832.

[28] Kotenko S V, Saccani S, Izotova L S, et al. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4): 1695-1700.

[29] Zou J, Clark M S, Secombes C J. Characterisation, expression and promoter analysis of an interleukin 10 homologue in the puffer fish,Fugurubripes[J]. Immunogenetics, 2003, 55(5): 325-335.

[30] Savan R, Igawa D, Sakai M. Cloning, characterization and expression analysis of interleukin-10 from the common carp,CyprinuscarpioL.[J]. European Journal of Biochemistry, 2003, 270(23): 4647-4654.

[31] Inoue Y, Kamota S, Ito K, et al. Molecular cloning and expression analysis of rainbow trout (Oncorhynchusmykiss) interleukin-10 cDNAs[J]. Fish & Shellfish Immunology, 2005, 18(4): 335-344.

[32] 肖凡書, 昌鳴先, 孫軍, 等. 鰱(Hypophthalmichthysmolitrix)IL-10基因的克隆及表達分析[J]. 自然科學進展, 2006, 16(2): 183-189.

Xiao Fanshu, Chang Mingxian, Sun Jun, et al. Cloning and expression analysis of interleukin-10 from the silver carp,Hypophthalmichthysmolitrix[J]. Progress in Natural Science, 2006, 16(2): 183-189.

[33] Zhang Dianchang, Shao Yanqing, Huang Yanqin, et al. Cloning, characterization and expression analysis of interleukin-10 from the zebrafish (Daniorerion)[J]. BMB Reports, 2005, 38(5): 571-576.

[34] Pinto R D, Nascimento D S, Reis M I R, et al. Molecular characterization, 3D modelling and expression analysis of sea bass (DicentrarchuslabraxL.) interleukin-10[J]. Molecular Immunology, 2007, 44(8): 2056-2065.

[35] Seppola M, Larsen A N, Steiro K, et al. Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (GadusmorhuaL.)[J]. Molecular Immunology, 2008, 45(4): 887-897.

[36] Grayfer L, Hodgkinson J W, Hitchen S J, et al. Characterization and functional analysis of goldfish (CarassiusauratusL.) interleukin-10[J]. Molecular Immunology, 2011, 48(4): 563-571.

[37] Harun N O, Costa M M, Secombes C J, et al. Sequencing of a second interleukin-10 gene in rainbow troutOncorhynchusmykissand comparative investigation of the expression and modulation of the paraloguesinvitroandinvivo[J]. Fish & Shellfish Immunology, 2011, 31(1): 107-117.

[38] Piazzon M C, Savelkoul H F J, Pietretti D, et al. Carp IL10 has anti-inflammatory activities on phagocytes, promotes proliferation of memory T cells, and regulates B cell differentiation and antibody secretion[J]. The Journal of Immunology, 2015, 194(1): 187-199.

[39] van Beurden S J, Forlenza M, Westphal A H, et al. The alloherpesviral counterparts of interleukin 10 in European eel and common carp[J]. Fish & Shellfish Immunology, 2011, 31(6): 1211-1217.

[40] Sunarto A, Liongue C, McColl K A, et al. Koi herpesvirus encodes and expresses a functional interleukin-10[J]. Journal of Virology, 2012, 86(21): 11512-11520.

[41] Piazzon M C, Wentzel A S, Tijhaar E J, et al. Cyprinid herpesvirus 3 Il10 inhibits inflammatory activities of carp macrophages and promotes proliferation of IgM+B cells and memory T cells in a manner similar to carp Il10[J]. The Journal of Immunology, 2015, 195(8): 3694-3704.

[42] Chen Ruanni, Su Yongquan, Wang Jun, et al. Molecular characterization and expression analysis of interferon-gamma in the large yellow croakerLarimichthyscrocea[J]. Fish & Shellfish Immunology, 2015, 46(2): 596-602.

[43] Wu Jun, Shi Yuhong, Zhang Xueheng, et al. Molecular characterization of anIL-1βgene from the large yellow croaker (Larimichthyscrocea) and its effect on fish defense againstVibrioalginolyticusinfection[J]. Zoological Research, 2015, 36(3): 133-141.

[44] Mu Yinnan, Wang Kunru, Ao Jingqun, et al. Molecular characterization and biological effects of a CXCL8 homologue in large yellow croaker (Larimichthyscrocea)[J]. Fish & Shellfish Immunology, 2015, 44(2): 462-470.

[45] Ding Yang, Ao Jingqun, Ai Chunxiang, et al. Molecular and functional identification of three interleukin-17A/F (IL-17A/F) homologues in large yellow croaker (Larimichthyscrocea)[J]. Developmental & Comparative Immunology, 2016, 55: 221-232.

[46] Zhu Qian, Li Chan, Yu Zhenxing, et al. Molecular and immune response characterizations of IL-6 in large yellow croaker (Larimichthyscrocea)[J]. Fish & Shellfish Immunology, 2016, 50: 263-273.

[47] Ao Jingqun, Mu Yinnan, Xiang Lixin, et al. Genome sequencing of the perciform fishLarimichthyscroceaprovides insights into molecular and genetic mechanisms of stress adaptation[J]. PLoS Genetics, 2015, 11(4): e1005118.

[48] Zheng Wenbiao, Tian Chen, Chen Xinhua. Molecular characterization of goose-type lysozyme homologue of large yellow croaker and its involvement in immune response induced by trivalent bacterial vaccine as an acute-phase protein[J]. Immunology Letters, 2007, 113(2): 107-116.

[49] Salinas I, Zhang Yong’an, Sunyer J O. Mucosal immunoglobulins and B cells of teleost fish[J]. Developmental & Comparative Immunology, 2011, 35(12): 1346-1365.

[50] Ouyang Wenjun, Rutz S, Crellin N K, et al. Regulation and functions of the IL-10 family of cytokines in inflammation and disease[J]. Annual Review of Immunology, 2011, 29(1): 71-109.

[51] Mu Yinnan, Wan Xiang, Lin Kebing, et al. Liver proteomic analysis of the large yellow croaker (Pseudosciaenacrocea) following polyriboinosinic: polyribocytidylic acid induction[J]. Fish Physiology and Biochemistry, 2013, 39(5): 1267-1276.

Cloning and expression analysis of large yellow croaker (Larimichthysrocea) IL-10 gene

Zheng Weibing1, Mu Pengfei2, Ding Lianshuai1, Yang Sisi1, Ao Jingqun1,Ai Chunxiang2, Chen Xinhua1

(1.KeyLaboratoryofMarineBiogeneticResources,ThirdInstituteofOceanography,StateOceanicAdministration,Xiamen361005,China; 2.CollegeofOceanandEarthSciences,XiamenUniversity,Xiamen361005,China)

Interleukin-10 (IL-10) is a central anti-inflammatory cytokine that demonstrates immunosuppressive function. In this research, an interleukin-10 (IL-10) homologue has been identified by analyzed the genomic data of large yellow croaker (Larimichthyscrocea). Subsequently, the open reading frame (ORF) of cDNA and the genomic DNA sequences have been cloned and analyzed. The genomic DNA of large yellow croaker IL-10(LycIL-10) consisted of 1 869 bp that contains five exons and four introns, sharing the same organization with mammalian IL-10 genes. The open reading frame of LycIL-10 consisted 555 bp that give a predicted 184 amino acid IL-10 molecule. It contains a predicted signal peptide of 22 amino acids in the N-terminal and a mature peptide of 162 amino acids, which contained the vertebrate IL-10 family signature. The LycIL-10 exhibits a conserved IL-10 motif signature and shares 26.49%-77.01% amino acid sequence identity with other known IL-10. Real-time PCR analysis showed that LycIL-10 was constitutively expressed in all tissues tested, especially in spleen and muscle. The LycIL-10 mRNA transcription level could significantly increase in the spleen and head kidney of large yellow croaker after trivalent inactivated vaccines or poly(I∶C) stimulated, indicating that LycIL-10 may be involved in suppressing the inflammatory induced by bacterium or virus in the large yellow croaker.

large yellow croaker; interleukin-10; molecule cloning; real-time PCR; expression analysis

10.3969/j.issn.0253-4193.2017.04.005

2016-07-01;

2016-07-31。

國家自然科學基金資助項目(31001131 ,31372556);廈門南方海洋研究中心資助項目(13GZP002NF08,14CZP049SF02)。

鄭維兵(1976—),男,福建省寧德市人,高級技術員,研究方向為水產養殖。E-mail:wbzhen@tio.ory.cn

*通信作者:陳新華(1968—),男,湖北省武漢市人,研究員,研究方向為魚類分子免疫學。E-mail:chenxinhua@tio.org.cn

S917.4

A

0253-4193(2017)04-0050-11

鄭維兵,慕鵬飛,丁連帥,等. 大黃魚(Larimichthyscrocea)IL-10基因的克隆與表達分析[J].海洋學報,2017,39(4):50—60,

Zheng Weibing, Mu Pengfei, Ding Lianshuai, et al. Cloning and expression analysis of large yellow croaker (Larimichthysrocea) IL-10 gene[J]. Haiyang Xuebao,2017,39(4):50—60, doi:10.3969/j.issn.0253-4193.2017.04.005

猜你喜歡
大黃魚內含子脾臟
我國大黃魚產業的集聚水平研究
線粒體核糖體蛋白基因中內含子序列間匹配特性分析
脾臟也會出現鈣化
28元/斤的輝煌不再!如今大黃魚深陷價格“泥沼”,休漁期或初現曙光
不同方向內含子對重組CHO細胞中神經生長因子表達的影響
更 正
陸地棉GhDHN1基因結構及內含子生物信息學分析
寧德大黃魚“ 游”出新天地
《犬脾臟海綿狀血管瘤病例報告》圖版
腹腔鏡脾切除術與開腹脾切除術治療脾臟占位的比較
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合