?

GATA1轉錄因子調控巨核細胞分化機制的研究進展

2017-06-05 14:18汪海濤楊紅旗羅龍龍吳曉雄
中國藥理學與毒理學雜志 2017年5期
關鍵詞:骨髓白血病纖維化

汪海濤,楊紅旗,羅龍龍,呂 明,吳曉雄

(1.中國人民解放軍總醫院第一附屬醫院血液科,北京 100048;2.中國人民解放軍總醫院老年血液科,北京100853;3.軍事醫學科學院基礎醫學研究所免疫學研究室,北京 100850)

GATA1轉錄因子調控巨核細胞分化機制的研究進展

汪海濤1,2,3*,楊紅旗2*,羅龍龍3,呂 明3,吳曉雄1

(1.中國人民解放軍總醫院第一附屬醫院血液科,北京 100048;2.中國人民解放軍總醫院老年血液科,北京100853;3.軍事醫學科學院基礎醫學研究所免疫學研究室,北京 100850)

GATA1是一種含有2個鋅指結構的轉錄因子,參與紅細胞、巨核細胞、肥大細胞和嗜酸性粒細胞的正常生物學功能。研究發現,GATA1轉錄因子在巨核細胞分化中起重要調控作用,其表達異??赡芤鹧“鍦p少癥、白血病和骨髓纖維化等血液系統疾病。本文就轉錄因子GATA1調控巨核細胞分化的機制、GATA1表達異常和血液系統疾病的關系及可能靶向轉錄因子GATA1藥物的研究進展予以綜述。

GATA1轉錄因子;巨核細胞;細胞分化;血小板減少癥;白血病

巨核細胞是產生血小板的前體細胞,約占骨髓有核細胞的0.1%。巨核細胞由造血干細胞分化而來,此過程伴隨細胞形態學、表面分子、胞質特異性顆粒生成及DNA倍體的變化,這些均需要轉錄因子精確調控相關基因的表達,比較重要的轉錄因子有GATA1,Fli-1,NF-E2,Ets-1和FOG-1等[1-4]。GATA1轉錄因子是巨核細胞分化過程中研究較為深入的轉錄因子之一。本文就近年來GATA1轉錄因子調控巨核細胞分化的相關研究予以綜述。

1 GATA1轉錄因子分子結構概述

GATA家族是一族含鋅指結構的轉錄因子,包含GATA1~GATA6等6個成員,它們在人和哺乳動物細胞中廣泛表達。根據組織分布部位不同,GATA家族成員的功能也各有差異。GATA1是GATA家族最早被發現的成員,相對分子質量42 000。人的GATA1轉錄因子由413個氨基酸殘基組成,包含2個高度保守的鋅指結構域,能與GATA基因的基元(motif)區結合,對造血細胞的發育具有重要作用。雖然GATA1轉錄因子分子中2個鋅指結構相同,均為Cys-X2-Cys,但二者作用卻不同:C端鋅指結構專司與DNA結合,N端鋅指結構能增強C端結合的穩定性,二者具有協同作用[5-6]。GATA1轉錄因子在紅細胞、巨核細胞、肥大細胞、嗜酸性粒細胞和嗜堿性粒細胞中高水平表達,在造血干細胞中表達較低。因此,GATA1轉錄因子被認為是紅系/巨核系分化中起重要調節作用的轉錄因子[7-11]。但也有文獻報道,GATA1轉錄因子在促進巨核細胞系分化時,其蛋白表達水平并不升高,而通過增加入核促進細胞分化,這可能與GATA1轉錄因子的磷酸化有關[2]。

2 GATA1轉錄因子參與調控巨核細胞分化

2.1 GATA1轉錄因子調控巨核細胞分化的機制

巨核細胞的分化成熟是一個連續的過程,根據細胞的增殖能力、細胞形態及成熟程度,可人為地分為造血干細胞、紅系/巨核祖細胞、巨核系祖細胞、原始巨核細胞、幼巨核細胞、顆粒型巨核細胞和產板型巨核細胞等7個階段[12]。隨著巨核細胞逐漸成熟,細胞呈現體積增大、胞漿產生特異性顆粒和DNA倍體增多等特點,GATA1轉錄因子參與了巨核細胞分化的整個過程,其異常表達將引起上述特征的變化。

2.1.1 GATA1基因敲除對小鼠巨核細胞的影響

Vyas等[13]采用基因敲除小鼠從整體水平研究了GATA1轉錄因子對巨核細胞及血小板的影響。他們發現,GATA1缺陷小鼠骨髓巨核細胞體積減小,并出現核分葉偏少、胞漿不足和膜發育不良等形態改變;PCR檢測巨核細胞血小板糖蛋白Ⅰb-α(platelet glycoproteinⅠb-α,GPⅠb-α)、GPⅠb-β、血小板因子4和血小板生成素受體等mRNA水平均有不同程度降低。后續研究發現,GATA1缺陷不僅影響了血小板的數量,還導致了血小板功能障礙。正常血小板為圓盤狀,而GATA1缺陷小鼠的血小板為均勻的球形,胞質粗面內質網、核糖體過多,不能產生血小板特異性顆粒,也不能被凝血酶或ADP、腎上腺素誘導成為活化血小板[7]。

2.1.2 GATA1基因敲除對巨核細胞表面分子的影響

GPⅡb是造血干細胞向巨核細胞分化的早期標志之一。Uzan等[14]發現GATA1轉錄因子能結合到小鼠GPⅡb基因-643 bp的啟動子上,使小鼠胚胎干細胞定向向巨核細胞分化。這說明GATA參與了干細胞的譜系分化,包括紅系/巨核祖細胞的早期分化。GATA1轉錄因子還通過影響血栓烷A2(thromboxane A2,TXA2)受體的表達影響血小板的聚集功能。人類TXA2受體α受啟動子Prm1的調控轉錄。Gannon等[15]通過電泳遷移率變動分析和染色質免疫共沉淀方法發現,GATA1轉錄因子能結合到TXA2受體DNA的-7962 bp至-7717 bp,從而激活Prm1并促進TXA2受體α轉錄,進而影響血小板聚集和血管收縮。

2.1.3 GATA1基因點突變對巨核細胞分化的影響

編碼GATA1轉錄因子的基因定位在X染色體的短臂(Xp11.23)上[16]。在某些情況下,GATA1點突變可能引起GATA1蛋白的結構異常,也會導致巨核細胞分化障礙[17]。Freson等[18]研究發現,GATA1的D218G點突變雖不影響GATA1轉錄因子與DNA的結合,但卻降低GATA1和轉錄因子FOG-1的結合能力,導致巨核細胞成熟障礙。此類患者血小板完全不成熟,缺乏GPⅠb,GPⅢa,GPⅨ和GPⅤ等幾乎所有的糖蛋白,但D218G點突變患者紅細胞卻不受影響。后續研究又發現,GATA1存在多種形式的突變,對GATA1轉錄因子功能的影響及點突變患者的臨床表現[18-22](表1)。

2.2 GATA1轉錄因子和miRNA共調控巨核細胞分化

微RNA(microRNA,miRNA)是一類內生的、長度20~24個核苷酸的非編碼單鏈RNA,它可以通過干擾mRNA的穩定性及翻譯過程來調控基因的表達。研究發現,miRNA水平的失調可能導致白血病并影響巨核細胞的分化,目前已發現大約200余種miRNA參與了巨核細胞的分化[23-24]。近年研究發現,miRNA和轉錄因子共同參與了巨核細胞分化調控,且相互影響組成復雜的調控網絡[25-28]。Zhai等[25]應用丙二醇甲醚醋酸酯誘導K562細胞向巨核細胞定向分化,發現細胞內miR-146b及轉錄因子GATA1的水平均升高,而沉默miR-146b可使細胞內GATA1轉錄因子水平降低,導致K562細胞停止向巨核細胞分化;與之對應,轉染miR-146b的類似物能使GATA1轉錄因子水平升高并促進K562細胞向巨核細胞分化。這說明miR-146b通過影響轉錄因子GATA1的水平,共調控K562細胞向巨核細胞分化。GATA1基因缺失小鼠G1E細胞系,是研究GATA1功能的細胞模型。Dore等[26]通過轉染技術重建G1E細胞GATA1的功能,并用miRNA芯片篩選出11個差異性表達的miRNA,通過染色質免疫共沉淀檢測發現,GATA1轉錄因子結合到miRNA144/451基因-2.8 kb的啟動子上,并招募RNA聚合酶Ⅱ增加miRNA144/451的轉錄。這說明轉錄因子GATA1調控著miRNA的轉錄水平。研究還發現,在紅細胞分化過程中也存在著轉錄因子GATA1和眾多miRNA的相互調控作用,這說明轉錄因子和miRNA共同參與造血細胞的分化,組成了復雜的調控網絡[29-32]。目前有關轉錄因子和miRNA共調控巨核細胞分化的研究較少,將來可能成為巨核細胞分化領域研究的熱點之一。

3 GATA1轉錄因子與血液系統疾病的關系

由于GATA1轉錄因子能影響紅細胞、巨核細胞、肥大細胞和嗜堿性粒細胞等多種細胞的分化和功能,GATA-l的突變或表達水平異常,可能引起多種造血系統疾病。

表1 GATA1錯義突變引起的紅系/巨核造血異常

3.1 GATA1轉錄因子與血小板減少癥

美國學者Nichols等[33]在2000年首次報道了GATA1突變引起的疾病。同一家族中2位表兄弟均表現為外周血紅細胞形態異常,血小板減少,骨髓出現體積增大的多核紅細胞及小巨核細胞,而家系中女性完全正常。DNA測序發現,GATA1的205位氨基酸由纈氨酸突變為甲硫氨酸(V205M),這也符合GATA1基因是X連鎖的遺傳規律。由于敲除GATA1基因小鼠均在胚胎期死亡,只能采取基因嵌入技術制造GATA1突變模型來研究其功能。Chang等[20]向小鼠嵌入GATA1(V205M)基因,建立GATA1(V205M)雜合子突變小鼠模型,發現大部分雄性小鼠因嚴重貧血死于11.5 d胚胎期,小部分GATA1(V205M)突變的小鼠出生,但因GATA1功能低下引起嚴重貧血和血小板減少,也在出生后不久死亡。值得注意的是,GATA1轉錄因子過高同樣會引起血小板減少。Wei等[34]通過腹腔內注射豚鼠抗小鼠血小板抗體的方法,建立免疫性血小板減少性紫癲的BALB/c小鼠模型,q-PCR檢測模型小鼠脾GATA1的mRNA水平,發現模型小鼠脾GATA1 mRNA水平較對照組升高6倍??傊?,GATA1轉錄因子對紅細胞和巨核細胞的分化具有至關重要的作用,有關GATA1的突變可能是致死性的。

3.2 GATA1轉錄因子與白血病

唐氏綜合征(Down syndrome,DS)是由21號染色體增多導致的疾病,患者合并急性巨核細胞白血?。╝cute megakaryocyte leukemia,AMKL)的發病率是正常人的500倍,中位發病年齡是2歲。研究發現,幾乎所有的DS相關AMKL患者均存在GATA1突變,而其他類型的白血病則無突變[35-36],說明DS相關AMKL與GATA1突變有關。研究發現,轉錄因子PU.1表達增多能引起小鼠紅白血?。╩ouse erythroleukemia,MEL),GATA1轉錄因子能抑制轉錄因子PU.1的表達。Papetti等[37]通過細胞轉染技術使MEL細胞過表達GATA1,結果細胞內PU.1水平降低,且MEL細胞向成熟紅細胞分化。GATA1的表達水平異常不僅能導致白血病的發生,還能影響白血病的預后。Shimamoto等[38]通過逆轉錄PCR檢測了110例白血病患者GATA1的mRNA表達水平。發現GATA1表達異常影響急性粒細胞白血?。╝cute myeloid leukemia,AML)患者的預后,GATA1陽性AML患者完全緩解率只有64%,而GATA1陰性患者為86%,同時GATA1陽性患者預期生存較差。

3.3 GATA1轉錄因子與骨髓纖維化

Vannucchi等[39]發現,GATA1基因缺陷小鼠除巨核細胞生成障礙,骨髓轉化生長因子β1、血小板源性生長因子和血管內皮生長因子等細胞因子水平升高,最終會發展成骨髓纖維化。其另一項研究發現,存在TPO(high)和GATA1(low)基因突變的小鼠在疾病后期均會出現骨髓纖維化,且病理學特點類似。檢測TPO(high)小鼠血漿GATA1轉錄因子水平偏低,而GATA1(low)小鼠血漿血小板生成素水平則正常,給予外源性血小板生成素,GATA1(low)小鼠巨核細胞GATA1蛋白水平恢復正常,且骨髓纖維化逆轉,因此推測血小板生成素和GATA1具有上下游關系,二者共同參與了小鼠骨髓纖維化的形成[40]。

有關GATA1缺陷能否引起人骨髓纖維化,Vannucchi等[41]以12例骨髓纖維化患者和8例正常人為對象,分別從骨髓提取了CD34+干細胞和CD61+巨核細胞,發現2組患者CD34+干細胞GATA1轉錄因子水平無明顯差異,而骨髓纖維化患者CD61+細胞的GATA1轉錄因子水平明顯低于正常人。進一步骨髓活檢免疫組化發現,特發性骨髓纖維化患者45%的巨核細胞GATA1轉錄因子呈陰性,而正常人只有2%陰性。說明GATA1轉錄因子在人體也參與骨髓纖維化病理生理過程。

4 GATA1轉錄因子相關的藥物研究

目前仍無針對GATA1轉錄因子靶點的藥物,但文獻報道祖國傳統醫學中皂苷、黃酮和白蘆藜醇等可能通過影響GATA1轉錄因子相關的分子通路來治療疾?。?2-46]。Wen等[42]用人參二醇皂苷分別誘導巨核細胞白血病細胞系Meg-01和CHRF-288,發現它們的GATA1在mRNA和蛋白水平均有升高,且向成熟巨核細胞分化。Sun等[43]等發現,三七總皂苷誘導Meg-01和CHRF-288細胞系向成熟巨核細胞分化可能和促分裂原活化的蛋白激酶信號通路有關,且GATA1轉錄因子是此過程中的關鍵分子。另有研究發現,黃芩黃酮可能通過GATA1轉錄因子起到抗白血病作用[44-45]。Yang等[44]發現,黃芩黃酮對慢性粒細胞白血?。╟hronic myeloid leukemia,CML)K562細胞系具有雙重作用,一方面能誘導K562細胞系向紅系分化,另一方面能將K562細胞的細胞周期阻滯在G0/G1期,抑制其增殖,并對耐伊馬替尼的CML同樣具有治療作用,為耐伊馬替尼的CML患者帶來了希望。趙燕娜等[46]發現,白蘆藜醇也能通過上調GATA1表達誘導K562細胞分化,并抑制其增殖??傊?,GATA1轉錄因子促進巨核細胞分化的機制仍不明確,所以尚無靶向GATA1轉錄因子的藥物,還需進一步探索。

5 結語

轉錄因子GATA1是造血細胞分化的重要調控因子,對維持巨核系、紅系和嗜酸性粒細胞的正常生物學功能有不可或缺的作用。GATA1基因突變或異常表達可能會引起血液系統疾病,如血小板減少癥、白血病和骨髓纖維化等。在過去的15年,有關GATA1轉錄因子和造血系統疾病的關系已有深入研究,但GATA1轉錄因子調控有關巨核細胞分化的關鍵基因尚不明確,GATA1轉錄因子及其輔助因子與miRNA相互作用的模式還不清楚,針對GATA1轉錄因子靶點的藥物研究也相對較少。進一步研究解決這些問題,有可能會開創一個新領域。

[1]Zang C,Luyten A,Chen J,Liu XS,Shivdasani RA. NF-E2,FLI1 And RUNX1 collaborate at areas of dynamic chromatin to activate transcription in mature mouse megakaryocytes[J].Sci Rep,2016,6:30255.

[2]Wang HT,Yang B,Hu B,Chi XH,Luo LL,Yang HQ,et al.The effect of amifostine on differ?entiation of the human megakaryoblastic Dami cell line[J].Cancer Med,2016,5(8):2012-2021.

[3]Pimkin M,Kossenkov AV,Mishra T,Morrissey CS,Wu W,Keller CA,et al.Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis[J].Genome Res,2014,24(12):1932-1944.

[4]Chen L,Kostadima M,Martens JH,Canu G,Garcia SP,Turro E,et al.Transcriptional diversity during lineage commitmentofhuman blood progenitors[J].Science,2014,345(6204):1251033.

[5]Pevny L,Simon MC,Robertson E,Klein WH,Tsai SF,D′Agati V,et al.Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factorGATA-1[J].Nature,1991,349(6306):257-260.

[6]ShivdasaniRA.Molecularand transcriptional regulation ofmegakaryocyte differentiation[J].Stem Cells,2001,19(5):397-407.

[7]Matsumura I,Kanakura Y.Molecular control of megakaryopoiesis and thrombopoiesis[J].Int J Hematol,2002,75(5):473-483.

[8]García P,Berlanga O,Vegiopoulos A,Vyas P,Frampton J.c-Myb and GATA-1 alternate domi?nant roles during megakaryocyte differentiation[J].J Thromb Haemost,2011,9(8):1572-1581.

[9]Nei Y,Obata-Ninomiya K,Tsutsui H,Ishiwata K,Miyasaka M,Matsumoto K,et al.GATA-1 Regu?lates the generation and function of basophils[J].Proc Natl Acad Sci USA,2013,110(46):18620-18625.

[10] Wolff L,Humeniuk R.Concise review:erythroidversusmyeloid lineage commitment:regulating the master regulators[J].Stem Cells,2013,31(7):1237-1244.

[11]Du C,Xu Y,Yang K,Chen S,Wang X,Wang S,et al.Estrogen promotes megakaryocyte polyploidi?zation via estrogen receptor beta-mediated transcription of GATA1[J].Leukemia,2017,31(4):945-956.

[12]Kaushansky K,Lichtman M A,Beutler E,Kipps T J,Prchal J T,Seligsohn U,et al.Williams Hematology[M].8th ed.New York:McGraw-Hill Education,2010:1721-1722.

[13] VyasP,AultK,JacksonCW,OrkinSH,Shivdasani RA.Consequences of GATA-1 deficiency in megakaryocytes and platelets[J].Blood,1999,93(9):2867-2875.

[14]Uzan G,Prandini MH,Berthier R.Regulation of gene transcription during the differentiation of megakaryocytes[J].Thromb Haemost,1995,74(1):210-212.

[15] Gannon AM,Kinsella BT.Regulation of the human thromboxane A2 receptor gene by Sp1,Egr1,NF-E2,GATA-1,and Ets-1 in megakaryocytes[J].J Lipid Res,2008,49(12):2590-2604.

[16]Kumar R,Kahr WH.Congenital thrombocytopenia:clinical manifestations,laboratory abnormalities,and molecular defects of a heterogeneous group of conditions[J].Hematol Oncol Clin North Am,2013,27(3):465-494.

[17]Daly ME.Transcription factordefects causing platelet disorders[J].Blood Rev,2017,31(1):1-10.

[18]Freson K,Devriendt K,Matthijs G,Van Hoof A,De Vos R,Thys C,et al.Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation[J].Blood,2001,98(1):85-92.

[19]Mehaffey MG,Newton AL,Gandhi MJ,Crossley M,Drachman JG.X-linked thrombocytopenia caused by a novel mutation of GATA-1[J].Blood,2001,98(9):2681-2688.

[20]Chang AN,Cantor AB,Fujiwara Y,Lodish MB,Droho S,Crispino JD,et al.GATA-Factor depen?dence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis[J].Proc Natl Acad Sci USA,2002,99(14):9237-9242.

[21]Freson K, Matthijs G, Thys C, Mari?n P,Hoylaerts MF,Vermylen J,et al.Different substitu?tions at residue D218 of the X-linked transcription factor GATA1 lead to altered clinical severity of macrothrombocytopenia and anemia and are asso?ciated with variable skewed X inactivation[J].Hum Mol Genet,2002,11(2):147-152.

[22]Balduini CL,Pecci A,Loffredo G,Izzo P,Noris P,Grosso M,et al.Effects of the R216Q mutation of GATA-1 on erythropoiesis and megakaryocytopoiesis[J].Thromb Haemost,2004,91(1):129-140.

[23]Edelstein LC,McKenzie SE,Shaw C,Holinstat MA,Kunapuli SP,Bray PF.MicroRNAs in platelet pro?duction and activation[J].J Thromb Haemost,2013,11(Suppl 1):340-350.

[24]Starczynowski DT,Kuchenbauer F,Argiropoulos B,Sung S,Morin R,Muranyi A,et al.Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype[J].Nat Med,2010,16(1):49-58.

[25]Zhai PF,Wang F,Su R,Lin HS,Jiang CL,Yang GH,et al.The regulatory roles of microRNA-146b-5p and its target platelet-derived growth factor receptor α(PDGFRA)in erythropoiesis and mega?karyocytopoiesis[J].J Biol Chem,2014,289(33):22600-22613.

[26]Dore LC,Amigo JD,Dos Santos CO,Zhang Z,Gai X,Tobias JW,et al.A GATA-1-regulated microRNA locus essential for erythropoiesis[J].Proc Natl Acad Sci USA,2008,105(9):3333-3338.

[27]Lindsay CR,Edelstein LC.MicroRNAs in platelet physiology and function[J].Semin Thromb Hemost,2016,42(3):215-222.

[28]Trécul A,Morceau F,Gaigneaux A,Schnekenburger M,Dicato M,Diederich M.Valproic acid regulates erythro-megakaryocytic differentiation through the modulation of transcription factors and microRNA regulatory micro-networks[J].Biochem Pharmacol,2014,92(2):299-311.

[29]Wang F,Zhu Y,Guo L,Dong L,Liu H,Yin H,et al. A regulatory circuit comprising GATA1/2 switch and microRNA-27a/24 promotes erythropoiesis[J].Nucleic Acids Res,2014,42(1):442-457.

[30]Kouhkan F,Hafizi M,Mobarra N,Mossahebi-Mohammadi M,Mohammadi S,Behmanesh M,et al.miRNAs:A new method for erythroid differen?tiation of hematopoietic stem cells without the pres?ence of growth factors[J].Appl Biochem Biotechnol,2014,172(4):2055-2069.

[31]Zhu Y,Wang D,Wang F,Li T,Dong L,Liu H,et al. A comprehensive analysis of GATA-1-regulated miRNAs reveals miR-23a to be a positive modulator of erythropoiesis[J].Nucleic Acids Res,2013,41(7):4129-4143.

[32]Li Y,Bai H,Zhang Z,Li W,Dong L,Wei X,et al. The up-regulation of miR-199b-5p in erythroid differen?tiation is associated with GATA-1 and NF-E2[J].Mol Cells,2014,37(3):213-219.

[33]Nichols KE,Crispino JD,Poncz M,White JG,Orkin SH,Maris JM,et al.Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1[J].Nat Genet,2000,24(3):266-270.

[34]Wei H,Ding X,Ren J,Liu K,Tan P,Li D,et al. A murine model for human immune thrombocytopenic purpura and comparative analysis of multiple gene?expression in bone marrow and spleen[J].J Genet Genomics,2008,35(11):665-671.

[35]Hitzler JK,Cheung J,Li Y,Scherer SW,Zipursky A. GATA1 Mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome[J].Blood,2003,101(11):4301-4304.

[36]Groet J,McElwaine S,Spinelli M,Rinaldi A,Burtscher I,Mulligan C,et al.Acquired mutations in GATA1 in neonates with Down′s syndrome with transient myeloid disorder[J].Lancet,2003,361(9369):1617-1620.

[37]Papetti M,Skoultchi AI.Reprogramming leukemia cells to terminal differentiation and growth arrest by RNA interference of PU.1[J].Mol Cancer Res,2007,5(10):1053-1062.

[38]Shimamoto T, Ohyashiki K, Ohyashiki JH,Kawakubo K,Fujimura T,Iwama H,et al.The expression pattern of erythrocyte/megakaryocyterelated transcription factors GATA-1 and the stem cell leukemia gene correlates with hematopoietic differ?entiation and is associated with outcome of acutemyeloid leukemia[J].Blood,1995,86(8):3173-3180.

[39] Vannucchi AM,Bianchi L,Cellai C,Paoletti F,Rana RA,Lorenzini R,et al.Development of myelofibrosis in mice genetically impaired for GATA-1 expression〔GATA-1(low)mice〕[J].Blood,2002,100(4):1123-1132.

[40]Vannucchi AM,Bianchi L,Paoletti F,Pancrazzi A,Torre E,Nishikawa M,et al.A pathobiologic pathway linking thrombopoietin,GATA-1,and TGF-beta1 in the development of myelofibrosis[J].Blood,2005,105(9):3493-3501.

[41] Vannucchi AM,Pancrazzi A,Guglielmelli P,Di Lollo S,Bogani C,Baroni G,et al.Abnormalities of GATA-1 in megakaryocytes from patients with idiopathic myelofibrosis[J].Am J Pathol,2005,167(3):849-858.

[42]Wen WW,Sun X,Zhuang HF,Lin XJ,Zheng ZY,Gao RL,et al.Effects of panaxadiol saponins compo?nent as a new Chinese patent medicine on prolifer?ation,differentiation and corresponding gene expression profile of megakaryocytes[J].Chin J Integr Med,2016,22(1):28-35.

[43]Sun X,Gao RL,Lin XJ,Xu WH,Chen XH.Panax notoginsengsaponins induced up-regulation,phos?phorylation and binding activity of MEK,ERK,AKT,PI-3K protein kinases and GATA transcrip?tion factors in hematopoietic cells[J].Chin J Integr Med,2013,19(2):112-118.

[44]Yang H,Hui H,Wang Q,Li H,Zhao K,Zhou Y,et al.Wogonin induces cell cycle arrest and erythroid differentiation in imatinib-resistant K562 cells and primary CML cells[J].Oncotarget,2014,5(18):8188-8201.

[45]Li H,Hui H,Xu J,Yang H,Zhang X,Liu X,et al. Wogonoside induces growth inhibition and cell cycle arrest via promoting the expression and binding activity of GATA-1 in chronic myelogenous leukemia cells[J].Arch Toxicol,2016,90(6):1507-1522.

[46]Zhao YN,Gao RL,Wang LP,Yu XL,Yin LM.Effect of resveratrol on proliferation and differentiation in K562 cells[J].Chin Pharmacol Bull(中國藥理學通報),2014,30(6):853-856.

Mechanism of GATA1 transcription factor in regulation of megakaryocytes differentiation:recent advances

WANG Hai-tao1,2,3*,YANG Hong-qi2*,LUO Long-long3,LYU Ming3,WU Xiao-xiong1

(1.Department of Hematology,First Affiliated Hospital of Chinese PLA General Hospital,Beijing 100048,China;2.Department of Geriatric Hematology,Chinese PLA General Hospital, Beijing 100853,China;3.Institute of Basic Medical Sciences,Academy of Military Medical Sciences,Beijing 100850,China)

GATA1 is a transcription factor containing two zinc finger structures and is expressed in red blood cells,megakaryocytes,mast cells,and eosinophils,and it is important to the normal biological func?tion.It was found that GATA1 transcription factor plays an important role in megakaryocyte differentia?tion,and abnormal expressions may cause blood diseases,such as thrombocytopenia,leukemia and idiopathic myelofibrosis.This article aimed to review research progress in the mechanism of GATA1 regu?lating megakaryocytes differentiation,the relationship between GATA1 abnormal expression and blood system diseases,and possible drugs targeting GATA1 transcription factor.

GATA1 transcription factor;megakaryocytes;cell differentiation;thrombocytopenia;leukemia

The project supported by National Natural Science Foundation of China(81273597);Innovation and Nursery Foundation of Chinese PLA General Hospital(15KMM28);and Military Health Care Foundation(13BJ247)

WU Xiao-xiong,E-mail:xiongwuxiao@sohu.com,Tel:(010)66848181;LYU Ming,E-mail: lm62033@163.com,Tel:(010)66931325

R966

:A

:1000-3002-(2017)05-0439-06

10.3867/j.issn.1000-3002.2017.05.009

2016-10-27 接受日期:2017-03-16)

(本文編輯:喬 虹)

國家自然科學基金(81273597);解放軍總醫院科技創新苗圃基金(15KMM28);全軍保健基金(13BJ247)

汪海濤,男,碩士,主要從事血液病的基礎與臨床研究,E-mail:ws_ht@126.com;楊紅旗,女,學士,主要從事血液病的護理研究,E-mail:549131561@qq.com

吳曉雄,E-mail:xiongwuxiao@sohu.com,Tel:(010)66848181;呂 明,E-mail:lm62033@163.com,Tel:(0 10)66931325

*共同第一作者。

*Co-first author.

猜你喜歡
骨髓白血病纖維化
白血病“造訪”,人體會有哪些信號?
線粒體自噬在纖維化疾病中作用的研究進展
肝纖維化無創診斷研究進展
氧化槐定堿體內體外通過AKT/mTOR通路調控自噬抑制HBV誘發肝纖維化
骨髓18F-FDG攝取模式在初診彌漫大B細胞淋巴瘤診斷骨髓浸潤的價值
骨髓中缺氧誘導因子1α和血小板衍生生長因子B在骨髓增生異常綜合征的表達
走進兒童白血病的世界
芪紅水煎液抗大鼠免疫肝纖維化的作用機制
贊美骨髓
裸露
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合