?

藥用植物活性成分調控p65核轉運總結與展望

2017-09-23 04:43袁丹王玉倩黃萍崔?;?/span>周欣雨梁盈
中國中藥雜志 2017年17期

袁丹 王玉倩 黃萍 崔?;≈苄烙辍×河?/p>

[摘要] NFκB作為細胞內最重要的核轉錄因子,參與許多細胞內信號通路的傳導以及遺傳信息的轉錄與調控,其信號傳導通路主要包括IκB激酶的活化、IκB蛋白降解以及p65的核轉運,其中p65核轉運結合DNA是NFκB發揮作用的關鍵。NFκB的異常激活是誘發氧化應激、炎癥、癌癥等的主要因素,因此維持NFκB活性平衡和調控p65的核轉運對相關課題的深入研究具有重要的參考意義。該文綜述了藥用植物中主要活性物質多酚類、皂苷類、生物堿等對p65核轉運的調控作用并對NFκB上游通路進行了討論,以期為天然活性物質開發成功能性食品的研究提供參考價值。

[關鍵詞] NFκB; 抑制活化; p65核轉運; 藥用植物活性物質

Summary and prospect of medicinal plant active substances in regulation of

p65 nuclear translocation

YUAN Dan, WANG Yuqian, HUANG Ping, CUI Xiaoji, ZHOU Xinyu, LIANG Ying*

(National Engineering Laboratory for Rice and Byproduct Deep Processing, Central South University of

Forestry & Technology, Changsha 410004, China)

[Abstract] As the most important nuclear transcription factors in the cells, NFκB is involved in many intracellular signaling pathways and transcription and regulation of genetic information. The signal transduction pathways mainly include the activation of IκB kinase, degradation of IκB protein and the nuclear translocation of p65. p65 transnuclear binding with DNA is the key for NFκB to play a role. Abnormal activation of NFκB is a major factor in the induction of oxidative stress, inflammation, cancer and so on. Therefore, maintaining the balance of NFκB activity and regulating the nuclear translocation of p65 have great significance for further research on related subjects. In this paper, the regulation effects of the main active substances of medicinal plants (such as polyphenols, saponins, and alkaloids) on p65 nuclear translocation and the upstream pathway of NFκB were discussed, expecting to provide reference for the development of natural active substances for functional food.

[Key words] NFκB; inhibition of activation; p65 nuclear translocation; medicinal plant active substances

近年來,隨著國際社會“回歸大自然”的熱潮以及天然活性物質在食品、醫藥領域的興起,藥用植物活性成分的研究受到了國際科研界的重視。藥用植物活性成分是指從植物體內分離提取出來的具有一定醫療保健功效的有效成分,主要包括多酚類化合物[13]、生物堿[46]、萜類化合物[79]及醌類化合物[1012]等。藥用植物來源的活性物質可通過體內細胞信號通路介導轉錄因子、生長因子等的表達而發揮特定生理作用,具有抗氧化[13]、預防心腦血管疾病[14]、抗菌[15]、抗癌[1617]等功效,能有效預防和控制疾病的發生。這些活性物質發揮生理作用并不都是被直接吸收利用的,而是通過調控機體中某些信號途徑來發揮其生理功能。NFκB作為細胞內最重要的核轉錄因子,參與許多細胞內信號通路的傳導以及遺傳信息的轉錄與調控,當活性物質作用于NFκB通路中的多個靶點時便能參與對機體生理病理過程的調控。為使藥用植物活性物質得到更廣泛的認可及利用,本文從NFκB信號通路中關鍵靶點的特點及其激活途徑出發,結合國內外近年來的研究成果對從藥用植物中提取的活性成分調控p65核轉運進行了概述,總結出藥用植物活性物質在一定程度上對NFκB信號通路的干預機制,為藥用植物的研究及開發提供一定的理論依據。

1 p65核轉運研究現狀

正常生理狀態下,NFκB與抑制蛋白IκB結合處于失活狀態存在于細胞質中,不影響細胞正常的生理活動,一旦受到外界刺激,NFκB靜息狀態則被打破而活化,導致下游基因的異常表達,持續的活性狀態會使這種異常加劇,從而誘發疾??;此外,NFκB活性的降低也被證實與部分免疫性疾病相關。因此,維持NFκB活性的平衡對生理功能的穩定有重要作用。NFκB發揮作用主要由其亞基所調控,而亞基的功能作用取決于亞基結構中是否含有N端Rel同源區(Rel homology domain,RHD)和C端反式激活結構域(transactivation domain,TD),RHD負責與DNA結合、二聚體化以及核轉運,TD則與轉錄活化相關。p65亞基結構中同時含有RHD和TD,p50和p52亞基只有RHD而缺乏TD,因此p50和p52同源二聚體無法激活基因轉錄,相比之下,異源二聚體p50/p65在細胞中含量高,有2~3個獨立的活性轉錄區,此外,p65可直接與NFκB抑制蛋白IκB相偶聯,因此p65的核轉運對NFκB通路信號轉導起到了決定性的作用(圖1)[1820]。NFκB分布的廣泛性使之成為疾病治療中的重要靶點,調控p65核轉運的研究也受到了國內外學者的廣泛關注。endprint

目前國內外對于NFκB信號通路中p65核轉運的研究主要集中于以下幾方面:①其他信號通路與NFκB/p65核轉運的交聯作用,最常見的如:MAPK信號通路與NFκB/p65核轉運之間存在的調控關系[2123];②根據其他活性因子或效應器與p65核轉運之間的協同或拮抗作用,進一步探索這些活性因子或效應器作用機制中尚不明確或仍未知的靶點等,從而更好地了解其分子作用模式,如研究發現的肽基脯氨酰異構酶親環蛋白A(peptidylprolyl isomerase cyclophilin A,CypA)促進NFκB/p65核定位,為抑制腫瘤細胞增殖提供了新思路——利用CypA的特異性抑制劑調控p65核轉運活性[24]。此外,小泛素相關修飾因子1(small ubiquitinrelated modifier 1, SUMO1)與NFκB/p65核轉運的拮抗作用也使SUMO1成為抑制肝癌細胞增殖和遷移的新靶點[25]等;③NFκB/p65核轉運抑制因子的探索,除了普遍了解的抑制蛋白IκB,還有吳歌等[26]發現的SIP(steriod receptor coactivatorinteracting protein,類固醇受體協同激活因子相互作用蛋白)蛋白,Zhu J等[27]發現的TDP43(transactivation response element DNAbinding protein 43,TAR DNA結合蛋白43),都是NFκB信號傳導途徑中存在的抑制劑;④檢測分析p65核轉運的技術研究,目前已見報道的有成像流式細胞術,可同時評估NFκB/p65磷酸化和核定位[28]。在這些研究中,通過藥用植物活性成分物質與NFκB/p65核轉運的相互作用來例證上述結果不僅使研究成果更具說服力,也為其實際利用提供了可靠依據。

2 p65核轉運的調控劑

NFκB/p65的入核與出核是維持細胞動態穩定的重要因素,作為體內蛋白降解[29]、細胞增殖[3032]、細胞凋亡[3334]的關鍵步驟,目前有關p65核轉運的的調控因子已有一些報道。根據其來源不同,可歸為以下4類:微生物源調控劑、化學合成物調控劑、蛋白質及多肽類調控劑、天然來源調控劑。

雖然這些調控劑對p65的核轉運均有調節作用,但不同的調控劑其作用方式并不相同。Wu S等研究表明大腸桿菌中的Ⅲ型分泌系統(T3SS)效應蛋白可通過阻止NFκB途徑中IκB的降解減少由腫瘤壞死因子α(TNFα)和白細胞介素1β(IL1β)刺激細胞引發的NFκB亞基p65核轉運。在炎癥環境中,強啡肽117(DYN 117)經過生物轉化產生的阿片肽物質和非阿片肽物質片段通過膜受體作用而抑制NFκB/p65核轉運發揮其抗炎作用[35]。Kastrati I等研究表明富馬酸二甲酯可通過共價修飾NFκB轉錄因子p65,以阻斷其核轉運,降低其與DNA結合活性,對于乳腺癌細胞中NFκB的活性具有明顯抑制作用[36]。

其中一些調控劑的作用已得到較全面的研究,但由于大多數經研究證實并生產使用的調控劑都屬于非天然來源,其本身具有的毒性或可能誘發的持久性免疫抑制作用,使得它們的應用被限制,找尋研發長效安全的調控核轉運的物質成了新的挑戰。

藥用植物活性物質的物理化學性質穩定,大多是藥用植物自身免疫體系或防御體系的組成部分,都是可作為膳食的生物活性物質,對于人類健康的維持以及亞健康的預防都具有重要作用。藥用植物活性成分物質的生理功能現已研究闡明的有抗氧化、降血壓、降膽固醇、抗炎癥、抗癌等[3738],對它們的作用機制的探索也不斷深入。眾多的體內外實驗研究表明,許多活性物質都能通過抑制NFκB活性、調控p65的核轉運來發揮其生理活性,有效抑制炎癥、腫瘤等的產生或增殖作用[5,39]。

3 藥用植物活性物質對p65核轉運的調控

根據Gilmore T D等[40]統計的700多種NFκB調控劑,其作用機制主要為以下3類:①通過調控引起NFκB活性失衡的胞外刺激因子或與NFκB通路有交聯作用的其他信號通路中的關鍵因子發揮作用;②通過調控IKK復合物、IκB蛋白磷酸化調控NFκB/p65轉核運的數量與強度;③調控NFκB/p65入核后與DNA的特異性結合活性而調控NFκB/p65核轉運的活性。

3.1 通過胞外或其他信號通路因子的間接調節 細胞內NFκB的調控是一個精細而又復雜的過程,除了TNFα、炎癥因子、LPS以及紫外線等外界刺激因素可直接影響NFκB的活性,其他信號通路中的關鍵因子對它也有一定的調節作用。因此,在對NFκB/p65核轉運的調控研究中,部分藥用植物活性物質是通過調節胞外信號傳導或與NFκB通路相關聯的其他信號因子來間接調控NFκB/p65核轉運的。

YouChang Oh等[41]研究發現白藜蘆醇抵抗炎癥是通過抑制細胞外部刺激誘導的IL8產生、MAPK/p38和ERK1/2磷酸化,以及NFκB活化和IκB蛋白的降解,從而減少細胞核內p65的表達而抑制促炎因子的轉錄表達;Dong WenPeng等[42]研究發現白藜蘆醇預處理亞急性腸炎小鼠試驗組中NFκB/p65從細胞質向細胞核的轉運被大大抑制了,這一過程需要激活SIRT1(Sirtuin 1,依賴于煙酰胺腺嘌呤二核苷酸NAD+的組蛋白脫乙酰酶)NFκB途徑;另外,Haigis M C等[43]提出SIRT1可以與NFκB的RelA/p65亞基相互作用并通過RelA/p65的去乙?;瘉硪种破滢D錄某些氨基酸;從而推測白藜蘆醇保護亞急性腸炎的作用機制是通過激活SIRT1NFκB通路抑制p65核轉運實現的。Tang F等[44]發現人參皂苷Rg1(ginsenoside Rg1)增加了炎癥小鼠細胞質中p65的表達,降低了小鼠腹主動脈縮窄及中心肌細胞的核內p65的表達,結果表明Rg1通過抑制TNFα/NFκB信號通路減輕了患病小鼠的心臟肥大;Wong V K等[45]發現柴胡皂苷Ssd(saikosaponind)在癌細胞中通過NFκB增強TNFα的抗癌效力也存在相同的作用機制。Hwang Y P等[46]證明了抗侵入性二氫青蒿素DHA可通過抑制PKCa/Raf/ERK和JNK磷酸化與還原,阻斷NFκB/p65轉移到細胞核中,發揮DHA抑制纖維肉瘤細胞的侵襲及轉移作用。Qian Z等[47]發現桑樹果實二氯甲烷提取物(mulberry fruitdichloromethane extract,MBFDE,成分為亞油酸和亞麻酸乙酯)處理炎癥細胞后其中的炎癥反應被抑制,結果表明MBFDE對胞內NFκB/p65核轉運調控是通過抑制MAPK/pERK活化來阻止NFκB信號傳導的。綜上,藥用植物活性成分通過調節胞外信號及其他通路中關鍵信號因子對p65核轉運的影響是顯而易見的,這種從源頭對NFκB的調控避免了活性失衡傳導至細胞內部后引起復雜多變的生理反應,為尋求藥物靶點等提供了更有針對性的方向。endprint

3.2 IKK,IκB調節 IKK激酶是NFκB通路活化的關鍵激酶,盡管上游信號途徑各不相同,但最終都匯聚在IKK激酶,IKK激酶的激活,誘導IκB蛋白的磷酸化和泛素化,IκB蛋白被降解,使得p65亞基從二聚體中釋放出來迅速從細胞質轉移到細胞核,完成IKKIκBNFκB通路的活化,從而發揮一系列生理作用。因此,在NFκB/p65核轉運的過程中,IKK激酶的活性強弱是決定NFκB/p65能否進行核轉運的關鍵因素。病理狀態下,NFκB活性失調,IKK激酶的高表達導致p65核轉運失控,進一步加速了機體紊亂。在眾多藥用植物活性成分對NFκB/p65核轉運的研究中,效應物所表現出來的調控作用很大一部分都與調節IKK激酶活性、IκB蛋白磷?;敖到庥嘘P:Wang F等[48]發現二氫丹參酮能抑制TNFα誘導IκBα的磷酸化與降解,減少p65的磷酸化與核內p65的數量。Lee S G等[49]發現藍莓、黑莓及黑醋栗的漿果花色素苷對炎癥細胞中NFκB/p65向細胞核的轉移都有顯著的減弱作用,直接影響腫瘤壞死因子α的分泌,結果表明花色素苷可以通過抑制IKK激酶的活性及IκB蛋白的降解調控NFκB/p65的核轉運發揮其抗腫瘤作用。Liu J等[50]研究發現來自犬瘟根的stauntoside B(甾體類化合物)通過將IKKα/β和IKK的磷酸化表達降低至正常水平,阻止NFκB的活化以及p65核轉運,stauntoside B對NFκB信號通路的強抑制作用證明了其在與NFκB信號通路相關的炎癥疾病中具有生物活性,這對將其研制成抗炎藥物提供了新的方向。Jiang Q等[51]對Lunasin(大豆中具有ArgGlyAsp基序的活性肽)抑制乳腺癌細胞遷移及侵襲的研究、Goto H等[5]對冬葉青小檗皮層中小檗堿抗原發性淋巴瘤的研究、Buhrmann C等[52]對姜黃根莖中的姜黃素抗炎的研究、Kannaiyan R等[53]對雷公藤根莖中的雷公藤紅素抑制骨髓瘤細胞增殖的研究中都證明了這些活性物質是通過抑制IKK激酶活性、IκB磷?;徒到鈦硪种芅FκB/p65核轉運的活性,從而發揮各項生理作用。

3.3 NFκB/p65 DNA結合活性調節 經過激活后的NFκB/p65亞基進入細胞核后與DNA結合啟動或抑制相關基因的轉錄表達,在這一過程中,新合成的IκB會進入細胞核內與NFκB結合并從細胞核轉出至細胞質中,抑制p65的核轉運。所以,對NFκB/p65與DNA結合活性的調節對p65核轉運的調控也具有重要作用。藥用植物活性成分對其結合活性的調節已有部分報道,Chow YuhLit等[54]證實來自山姜果實中的豆蔻明發揮抗炎作用是通過減弱NFκB與DNA結合活性而中斷NFκB/p65核轉運而實現的。Lu Yue等[11]研究表明虎杖根莖中的大黃素可抑制NFκB亞基p65的核轉運及其轉核后與同源DNA的結合活性,且這一過程與IKK激酶磷酸化、IκB的降解等有一定的相關性。然而,關于這之間更精準的作用關系或是否還存在其他因子使其有聯系仍是未知。

迄今,初步探索出的對NFκB/p65核轉運有調控作用的藥用植物活性成分眾多,但對其作用機制的揭示闡述卻鮮有報道。綜上,這些活性成分對NFκB/p65核轉運的調控是作用于“上游信號IKK激酶IκB蛋白NFκB/p65”這一途徑的不同靶點(表1)或不同階段(圖2)而實現的;不僅如此,不同的作用途徑之間還存在著相互影響的關系,正因如此,調控p65核轉運研究的復雜性與高效性推動著針對相應靶點藥用植物活性成分的開發方興未艾。

4 總結與展望

藥用植物在全世界各地都有廣泛的分布,而中國作為藥用植物種類最豐富的國家之一,對于這一寶貴資源的開發利用也只是冰山一角,絕大部分藥用植物并未物盡其用。隨著病理及營養學的不斷深入研究,這些藥用植物中小分子活性物質的生物學活性逐漸被證實,在炎癥、腫瘤等亟待攻克的世界生命科學難題中顯示出了巨大的潛能。

營養學及醫學界對干預NFκB信號通路調控p65核轉運來治療炎癥、腫瘤等疾病及相關功能性食品、藥品的開發愈發重視,其中藥用植物活性物質所表現出來的效用使其具有更廣闊的應用前景。但就現狀而言,絕大部分藥用植物活性成分病理作用機制并未研究清楚,對其調控NFκB/p65核轉運上游信號通路傳導機制仍不系統透徹。Fraser C C[68]提出G蛋白偶聯受體(GPCR)亞基Gq介導了NFκB在炎癥和癌癥中的作用,分別通過磷脂肌醇(protein kinase C,PKC)信號途徑(GqPKCIKKNFκB)和腺苷酸環化酶(adenylate cyclase,AC)作用下的蛋白激酶A(protein kinase A,PKA)途徑(GqACPKANFκB)。之后Patial S等[69]研究表明在G蛋白偶聯受體激酶5(GRK5)缺失的巨噬細胞中LPS誘導的NFκB/p65核轉運被阻斷,NFκB的活性被抑制,有效減少巨噬細胞中產生炎癥因子;Yuki Ohba等[70]表明G蛋白偶聯激酶6(GRK6)以激酶活性依賴性方式增強TNFα誘導的NFκB信號傳導。推測G蛋白偶聯受體(GPCRs)可能是NFκB/p65核轉運的一個上游靶信號蛋白,但外源性的活性物質是否通過GPCRsNFκB通路發揮作用以及是否存在其他上游信號蛋白與NFκB活化相關還有待進一步研究探索。雖然藥用植物活性成分對NFκB/p65核轉運的調控有密切關系,但只有在分子水平上對其作用機制及介導這一過程的關鍵蛋白進行深入的研究,才能為促進藥用植物活性成分的綜合利用提供更有力的佐證。

[參考文獻]

[1] Babu P V, Si H, Liu D. Epigallocatechin gallate reduces vascular inflammation in db/db mice possibly through an NFkappaBmediated mechanism [J]. Mol Nutr Food Res, 2012, 56(9): 1424.endprint

[2] EssafiBenkhadir K, Refai A, Riahi I, et al. Quince (Cydonia oblonga Miller) peel polyphenols modulate LPSinduced inflammation in human THP1derived macrophages through NFkappaB, p38MAPK and Akt inhibition [J]. Biochem Biophys Res Commun, 2012, 418(1): 180.

[3] Bhaskar S, Shalini V, Helen A. Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLRNFkappaB signaling pathway [J]. Immunobiology, 2011, 216(3): 367.

[4] Fu R H, Hran H J, Chu C L, et al. Lipopolysaccharidestimulated activation of murine DC2.4 cells is attenuated by nbutylidenephthalide through suppression of the NFkappaB pathway [J]. Biotechnol Lett, 2011, 33(5): 903.

[5] Goto H, Kariya R, Shimamoto M, et al. Antitumor effect of berberine against primary effusion lymphoma via inhibition of NFκB pathway [J]. Cancer Sci, 2012, 103(4): 775.

[6] Ershun Z, Yunhe F, Zhengkai W, et al. Cepharanthine attenuates lipopolysaccharideinduced mice mastitis by suppressing the NFkappaB signaling pathway [J]. Inflammation, 2014, 37(2): 331.

[7] Wang Y, Huang Z, Wang L, et al. The antimalarial artemisinin inhibits proinflammatory cytokines via the NFkappaB canonical signaling pathway in PMAinduced THP1 monocytes [J]. Int J Mol Med, 2011, 27(2): 233.

[8] Bi W Y, Fu B D, Shen H Q, et al. Sulfated derivative of 20(S)ginsenoside Rh2 inhibits inflammatory cytokines through MAPKs and NFkappa B pathways in LPSinduced RAW264.7 macrophages [J]. Inflammation, 2012, 35(5): 1659.

[9] Mathema V B, Koh Y S, Thakuri B C, et al. Parthenolide, a sesquiterpene lactone, expresses multiple anticancer and antiinflammatory activities [J]. Inflammation, 2012, 35(2): 560.

[10] Reuter S, Prasad S, Phromnoi K, et al. Embelin suppresses osteoclastogenesis induced by receptor activator of NFkappaB ligand and tumor cells in vitro through inhibition of the NFkappaB cell signaling pathway [J]. Mol Cancer Res: MCR, 2010, 8(10): 1425.

[11] Lu Y, Suh S J, Li X, et al. Citreorosein, a naturally occurring anthraquinone derivative isolated from Polygoni Cuspidati Radix, attenuates cyclooxygenase2dependent prostaglandin D2 generation by blocking Akt and JNK pathways in mouse bone marrowderived mast cells [J]. Food Chem Toxicol, 2012, 50(3/4): 913.

[12] Song S H, Min H Y, Han A R, et al. Suppression of inducible nitric oxide synthase by (-)isoeleutherin from the bulbs of Eleutherine americana through the regulation of NFkappaB activity [J]. Int Immunopharmacol, 2009, 9(3): 298.endprint

[13] Seiquer I, Rueda A, Olalla M, et al. Assessing the bioavailability of polyphenols and antioxidant properties of extra virgin argan oil by simulated digestion and Caco2 cell assays. Comparative study with extra virgin olive oil [J]. Food Chem, 2015, 188(2): 496.

[14] Andujar I, Recio M C, Giner R M, et al. Cocoa polyphenols and their potential benefits for human health [J]. Oxidat Med Cell Longev, 2012, 2012(9): 906252.

[15] Abdelwahab S I, Zaman F Q, Mariod A A, et al. Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens Kochummen [J]. J Sci Food Agr, 2010, 90(15): 2682.

[16] Abliz G, Mijit F, Hua L, et al. Anticarcinogenic effects of the phenolicrich extract from abnormal Savda Munziq in association with its cytotoxicity, apoptosisinducing properties and telomerase activity in human cervical cancer cells (SiHa) [J]. BMC Complement Alternat Med, 2015, 15(1): 23.

[17] Afzal M, Safer A M, Menon M. Green tea polyphenols and their potential role in health and disease [J]. Inflammopharmacology, 2015, 23(4): 151.

[18] Chen F E, Huang D B, Chen Y Q, et al. Crystal structure of p50/p65 heterodimer of transcription factor NFκB bound to DNA [J]. Nature, 1998, 391(6665): 410.

[19] Ghosh S, Gifford A M, Riviere L R, et al. Cloning of the ~50 DNA binding subunit of NκB: homology to rel and dorsal [J]. Cell, 1990, 62(5): 1019.

[20] Sen R B D. lnducibility of K lmmunoglobulin enhancerbingding protein NFκB by a posttranslational mechanism [J]. Cell, 1986, 47: 921.

[21] Fazal F, Bijli K M, Minhajuddin M, et al. Essential role of cofilin1 in regulating thrombininduced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM1) expression in endothelial cells [J]. J Biol Chem, 2009, 284(31): 21047.

[22] Chen J, Zhang J, Cao J, et al. Inflammatory MAPK and NFkappaB signaling pathways differentiated hepatitis potential of two agglomerated titanium dioxide particles [J]. J Hazard Mater, 2016, 304: 370.

[23] Kim H I, Hong S H, Ku J M, et al. Tonggyutang, a traditional Korean medicine, suppresses proinflammatory cytokine production through inhibition of MAPK and NFkappaB activation in human mast cells and keratinocytes [J]. BMC Complement Alternat Med, 2017, 17(1): 186.

[24] Sun S, Guo M, Zhang J B, et al. Cyclophilin A (CypA) interacts with NFκB subunit, p65/RelA, and contributes to NFκB activation signaling [J]. PLoS ONE, 2014, 9(8): 96211.endprint

[25] Liu J, Tao X, Zhang J, et al. Small ubiquitinrelated modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation [J]. Oncotarget, 2016, 7(16): 22206.

[26] 吳歌,王丹丹,孫露洋.SIP蛋白調節p65核轉位的作用機制[J]. 中國生物化學與分子生物學報,2011,27(8): 728.

[27] Zhu J, Cynader M S, Jia W. TDP43 inhibits NFκB activity by blocking p65 nuclear translocation [J]. PLoS ONE, 2015, 10(11): e0142296.

[28] Maguire O, O′Loughlin K, Minderman H. Simultaneous assessment of NFkappaB/p65 phosphorylation and nuclear localization using imaging flow cytometry [J]. J Immunol Methods, 2015, 423: 3.

[29] Schakman O, Dehoux M, Bouchuari S, et al. Role of IGFI and the TNFalpha/NFkappaB pathway in the induction of muscle atrogenes by acute inflammation [J]. Am J Physiol Endocrinol Metab, 2012, 303(6): 729.

[30] Ye X, Yuan L, Zhang L, et al. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF7 promoted by 17betaestradiol [J]. Asian Pac J Cancer Preven, 2014, 15(12): 5001.

[31] Wang Y, Lu P, Zhang W, et al. GEN27, a newly synthetic isoflavonoid, inhibits the proliferation of colon cancer cells in inflammation microenvironment by suppressing NFκB pathway [J]. Med Inf, 2016, 2016: 1.

[32] Shimizu H, Bolati D, Adijiang A, et al. NFκB plays an important role in indoxyl sulfateinduced cellular senescence, fibrotic gene expression, and inhibition of proliferation in proximal tubular cells [J]. Ajp Cell Physiol, 2011, 301(301): C1201.

[33] Rui L X, Shu S Y, Jun W J, et al. The dual induction of apoptosis and autophagy by SZC014, a synthetic oleanolic acid derivative, in gastric cancer cells via NFkappaB pathway [J]. Tumour Bio, 2016, 37(4): 5133.

[34] Chen G, Chen Y, Chen H, et al. The effect of NFkappaB pathway on proliferation and apoptosis of human umbilical vein endothelial cells induced by intermittent high glucose [J]. Mol Cell Bioche, 2011, 347(1/2): 127.

[35] Rahiman S S F, Morgan M, Gray P, et al. Dynorphin 117 and its Nterminal biotransformation fragments modulate lipopolysaccharidestimulated nuclear factorkappa B nuclear translocation, interleukin1beta and tumor necrosis factoralpha in differentiated THP1 cells [J]. PLoS ONE, 2016, 11(4): e0153005.

[36] Kastrati I, Siklos M I, CalderonGierszal E L, et al. Dimethyl fumarate inhibits the nuclear factor kappaB pathway in breast cancer cells by covalent modification of p65 protein [J]. J Biol Chem, 2016, 291(7): 3639.endprint

[37] 趙芹, 吳修, 李效尊, 等. 蓮(Nelumbo nucifera)不同部位活性物質及其藥理作用研究進展[J]. 分子植物育種,2016,14(7): 1864.

[38] 趙文竹, 張瑞雪, 于志鵬, 等.食源性植物糖蛋白研究進展[J]. 食品工業科技,2016,37(16): 389.

[39] Liu S H, Lu T H, Su C C, et al. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NFkappaB signaling pathway [J]. Am J Chin Med, 2014, 42(4): 869.

[40] Gilmore T D, Herscovitch M. Inhibitors of NFκB signaling: 785 and counting [J]. Oncogene, 2006, 25(51): 6887.

[41] Oh Y C, Kang O H, Choi J G, et al. Antiinflammatory effect of resveratrol by inhibition of IL8 production in LPSinduced THP1 cells [J]. Am J Chin Med, 2009, 37(6): 1203.

[42] Dong W, Li F, Pan Z, et al. Resveratrol ameliorates subacute intestinal ischemiareperfusion injury [J]. J Surg Res, 2013, 185(1): 182.

[43] Haigis M C, Sinclair D A. Mammalian sirtuins: biological insights and disease relevance [J]. Ann Rev Pathol Mechan Dis, 2010, 5(1): 253.

[44] Tang F, Lu M, Yu L, et al. Inhibition of TNFαmediated NFκB activation by ginsenoside Rg1 contributes the attenuation of cardiac hypertrophy induced by abdominal aorta coarctation [J]. J Cardiovas Pharmacol, 2016, 68(4): 257.

[45] Wong V K W, Zhang M M, Zhou H, et al. Saikosaponind enhances the anticancer potency of TNFα via overcoming its undesirable response of activating NFKappa B signalling in cancer cells [J]. Evid Based Complement Alternat Med, 2013, 2013(4): 745295.

[46] Yong P H, Yun H J, Kim H G, et al. Suppression of PMAinduced tumor cell invasion by dihydroartemisinin via inhibition of PKCα/Raf/MAPKs and NFκB/AP1dependent mechanisms [J]. Bioche Pharmacol, 2010, 79(12): 1714.

[47] Qian Z, Wu Z, Huang L, et al. Mulberry fruit prevents LPSinduced NFκB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice [J]. Sci Rep, 2015, 5: 17348.

[48] Wang F, Ma J, Wang K S, et al. Blockade of TNFalphainduced NFkappaB signaling pathway and anticancer therapeutic response of dihydrotanshinone I [J]. Int Immunopharmacol, 2015, 28(1): 764.

[49] Lee S G, Kim B, Yang Y, et al. Berry anthocyanins suppress the expression and secretion of proinflammatory mediators in macrophages by inhibiting nuclear translocation of NFkappaB independent of NRF2mediated mechanism [J]. J Nutr Biochem, 2014, 25(4): 404.

[50] Liu J, Tang J, Zuo Y, et al. Stauntoside B inhibits macrophage activation by inhibiting NFκB and ERK MAPK signalling [J]. Pharmacol Res, 2016, 111: 303.endprint

[51] Jiang Q, Pan Y, Cheng Y, et al. Lunasin suppresses the migration and invasion of breast cancer cells by inhibiting matrix metalloproteinase2/9 via the FAK/Akt/ERK and NFκB signaling pathways [J]. Oncol Rep, 2016, 36(1): 253.

[52] Buhrmann C, Mobasheri A, Busch F, et al. Curcumin modulates nuclear factor kappaB (NFkappaB)mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3kinase/Akt pathway [J]. J Biol Chem, 2011, 286(32): 28556.

[53] Kannaiyan R, Hay H S, Rajendran P, et al. Celastrol inhibits proliferation and induces chemosensitization through downregulation of NFkappaB and STAT3 regulated gene products in multiple myeloma cells [J]. Bri J Pharmacol, 2011, 164(5): 1506.

[54] Chow Y L, Lee K H, Vidyadaran S, et al. Cardamonin from Alpinia rafflesiana inhibits inflammatory responses in IFNgamma/LPSstimulated BV2 microglia via NFkappaB signalling pathway [J]. Int Immunopharmacol, 2012, 12(4): 657.

[55] 宋來新,張長城,王婷,等. 淫羊藿總黃酮通過抑制 MAPK /NFκB 信號通路減輕自然衰老大鼠腦組織炎癥反應[J]. 中國藥理學通報, 2017, 33(1): 84.

[56] Yang J, Li Q, Zhou X D, et al. Naringenin attenuates mucous hypersecretion by modulating reactive oxygen species production and inhibiting NFkappaB activity via EGFRPI3KAkt/ERK MAPKinase signaling in human airway epithelial cells [J]. Mol Cell Biochem, 2011, 351(1/2): 29.

[57] Cui L, Feng L, Zhang Z H, et al. The antiinflammation effect of baicalin on experimental colitis through inhibiting TLR4/NFkappaB pathway activation [J]. Int Immunopharmacol, 2014, 23(1): 294.

[58] Yeh J L, Hsu J H, Hong Y S, et al. Eugenolol and glycerylisoeugenol suppress LPSinduced iNOS expression by downregulating NFkappaB AND AP1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages [J]. Pharmacology, 2011, 24(2): 345.

[59] Chai X, Guan Z, Yu S, et al. Design, synthesis and molecular docking studies of sinomenine derivatives [J]. Bioorg Med Chem Lett, 2012, 22(18): 5849.

[60] Sung B, Ahn K S, Aggarwal B B. Noscapine, a benzylisoquinoline alkaloid, sensitizes leukemic cells to chemotherapeutic agents and cytokines by modulating the NFkappaB signaling pathway [J]. Cancer Res, 2010, 70(8): 3259.

[61] Liu X H, Pan L L, Yang H B, et al. Leonurine attenuates lipopolysaccharideinduced inflammatory responses in human endothelial cells: involvement of reactive oxygen species and NFkappaB pathways [J]. Eur J Pharm, 2012, 680(1/3): 108.

[62] 周代星,占成業,何雪心. 甲基蓮心堿對 Ang II誘導血管平滑肌細胞增殖及ERK/NFκB通路的影響 [J]. 中國新藥雜志,2009,18(15): 1440.endprint

[63] Zhu T, Wang D X, Zhang W, et al. Andrographolide protects against LPSinduced acute lung injury by inactivation of NFkappaB [J]. PLoS ONE, 2013, 8(2): e56407.

[64] 王海燕,覃慧林,張永峰,等. 木瓜三萜對佐劑性關節炎大鼠關節滑膜組織中Akt,NFκB 和促炎因子的表達影響[J]. 中國實驗方劑學雜志, 2017, 23(5): 141.

[65] Bento A F, Marcon R, Dutra R C, et al. βCaryophyllene inhibits dextran sulfate sodiuminduced colitis in mice through CB2 receptor activation and PPARgamma pathway [J]. Am J Pathol, 2011, 178(3): 1153.

[66] Hafeez B B, Jamal M S, Fischer J W, et al. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NFkappaB signaling pathways [J]. Int J Cancer, 2012, 131(9): 2175.

[67] Karki R, Park C H, Kim D W. Extract of buckwheat sprouts scavenges oxidation and inhibits proinflammatory mediators in lipopolysaccharidestimulated macrophages (RAW264.7) [J]. J Integr Med, 2013, 11(4): 246.

[68] Fraser C C. G proteincoupled receptor connectivity to NFkappaB in inflammation and cancer [J]. Int Rev Immunol, 2008, 27(5): 320.

[69] Patial S, Shahi S, Saini Y, et al. Gprotein coupled receptor kinase 5 mediates lipopolysaccharideinduced NFκB activation in primary macrophages and modulates inflammation in vivo in mice [J]. J Cell Physiol, 2011, 226(5): 1323.

[70] Ohba Y, Nakaya M, Watari K, et al. GRK6 phosphorylates IkappaBalpha at Ser(32)/Ser(36) and enhances TNFalphainduced inflammation [J]. Biochem Biophys Res Commun, 2015, 461(2): 307.

[責任編輯 張寧寧]endprint

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合