?

基于逆動力學的機械臂魯棒位置控制方法的設計

2020-07-03 05:03顧建華
中國工程機械學報 2020年3期
關鍵詞:滑模反演轉矩

段 純,顧建華

(1.安徽新聞出版職業技術學院機電信息系,安徽合肥230601;2.鹽城工業職業技術學院機電工程學院,江蘇鹽城224005)

隨著科學技術的不斷進步與國民生活水平的不斷提高,人們對工業的要求也越來越高。機械臂的出現為工業智能化的發展提供了良好動力。機械臂通過對人類的手臂進行模仿,能夠通過編程使其完成指定的貨物抓取、搬運以及操作簡單的勞動工具等功能[1]。機械臂在工業上可完成繁重具有循環性的工作,同時機械臂還能夠在較為惡劣的環境下進行工作,從而減輕了人們的勞動量,降低了人們在惡劣環境下工作發生危險的系數[2]。由于機械臂的獨特優勢,近些年來機械臂已被廣泛應用于輕工冶金、煤炭及礦產開采、快遞物流等多個技術領域。機械臂在運動過程中的位置控制,決定著機械臂工作過程的準確以及穩定性。若機械臂在位置控制過程中準確度較低,波動性較大,將會嚴重影響機械臂的性能[3]。因此,對機械臂的位置控制進行研究就變得意義非凡。

伴隨著研究人員對機械臂位置控制的不斷深入,當下出現了多種多樣的機械臂位置控制方法。例如,Van等[4]通過對神經網絡方法進行研究,提出了一種基于徑向基函數(RBF)的自適應軌跡跟蹤神經網絡控制方法,對N連桿機器人的關節位置控制問題進行了RBF網絡控制,利用反向傳播算法和李雅普諾夫穩定性定理,推導了網絡參數的自適應轉向規律,保證了整個系統的穩定性和權值自適應的收斂性。Lu等[5]提出了一種基于線性二次型調節器(LQR)的機械臂位置控制的方法,利用假設模態法和拉格朗日方程,建立了機械臂的動力學模型,利用動力學模型推導出狀態方程,基于Mamdani模型,在傳統的LQR控制中加入模糊算法,對LQR控制變量R進行自適應調整,提高了控制系統的適應性。Oliveira等[6]提出了一種基于混沌的機械臂高階滑模位置控制優化算法,對機器人關節空間位置控制的高階魯棒滑??刂破鞯膮颠M行優化,進而實現位置的控制。Wang等[7]設計了一種基于混合控制的機械臂定位與振動控制方法,利用參考值的幅度約束構建延時濾波器,利用延時濾波器建立混合閉環控制系統,對機械臂的位置進行控制。上述方法雖然都能夠對機械臂的位置進行控制,但控制過程較為緩慢,而且準確性與魯棒性都不高。

對此,本文以反演控制方法與滑??刂品椒榛A,提出了基于逆動力學的機械臂魯棒位置控制方法。通過對機械臂電機系統的動力學進行分析,獲取電機系統的動力學函數,明確了電機系統的動力學控制過程。利用轉矩到位置轉換方法和反演滑??刂品椒ㄔO計了逆動力學控制器,通過反演滑??刂品椒▽φ{節變量的李雅普諾夫函數及其導數進行分析,獲取電機轉矩函控制函數。通過轉矩到位置轉換方法,將利用電機轉矩求取的位置控制量傳入伺服電機,實現對機械臂位置的快速準確、魯棒的控制。實驗結果顯示,所提方法能夠較好地對不同激勵信號產生的目標軌跡進行追蹤,說明所提方法不僅能夠對機械臂的位置進行準確快速的控制,而且還具有較強的魯棒性。

1 系統描述

本文所采用的伺服電機為埃斯頓公司的EMJ-04APB22型電機,該電機的參數如表1所示。伺服電機系統通常依靠反饋增益從電機軸上獲取所需的輸出信息。比例(P)-積分(I)-微分(D)控制器由于其設計以及實現過程相對較為簡單,為伺服系統中最常用的一種用于獲取反饋增益的控制器。由于在EMJ-04APB22型電機內部,比例(P)運算起主要作用,因此,可假設伺服電機系統的內部控制器為P型控制器。通常利用該低電平控制器的輸出,作為電機轉矩控制的控制信號,以通過對電機轉矩的控制實現對機械臂的運動過程進行調節。

表1 EMJ-04APB22型電機參數表Tab.1 Motor parameters of EMJ-04APB22

在忽略電機的電氣動力因素下,令齒輪軸的速度和加速度分別為與,電機傳動比為kg,電機的阻尼系數為B,則電機系統動力學函數可以表示為[8]

電機動力學的簡化框圖如圖1所示。圖中:ωm,ω分別表示電機軸轉速與變速箱的速度輸出;kp表示控制器的p增益量;qd,q分別表示電機的目標位置與實際位置,追蹤誤差e=qd-q。因此,低電平P型控制器輸出Δq的求取過程為

圖1 電機動力學簡化框圖Fig.1 Simplified block diagram of motor dynamics

2 控制器設計

如圖2所示,本文利用轉矩到位置轉換方法和反演滑??刂品椒ㄔO計了一種逆動力學控制器,用以實現機械臂對目標位置qd進行準確的追蹤。

圖2 逆動力學控制器設計框圖Fig.2 Design block diagram of inverse dynamics controller

2.1 反演滑??刂品椒ㄔO計

為了克服機械臂系統中存在的外界噪聲干擾以及時變不定性、建模誤差等因素,在此將滑??刂品椒ㄅc反演控制方法相結合,設計了一種反演滑??刂品椒╗9]。

令調節變量z1為

則調節變量z1對應的李雅普諾夫函數V1及其導數為

利用調節變量z1設計虛擬控制量a1為

式中:c1為大于零的常量系數。

通過虛擬控制量a1定義調節變量z2:

利用調節變量z2對進行變形可得

將調節變量z2視為滑動變量s:

則調節變量z2對應的李雅普諾夫函數V2及其導數為

聯合式(6)、式(8)及式(9)可得出電機轉矩控制函數為

式中:c2>0,k>0為常量系數;sign(s)為符號函數,

式中:η為有界干擾量。當,k> |η|時,可保證為負定,此時系統便處于穩定狀態。

根據系統動力學函數式(1),可得t時刻與t-L時刻干擾轉矩τl的表達式[10]為

式中:L>0是一個時間較短的采樣時間;由于參考軌跡具有光滑性,Jkg與Bkg為常量,機械臂關節具有有界速度和加速度,因此,可以假定為光滑函數。

則在一個短的采樣時間內,

在較短的采樣時間內,τl(t)-τ(t-L)引起的微小誤差可忽略不計。此時,關節加速度可使用關節位置測量數據的可靠精確微分器進行估算[11]。

2.2 轉矩到位置轉換方法設計

如圖2所示,轉矩到位置轉換方法將利用式(10)求得的電機轉矩τ來獲取一個位置控制量qcmd。由于式(10)求得的電機轉矩τ與伺服系統中低電平P型控制器產生的轉矩應相等,因此,具有如下表述[12]:

令采樣時間為Ts,則第k+1次采樣時所得的位置控制量qcmd[k+1]為

由此可見,第k+1次采樣時所得的位置控制量qcmd[k+1],需要通過第k次采樣時的電機轉矩以及電機實際位置來確定。將確定后的位置控制量qcmd[k+1]送入伺服電機,以獲取對機械臂的位置控制結果q,從而實現電機轉矩到機械臂位置的轉換控制。

3 實驗結果與分析

為了驗證所提方法的軌跡追蹤性能,通過Matlab/Simulink軟件進行了仿真實驗。實驗中分別采用了階躍信號以及梯形信號、正弦波信號來產生目標軌跡,并用所提方法及P型控制器方法對這兩種目標軌跡的追蹤軌跡進行了測試。實驗中設定常量系數c1=45,c2=280,k=12,低電平 P 型控制器的比例增益kp=35,干擾轉矩τl為

式中:mc=80.3×10-3N·m為靜摩擦系數;dc=15×10-3N·m為庫侖摩擦系數;hc=3.8×10-3N·m為黏性摩擦系數。

不同方法對階躍信號產生的目標軌跡的追蹤效果如圖3所示。由圖3可見:所提方法及P型控制器方法都能完成對目標軌跡的追蹤,但是將這兩種方法產生的追蹤軌跡進行對比發現,所提方法的追蹤軌跡比P型控制器方法的追蹤軌跡更為穩定,且能夠更快地完成目標軌跡的追蹤。不同方法對梯形信號產生的目標軌跡的追蹤效果如圖4所示。通過對圖4中不同方法的追蹤軌跡進行對比可見,圖4(a)的追蹤軌跡波動性較大,而且波動的最大幅度也較大,對目標軌跡的追蹤速度較慢。圖4(b)的追蹤軌跡中波動性較小,而且波動的最大幅度也較小,能夠更快地完成目標軌跡的追蹤。圖5為不同方法對正弦波信號產生的目標軌跡的追蹤效果。將圖5中不同方法的追蹤軌跡進行對比可見,圖5(a)的追蹤軌跡過沖量較大,而且過沖次數較多,產生的追蹤軌跡波動次數較多,當產生過沖時,對過沖量的調節時間較長。圖5(b)的追蹤軌跡中不僅過沖量較小,而且過沖次數較少,當產生過沖時,能夠較快地對過沖量進行調節,使追蹤軌跡能夠更快地到達目標軌跡。由此可見,所提方法對目標軌跡的追蹤效果較好,追蹤過程更為快速、穩定。說明了所提方法能夠較快、較穩定地對機械臂的位置進行較準確的控制。

圖3 階躍信號產生的目標軌跡追蹤效果Fig.3 Effect of step signal on target trajectory tracking

圖4 梯形信號產生的目標軌跡追蹤效果Fig.4 Effect of target trajectory tracking by trapezoid signal produces

圖5 正弦波信號產生的目標軌跡追蹤效果Fig.5 Effect of target trajectory tracking by sine wave signal

4 結語

本文對機械臂的電機系統進行了分析,獲取了機械臂電機系統的動力學函數。在此基礎上設計了基于逆動力學的機械臂魯棒位置控制方法。通過聯合反演滑??刂品椒ㄅc轉矩到位置轉換方法,設計了逆動力學控制器。該控制器通過將反演控制方法與滑??刂品椒ㄏ嘟Y合,以抵御外界噪聲以及時變不定性、建模誤差等因素干擾,通過構造電機轉矩函數,求取電機轉矩。利用轉矩到位置轉換方法,以電機的轉矩為依據,求取電機的位置控制量,并將該控制量送入伺服電機,用以完成對機械臂的準確、快速以及穩定的控制。并在實驗中利用所設計方法對多種激勵信號產生的位置軌跡進行了追蹤,追蹤結果顯示,所設計方法不僅能夠快速、準確地對目標軌跡進行追蹤,而且追蹤過程較為平穩。說明所設計方法能夠對機械臂進行準確且魯棒的位置控制。

猜你喜歡
滑模反演轉矩
反演對稱變換在解決平面幾何問題中的應用
自適應換相與轉矩補償的開關磁阻電機轉矩脈動抑制
基于Ansys Maxwell 2D模型的感應電動機轉矩仿真分析
基于ADS-B的風場反演與異常值影響研究
某型低速大轉矩驅動電機設計與研究
利用錐模型反演CME三維參數
一類麥比烏斯反演問題及其應用
基于組合滑??刂频慕^對重力儀兩級主動減振設計
基于霍爾位置信號的無刷直流電機直接轉矩控制
使用SGCMGs航天器滑模姿態容錯控制
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合