?

半滑舌鰨hsd11b1l和hsd11b2基因的克隆及其溫度響應的表達規律*

2021-03-06 03:02郝先才邵長偉
漁業科學進展 2021年2期
關鍵詞:雄魚皮質醇結構域

郝先才 馮 博 邵長偉 王 倩

半滑舌鰨和基因的克隆及其溫度響應的表達規律*

郝先才1,2馮 博1,2邵長偉1,2王 倩2①

(1. 上海海洋大學水產與生命學院 上海 201306;2. 中國水產科學研究院黃海水產研究所 青島海洋科學與技術試點國家實驗室海洋漁業科學與食物產出過程功能實驗室 青島 266071)

皮質醇在魚類應對外界環境壓力的過程中起到重要調控作用,而和具有調節體內皮質醇濃度的重要功能。本研究克隆了半滑舌鰨()和基因的cDNA全長序列,分析了其序列特征,研究了其時空表達特征及溫度響應的表達規律。結果顯示,cDNA全長為1650 bp,開放性閱讀框長度為864 bp,編碼287個氨基酸;cDNA全長為4526 bp,開放性閱讀框長度為1209 bp,編碼402個氨基酸。半滑舌鰨不同組織和性腺發育時期的表達分析結果顯示,在肝臟中表達量最高,在卵巢的表達量是精巢的2倍,且在6月齡和3齡魚的卵巢中呈現較高表達;而主要在精巢中表達,在6月齡魚的精巢中表達量最高,隨后表達量急劇降低,在卵巢中各個時期幾乎不表達。半滑舌鰨溫度響應的表達結果顯示,高溫(28℃)處理2個月后,與正常溫度(22℃)對照組相比,和在雄魚中的表達量均顯著降低(<0.05);高溫短期應激48 h,表達在雌魚和雄魚中均顯著降低,表達僅在雄魚中有顯著下調(<0.05)。本研究探討了和基因在半滑舌鰨性別分化過程中的表達規律,為研究環境溫度與半滑舌鰨性別分化之間的關系奠定了基礎。

半滑舌鰨;性別決定;溫度;基因;基因

脊椎動物的性別通常由基因型決定,其性別一旦形成就很難發生改變,這種性別決定方式稱為遺傳型性別決定(Genetic sex determination, GSD)。但在一些爬行類、兩棲類、魚類等相對低等的脊椎動物中,外界環境因素,諸如溫度、pH、密度及社會性等都有可能影響性別,而這種性別決定方式稱為環境型性別決定(Environmental sex determination, ESD) (Francis 1984; Rubin, 1985; Francis, 1993; Tabata, 1995)。前期研究發現,皮質醇在ESD型物種響應外界環境壓力方面起到重要作用(Sadoul, 2019)。在魚類中,溫度是主要的外界壓力源,外界溫度的變化會顯著增加機體或細胞的皮質醇水平,從而對魚類生殖生長、性別分化等產生影響(Wendelaar Bonga, 1997; Mommsen, 1999)。在大西洋鮭()幼魚時期,注射皮質醇后發現,雄魚的比例增加并且卵巢生長受到抑制(van den Hurk, 1985)。在牙鲆()性別決定時期,高溫引起皮質醇的增加,進而導致雄性比例升高(Yamaguchi, 2010)。截至目前,皮質醇介導溫度進而影響性別決定的機制尚不完全清楚。

羥基類固醇11β脫氫酶(Hydroxysteroid 11-beta dehydrogenase, HSD11β)屬于氧化還原酶家族,調控活性和無活性皮質酮間的相互轉化,同時,還參與類固醇代謝的生理過程(Krozowski, 1999)。在哺乳動物中,羥基類固醇11β脫氫酶存在2個亞型,分別為11β-Hydroxysteroid dehydrogenase type 1()和。的功能是將無活性的皮質酮轉化為有活性的皮質醇,的功能則相反(Albiston, 1994; Hu, 2019)。魚類不存在基因,而存在其同源基因Hydroxysteroid 11-beta dehydrogenase 1 like ()(Tsachaki, 2017)。在斑馬魚()和虱目魚()中,可以增加皮質醇的水平,這與哺乳動物中的功能相似(Baker, 2010; Hu, 2019)??梢越档汪~類組織皮質醇水平,從而保護組織免受皮質醇的傷害,并參與雄激素的合成(Alderman, 2012; Tokarz, 2013)。研究表明,高水平的雄激素可以直接影響魚類的性別決定和分化(Miura, 2008; Hattori, 2009; Blasco, 2010)。牙漢魚()高溫誘導雄性化過程中,皮質醇通過調節高表達促進雄激素生成,從而驅動精巢發生(Fernandino, 2012)。

半滑舌鰨()是我國重要的經濟魚類。研究表明,半滑舌鰨的性別決定類型是ZZ/ZW型,但其性別分化也受到外界環境的直接影響。在半滑舌鰨性別決定和分化的關鍵時期,高溫可以誘導遺傳雌性向表型雄性逆轉(Chen, 2014)。因此,半滑舌鰨是理解溫度與性別分化關系的理想模型。在本研究中,通過RACE克隆獲得半滑舌鰨和的cDNA全長,并對序列特征進行生物信息學分析,進而通過熒光定量PCR技術,分析其時空表達特征及溫度響應的表達規律,可為后續深入探究溫度與性別分化的關系提供基礎信息。

1 材料與方法

1.1 實驗材料

本實驗用半滑舌鰨均取自山東海陽黃海水產有限公司。隨機選取3齡半滑舌鰨雌魚和雄魚各3條,解剖后取腦、心臟、腸、鰓、脾臟、腎臟、肝臟、皮膚、精巢及卵巢。此外,取不同發育時期(30日齡、50日齡、3月齡、6月齡、2齡和3齡)半滑舌鰨性腺或性腺區域。將280尾30日齡的半滑舌鰨魚苗隨機等分為2組,分別采用高溫(28℃)及常溫(22℃)處理2個月,并在3月齡時解剖取性腺組織樣品;另取140尾3月齡半滑舌鰨魚苗,隨機等分為2組,分別進行高溫(28℃)與常溫(22℃)處理,48 h后解剖取性腺組織樣品。將上述樣品液氮速凍后放入超低溫冰箱保存。所有半滑舌鰨同時取尾鰭組織保存于酒精中,通過實驗室前期建立的性別特異分子標記方法進行遺傳性別鑒定(Jiang, 2017; Cui, 2018),對于3月齡半滑舌鰨,進一步結合基因的相對表達量剔除偽雄魚(Cui, 2017)。

1.2 半滑舌鰨hsd11b1l和hsd11b2的全長克隆

使用RNAprep pure Tissue Kit (Tiangen, 中國)提取3齡半滑舌鰨的精巢組織總RNA,并使用PrimeScriptTMII 1st Strand cDNA Synthesis Kit (TaKaRa, 日本)完成cDNA反轉錄。根據半滑舌鰨基因組中的(GenBank ID: XM_025065042)和(GenBank ID: XM_008310169)基因序列,利用Primer 6.0設計引物(hsd11b1l-F/R和hsd11b2-F/R) (表1)。利用SMARTTMRACE cDNA Amplification Kit (Clontech, 美國)進行5′和3′RACE克隆。RACE引物如表1所示。PCR產物經純化,克隆到pEasy-T1載體(TransGen, 中國)并進行測序。

1.3 hsd11b1l和hsd11b2基因序列的生物信息學分析

通過在線工具SMART (http://smart.embl-heidelberg. de/)預測了和的蛋白質結構。使用AliBaba2.1(http://gene-regulation.com/pub/programs/alibaba2/index.html)對和基因啟動子區域(轉錄起始位點上游500 bp和5'UTR區域)進行轉錄因子結合位點預測。從NCBI下載不同物種的蛋白質序列,然用根據軟件MEGAX使用Neighbor- Joining (NJ)法構建系統進化樹(Bootstrap=1000)。

1.4 半滑舌鰨hsd11b1l和hsd11b2基因的表達分析

選取各樣本高質量的RNA 1 μg,利用PrimeScript RT reagent Kit (Takara, 日本)試劑盒反轉錄生成cDNA。設計和的熒光定量檢測引物(表1),進行實時熒光定量PCR (Real-time PCR)表達分析。使用QuantiNova? SYBR Green PCR Kit (Qiagen, 德國)試劑盒,反應體系為20 μl,分別包含1 μl cDNA模板、10 μl SYBR Green PCR Master Mix (2×)、2 μl QN ROX Reference Dye及0.7 μmol/L的正向和反向引物。反應在ABI StepOnePlus_Real-Time PCR System (Applied Biosystems, 美國)進行,程序為95℃ 2 min;95℃ 5 s, 60℃ 10 s,共40個循環;95℃ 5 s, 60℃ 1 min, +1℃/min, 95℃ 15 s。內參用基因片段(β-actin-qF/R,表1)。每個反應體系設置3個技術重復。使用2–ΔΔCt方法分析以及基因在半滑舌鰨雌雄各組織、不同發育時期及溫度處理樣品中的表達水平(Livak, 2001; Li, 2010)。利用-檢驗分析顯著性,<0.05表示差異顯著。

表1 實驗所用到的引物

Tab.1 Primers used in the experiments

2 結果與分析

2.1 hsd11b1l和hsd11b2克隆和序列分析

通過RACE克隆獲得半滑舌鰨和基因的cDNA全長。的cDNA全長為1650 bp,包含97 bp的5'UTR和689 bp的3'UTR,開放性閱讀框(Open Reading Frame, ORF)為864 bp,編碼287個氨基酸,蛋白質的分子量為31.79 kDa,預測理論等電點(p)為7.65(圖1)。啟動子區域轉錄因子結合位點預測分析顯示,啟動子區域存在NF-kappaB、AP-1、E2、GATA-1、GR、PR、C/EBPalp、C/EBPbeta、TBP、HNF1、HNF3等轉錄因子結合位點?;虻腸DNA全長為4526 bp,包括1209 bp的ORF,5′UTR和3′UTR長度分別為403 bp和2914 bp,編碼402個氨基酸,預測分子量為44.5 kDa,理論等電點為8.38(圖2)。啟動子區域轉錄因子結合位點預測分析顯示,啟動子區域包含GR、TBP、Sp1、Ahr、PR、Sox-2、C/EBPalp、Elk-1、HNF-3、COUP、GATA-1等轉錄結合位點。將和mRNA比對到對應DNA序列,顯示包含6個外顯子,包含5個外顯子(圖3A)。

2.2 多序列比對和系統進化樹分析

利用SMART預測了半滑舌鰨HSD11B1L和HSD11B2的蛋白結構。結果顯示,這2個蛋白都存在1個保守的結構域,為短鏈脫氫酶(adh_short),其中,HSD11B1L還具有信號肽,HSD11B2包含2個跨膜結構域(圖3B)。根據ExPASy (https://www.expasy. org/)的GOR IV工具預測HSD11B1L和HSD11B2蛋白的二級結構,結果表明,HSD11B2蛋白的α-螺旋和無規卷曲含量比HSD11B1L高,而延伸鏈的比例少。

圖1 半滑舌鰨hsd11b1l基因核苷酸序列及推測的氨基酸序列

方框內為起始密碼子和終止密碼子,黑色下劃線表示polyA信號,紅色下劃線表示信號肽位置,藍色下劃線表示保守結構域

Frames indicate the start codon and stop codon, respectively. Black underline indicates the PolyA tail sequence, red underline indicates signal peptide, and blue underline indicates conserved domain

半滑舌鰨HSD11B1L和HSD11B2蛋白序列與其他物種同源性分析顯示,HSD11B1L與河豚(, XP_029684148.1)、牙鲆(XP_019936361.1)和斑馬魚(NP_ 956617.2) HSD11B1L蛋白的相似性分別為77.04%、73.08%和66.89%。HSD11B2蛋白與河豚(XP_029702217.1)、羅非魚(, NP_001266686.1)和斑馬魚(NP_997885.2) HSD11B2蛋白的序列相似性分別為77.08%、75.33%和69.40%。進化樹分析結果表明,HSD11B1L和HSD11B2均聚成了兩支,一支是哺乳動物、鳥類、兩棲動物和爬行動物,另一支是魚類(圖4A、B)。

2.3 hsd11b1l和hsd11b2在不同組織中的表達分布

和基因在3齡半滑舌鰨不同組織的表達分析結果顯示,主要在肝臟、卵巢、精巢和腸中表達,并且卵巢中的表達量顯著高于精巢(<0.05)。在精巢、腸、肝臟和腎臟中廣泛表達,而在卵巢中幾乎不表達(圖5)。

2.4 hsd11b1l和hsd11b2在性腺發育中的表達模式

在性別分化早期基本不表達,3月齡開始有微弱表達。在卵巢中,在6月齡的表達量急劇升高,然后在2齡時期急劇下降,在3齡表達量重新上升并達到峰值;在精巢中,表達與卵巢中類似,在6月齡表達量急劇升高,在2齡表達量略有下降,在3齡表達量重新上升并達到峰值,在6月齡及3齡中精巢的表達量均顯著低于卵巢(<0.05) (圖5A)。

基因在性別分化早期基本不表達。在精巢中,在3月齡開始表達,6月齡達到峰值且顯著高于其他時期(<0.05),隨后在2齡表達量下降并維持較低水平至3齡;在卵巢中,各階段均幾乎無法檢測到的表達(圖6B)。

2.5 hsd11b1l和hsd11b2在高溫處理下的表達

在30日齡到3月齡性別分化過程對半滑舌鰨進行高溫(28℃)處理,和基因在雄魚中的表達量均顯著低于正常生長溫度組(<0.05),在雌魚中的表達量無顯著差異(圖7A、B)。對3月齡幼魚進行48 h的短期高溫刺激后,表達量在雌魚和雄魚中均顯著下調,雌魚為常溫條件下的37.80%,雄魚為47.18%;基因在雄魚中顯著下調表達,為常溫對照組的25.65%(<0.05),在雌魚中的表達量無顯著差異(圖7C、D)。

圖2 半滑舌鰨hsd11b2基因核苷酸序列及推測的氨基酸序列

方框內為起始密碼子和終止密碼子,黑色下劃線表示polyA信號,紫色下劃線表示跨膜結構域,藍色下劃線表示保守結構域

Frames indicate the start codon and stop codon, respectively. Black underline indicates the PolyA tail sequence, violet underline indicates transmembrane region, blue underline indicates conserved domain

圖3 半滑舌鰨hsd11b1l和hsd11b2的基因結構分析及蛋白結構域預測

A:基因結構示意圖,外顯子用紅色框表示,DNA序列用黑線表示,UTR用藍框表示; B:HSD11B1L和HSD11B2保守結構域

A: Schematic representation of genomic structure. The exons were represented by red boxes, DNA sequences were indicated by lines, and UTRs were shown as blues boxes; B: The predicted conserved domain of HSD11B1L and HSD11B2

A: HSD11B1L; B: HSD11B2

圖5 hsd11b1l和hsd11b2基因在半滑舌鰨中的組織表達模式

數據用3個獨立個體的Mean±SE表示(=3)。*表示顯著差異。下同

The mean±SE values from three separate individuals (=3) are shown. Asterisks indicate significant differences (<0.05). The same as below

圖6 hsd11b1l和hsd11b2在性腺發育階段的表達模式

3 討論

本研究克隆獲得了半滑舌鰨和基因的cDNA全長,分析了基因序列特征。研究發現,2個基因都含有1個保守的短鏈脫氫酶結構域,該結構域屬于鏈脫氫酶/還原酶家族(SDR),是一種重要的氧化還原酶家族(Ghosh, 1994),表明和基因在皮質醇的生理過程中具有氧化還原酶的作用。此外,基因啟動子序列中包含糖皮質激素受體(GR)、雌激素(E2)、TATA結合蛋白(TATA-binding protein, TBP)等轉錄結合位點,啟動子區域包含糖皮質激素受體(GR)、雄激素受體(AHR)和TBP等轉錄結合位點。皮質醇是一種糖皮質激素,可以與糖皮質激素受體結合,在生長、生殖等生理活動中起到重要作用(Mommsen, 1999)。在牙鲆、青鳉()、牙漢魚等魚類中,皮質醇參與高溫誘導雄性化(Hattori, 2009; Hayashi, 2010; Yamaguchi, 2010)。雄激素和雌激素受體可以直接參與魚類的性別發育調節。TBP則是一類可以與RNA聚合酶Ⅱ共同發揮作用的轉錄因子,在精子形成期過量表達,參與精細胞的形成(Schmidt, 1997)。

本研究分析了半滑舌鰨和基因的時空表達特征。組織表達結果顯示,基因主要在半滑舌鰨肝臟和性腺中表達,這與其他脊椎動物中的研究結果相似。HSD11B1是一種還原型酶,可以轉化生成大量皮質醇并且增強糖皮質激素的作用,這種酶存在于人類的多種組織器官中,在肝臟、脂肪等關鍵的代謝組織中非常豐富(White, 1997; Tomlinson, 2004)。本研究結果顯示,半滑舌鰨于3月齡開始表達,在6月齡和3齡時期魚的卵巢中顯著高于其他時期和精巢。半滑舌鰨在6月齡左右開始分化形成卵母細胞,3齡已進入卵巢發育成熟期,暗示可能參與半滑舌鰨卵巢發育過程(Chen, 2014; Li, 2016、2017)。前期研究表明,不僅催化皮質酮向皮質醇的轉化過程,還可催化11-酮基雄烯二酮生成11-酮基睪酮,在雄激素的形成過程中起到至關重要的作用(Oppermann, 1997)。牙漢魚可通過合成雄激素進而參與雄性化形成(Zhang, 2018)。在虹鱒()中,在調節精子發生過程中起到重要作用,其表達模式在雄魚發育過程中發生顯著變化(Liu, 2000; Kusakabe, 2002)。本研究中,半滑舌鰨主要在精巢中表達,在卵巢中幾乎不表達,也提示該基因在精巢中發揮重要作用。對精巢各發育時期的進一步分析表明,在3月齡開始表達,在6月齡達到峰值,隨后在成熟精巢中表達量下降,這一發現與半滑舌鰨精巢細胞分化時間吻合(Chen, 2014; Li, 2016; Chen, 2009),表明在生殖細胞分化增殖過程中起到重要作用。

圖7 高溫(28℃)處理后hsd11b1l和hsd11b2基因在性腺中的表達模式

在高溫處理2個月后,和在雄魚中表達量均顯著降低;高溫處理48 h后,在雌、雄魚中表達量均顯著降低,在雄魚中表達量顯著降低(<0.05),表明溫度可影響皮質醇和皮質酮之間的相互轉化。但在牙漢魚中,高溫處理14 d后,表達量升高,與本研究結果相反(Fernandino, 2012)。牙漢魚分析的是在幼魚軀干部位的表達變化,包括了肝、腸、性腺等多個組織。根據的功能及組織表達模式,肝臟也是其發揮作用的主要器官。因此,結果的不同可能反映了不同組織在應對高溫時的不同表現。后續將針對和基因在肝臟和不同性腺中的作用機制展開更深入的研究。

綜上所述,本研究報道了半滑舌鰨和基因的全長序列,分析了它們在性腺發育過程以及高溫脅迫后的表達規律,為進一步研究二者在溫度介導半滑舌鰨性別分化過程中的機理奠定了基礎。

Albiston AL, Obeyesekere VR, Smith RE,Cloning and tissue distribution of the human 1lβ-hydroxysteroid dehydrogenase type 2 enzyme. Molecular and Cellular Endocrinology, 1994, 105(2): R11–R17

Alderman SL, Vijayan MM. 11-hydroxysteroid dehydrogenase type 2 in zebrafish brain: A functional role in hypothalamus- pituitary-interrenal axis regulation. Journal of Endocrinology, 2012, 215(3): 393

Baker M. Evolution of 11[beta]-hydroxysteroid dehydrogenase- type 1 and 11[beta]-hydroxysteroid dehydrogenase-type 3. Nature Precedings, 2010: 1

Blasco M, Fernandino JI, Guilgur LG,Molecular characterization ofandand their gene expression profile in pejerrey () during early gonadal development. Comparative Biochemistryand Physiology Part A: Molecular and Integrative Physiology, 2010, 156(1): 110–118

Chen SL, Tian YS, Yang JF,Artificial gynogenesis and sex determination in half-smooth tongue sole (). Marine Biotechnology, 2009, 11(2): 243–251

Chen SL, Zhang G, Shao CW,Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 2014, 46(3): 253–260

Cui Y, Wang WF, Ma LY,New locus reveals the genetic architecture of sex reversal in the Chinese tongue sole (). Heredity, 2018, 121(4): 319–326

Cui Z, Liu Y, Wang W,Genome editing reveals dmrt1 as an essential male sex-determining gene in Chinese tongue sole (). Scientific Reports, 2017, 7: 42213

Fernandino JI, Hattori RS, Kishii A,The cortisol and androgen pathways cross talk in high temperature-induced masculinization: The 11β-hydroxysteroid dehydrogenase as a key enzyme. Endocrinology, 2012, 153(12): 6003–6011

Francis RC, Barlow GW. Social control of primary sex differentiation in the Midas cichlid. Proceedings of the National Academy of Sciences, 1993, 90(22): 10673–10675

Francis RC. The effects of bidirectional selection for social dominance on agonistic behavior and sex ratios in the paradise fish (). Behaviour, 1984, 90(1–3): 25–44

Ghosh D, Erman M, Wawrzak Z,Mechanism of inhibition of 3α, 20β-hydroxysteroid dehydrogenase by a licorice-derived steroidal inhibitor. Structure, 1994, 2(10): 973–980

Hattori RS, Fernandino JI, Kishii A,Cortisol-induced masculinization: Does thermal stress affect gonadal fate in pejerrey, a teleost fish with temperature-dependent sex determination? PLoS One, 2009, 4(8): e6548

Hayashi Y, Kobira H, Yamaguchi T,High temperature causes masculinization of genetically female medaka by elevation of cortisol. Molecular Reproduction and Development, 2010, 77(8): 679–686

Hu YC, Chu KF, Hwang LY,Cortisol regulation of Na+, K+-ATPase β1 subunit transcription via the pre-receptor 11β-hydroxysteroid dehydrogenase 1-like (11β-hsd1l) in gills of hypothermal freshwater milkfish,. Journal of Steroid Biochemistry and Molecular Biology, 2019, 192: 105381

Jiang L, Li H. Single locus maintains large variation of sex reversal in half-smooth tongue sole (). G3: Genes, Genomes, Genetics, 2017, 7(2): 583–589

Krozowski Z. The 11β-hydroxysteroid dehydrogenases: Functions and physiological effects. Molecular and Cellular Endocrinology, 1999, 151(1–2): 121–127

Kusakabe M, Kobayashi T, Todo T,. Molecular cloning and expression during spermatogenesis of a cDNA encoding testicular 11β‐hydroxylase (p45011β) in rainbow trout (). Molecular Reproduction and Development, 2002, 62(4): 456–469

Li H, Xu W, Zhang N,Two figla homologues have disparate functions during sex differentiation in half-smooth tongue sole (). Scientific Reports, 2016, 6(1): 1–10

Li H, Xu W, Zhu Y,Characterization and expression pattern of r-spondin1 in. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328(8): 772–780

Li Z, Yang L, Wang J,β-actin is a useful internal control for tissue-specific gene expression studies using quantitative real-time PCR in the half-smooth tongue solechallenged with LPS or. Fish and Shellfish Immunology, 2010, 29(1): 89–93

Liu S, Govoroun M, D'Cotta H,. Expression of cytochrome p45011β (11β-hydroxylase) gene during gonadal sex differentiation and spermatogenesis in rainbow trout,. Journal of Steroid Biochemistry and Molecular Biology, 2000, 75(4–5): 291–298

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25(4): 402–408

Miura S, Horiguchi R, Nakamura M. Immunohistochemical evidence for 11β-hydroxylase (p45011β) and androgen production in the gonad during sex differentiation and in adults in the protandrous anemonefish. Zoological Science, 2008, 25(2): 212–219

Mommsen TP, Vijayan MM, Moon TW. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 1999, 9(3): 211–268

Oppermann UC, Persson B, J?rnvall H. The 11β‐hydroxysteroid dehydrogenase system, a determinant of glucocorticoid and mineralocorticoid action: Function, gene organization and protein structures of 11β-hydroxysteroid dehydrogenase isoforms. European Journal of Biochemistry, 1997, 249(2): 355–360

Rubin DA. Effect of pH on sex ratio in cichlids and a poecilliid (Teleostei). Copeia, 1985, 1985(1): 233–235

Sadoul B, Geffroy B. Measuring cortisol, the major stress hormone in fishes. Journal of Fish Biology, 2019, 94(4): 540–555

Schmidt EE, Ohbayashi T, Makino Y,Spermatid-specific overexpression of the tata-binding protein gene involves recruitment of two potent testis-specific promoters. Journal of Biological Chemistry, 1997, 272(8): 5326–5334

Tabata K. Reduction of female proportion in lower growing fish separated from normal and feminized seedlings of hirame. Fisheries Science, 1995, 61(2): 199– 201

Tokarz J, Norton W, M?ller G,Zebrafish 20β-hydroxysteroid dehydrogenase type 2 is important for glucocorticoid catabolism in stress response. PLoS One, 2013, 8(1): e54851

Tomlinson JW, Walker EA, Bujalska IJ,11β-hydroxysteroid dehydrogenase type 1: A tissue-specific regulator of glucocorticoid response. Endocrine Reviews, 2004, 25(5): 831–866

Tsachaki M, Meyer A, Weger B,Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish. Journal of Endocrinology, 2017, 232: 323–335

van den Hurk R, van Oordt P. Effects of natural androgens and corticosteroids on gonad differentiation in the rainbow trout,. General and Comparative Endocrinology, 1985, 57(2): 216–222

Wendelaar Bonga SE. The stress response in fish. Physiological Reviews, 1997, 77(3): 591–625

White PC, Mune T, Agarwal AK. 11β-hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocrine Reviews, 1997, 18(1): 135–156

Yamaguchi T, Yoshinaga N, Yazawa T,Cortisol is involved in temperature-dependent sex determination in the Japanese flounder. Endocrinology, 2010, 151(8): 3900–3908

Zhang Y, Hattori RS, Sarida M,Expression profiles ofand major sex-related genes during gonadal sex differentiation and their relation with genotypic and temperature-dependent sex determination in pejerrey. General and Comparative Endocrinology, 2018, 265: 196–201

Molecular Characterization and Expression Patterns ofandand Their Response to High Temperature Stress in Chinese Tongue Sole

HAO Xiancai1,2, FENG Bo1,2, SHAO Changwei1,2, WANG Qian2①

(1. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306; 2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Pilot National Laboratory for Marine Science and Technology (Qingdao), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071)

Sex determination and differentiation in fish are not only influenced by genetic factors, but also controlled by environmental factors. Previous studies have shown that cortisol plays an important role in the feedback of environmental stress in fish. Fishandcan regulate the concentration of cortisol. In this study, we cloned full-length cDNA ofand, and analyzed their sequence characteristics in Chinese tongue sole (). We then detected their spatiotemporal expression characteristics and expression patterns after temperature stress. The full-length cDNA ofwas 1650 bp with 864 bp open reading frame encoding a predicted 287 amino acid protein. While the full-length ofwas4526 bp with 1209 bp open reading frame encoding 402 amino acid protein. The qPCR showed that the highest expression ofwaswithin the liver and the expression level in the ovary was two-fold higher than that in testis. In particular, the expression level ofin the ovary was higher than in testis at the stages of 6 mpf and 3 ypf. Thewas expressed mainly in the testis and expression level peaked in testis at 6 mpf. Conversely, expression ofwas hardly detected in any stages of ovary development. In addition, we analyzed the expression patterns ofandafter high-temperature (28℃) treatment. The expression levels ofandwas significantly reduced in the gonads of males (<0.05) after the high-temperature treatment for 2 months. For the acute high-temperature treatment (48 h), the expression ofsignificantly decreased in the gonads of both females and males (<0.05), and the expression ofwas only significantly down-regulated in the male testis (<0.05). In this study, the expression patterns ofandgenes in the developmental stages of gonads affected by high temperature stress lays a foundation for understanding the relationship between temperature and sexual differentiation in Chinese tongue sole.

; Sex determination; Temperature;;

WANG Qian, E-mail: wangqian2014@ysfri.ac.cn

S917.4

A

2095-9869(2021)02-0045-10

10.19663/j.issn2095-9869.20200312001

http://www.yykxjz.cn/

郝先才, 馮博, 邵長偉, 王倩. 半滑舌鰨和基因的克隆及其溫度響應的表達規律. 漁業科學進展, 2021, 42(2): 45–54

Hao XC, Feng B, Shao CW, Wang Q. Molecular characterization and expression patterns ofandand their response to high temperature stress in Chinese tongue sole. Progress in Fishery Sciences, 2021, 42(2): 45–54

* 國家自然科學基金(31722058; 31802275)、中國水產科學研究院基本科研業務費(2020TD19)和南海水產經濟動物增養殖重點實驗室(廣東海洋大學)開放課題(KFKT2019ZD03)共同資助 [This work was funded by National Natural Science Foundation of China (31722058; 31802275), Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2020TD19), Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University (KFKT2019ZD03)]. 郝先才,E-mail: best_hxc@163.com

王 倩,E-mail: wangqian2014@ysfri.ac.cn

2020-03-12,

2020-03-20

(編輯 馮小花)

猜你喜歡
雄魚皮質醇結構域
半滑舌鰨基因編輯快速生長雄魚通過現場驗收
危重患者內源性皮質醇變化特點及應用進展
細菌四類胞外感覺結構域的概述
斗魚為什么喜歡爭斗
拿起手機掃一掃,就知道你壓力大不大
The most soothing music for dogs
金魚如何辨雌雄
血睪酮、皮質醇與運動負荷評定
黃星天牛中腸中內切葡聚糖酶的鑒定與酶活性測定
水稻DnaJ蛋白的生物信息學分析
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合