?

含磷超支化阻燃劑改性環氧樹脂研究進展

2022-06-28 00:29楊青松李金倫黃彩娟
廣州化學 2022年3期
關鍵詞:含磷磷酸酯機械性能

楊青松, 李金倫, 黃彩娟

含磷超支化阻燃劑改性環氧樹脂研究進展

楊青松, 李金倫, 黃彩娟*

(貴州大學 材料與冶金學院,貴州 貴陽 550025)

綜述了近年來含磷超支化阻燃劑改性環氧樹脂(EP)的研究進展,主要包括含磷雜菲基團超支化阻燃劑、超支化聚磷酸酯阻燃劑、超支化含磷/氮阻燃劑和超支化含磷/氮/硅阻燃劑等其他類型超支化阻燃劑,介紹了不同類型的阻燃劑對EP的阻燃性能和機械性能的影響,并總結對比了添加不同阻燃劑后EP復合材料的阻燃性能、機械性能、玻璃化轉變溫度(Tg)等性能,最后指明了超支化阻燃劑當前面臨的主要挑戰并展望了未來的發展趨勢。

環氧樹脂;超支化;含磷阻燃劑;阻燃性能;機械性能

環氧樹脂(EP)作為重要的熱固性塑料之一,具有機械強度高、附著力優異、耐化學性和電絕緣性好等特點,在建筑、汽車、電子和航空航天領域得到了廣泛的應用[1-4]。但EP固有的易燃性、發煙量大等問題極大的限制了其在某些特定領域的應用[5-7]。因此,對EP進行阻燃改性具有重要意義。

添加鹵素阻燃劑是提高EP阻燃性能的傳統方法,特別是溴化阻燃劑對EP阻燃性能的提高尤為突出,但此類阻燃劑存在有毒煙霧的釋放和溴的環境危害等不利因素[8-9]。目前,已經開發了很多無鹵阻燃劑,如無機阻燃劑(氧化鋁[10-11]、二氧化硅[12-13]、石墨烯[14-15]等)、磷系阻燃劑(多磷酸銨[16-17]、紅磷[18]、有機磷[19]等)、氮系阻燃劑[20-22]等。在所有無鹵阻燃劑中,因含磷阻燃劑具有高效、低煙、低毒、具有多種阻燃機理等特點使其成為最有前景的一類阻燃劑,并且已廣泛應用在包括EP在內的多種聚合物材料中[23-25]。

隨著聚合物技術的發展,含磷超支化阻燃劑可以通過一鍋法簡易合成而被應用于阻燃領域。此外,超支化阻燃劑具有的低浸出、低特性粘度、與其他基體材料混溶性好、大量的反應性端基等優點使其可提供比單分子阻燃劑更高效、更優異的阻燃性能,有的超支化阻燃劑還能提高EP復合材料的強度、玻璃化轉變溫度(Tg)等性能[26-27]。含磷超支化阻燃劑同時具有含磷阻燃劑和超支化聚合物的優點,具有廣闊的應用前景。

因此,本文將闡述含磷超支化阻燃劑改性環氧樹脂的研究進展和現狀,側重討論阻燃劑對環氧樹脂的阻燃性和機械性能的影響,并展望了超支化阻燃劑未來的發展趨勢。

1 含磷雜菲基團超支化阻燃劑

由于9,10-二氫-9-氧雜-10-磷雜菲-10-氧化物(DOPO)及其衍生物含有特殊的磷雜菲基團,具有高阻燃效率、良好的高熱穩定性和抗氧化性,被廣泛應用于EP阻燃改性中[28-29]。利用DOPO中的活性PH基團合成的DOPO衍生物可用于制備各種含磷雜菲基團的超支化阻燃劑。

Tang等[30]利用10-(2,5-二羥基苯基)-10-氫-9-氧雜-10-磷雜菲-10-氧化物與硼酸反應合成了一種超支化阻燃劑ODOPB-Borate,結構如圖1所示。將ODOPB-Borate用于EP中能同時提高材料的阻燃性、Tg和沖擊強度。由于磷雜菲和硼酸鹽基團在凝聚相和氣相中的協同作用,添加6.0%(wt)的ODOPB-Borate后,改性EP的極限氧指數測試(LOI)值達到31.6%,水平垂直燃燒測試(UL-94)達到V-0等級。在50 kW/m2的外部熱通量下,峰值放熱率(PHRR)和總放熱量(THR)分別降低約 24.0%和13.7%。 此外,與純EP相比,改性EP的 Tg從194.2℃增加到 196.4℃,沖擊強度從9.72 kJ/m2增加到 21.92 kJ/m2,提高約55.7%。

圖1 ODOPB-Borate的結構示意圖[30]

Zhang等[31]以衣康酸酐(ITA)、DOPO和二異丙醇胺(DIPA)為原料合成了一種超支化阻燃劑(ITA-HBP),結構如圖2所示。由于ITA-HBP在氣相和凝聚相的阻燃作用,加入3.82%(wt)ITA-HBP[0.26%(wt)的磷含量]的EP 的LOI值增加到36.3%,UL-94達到V-0等級。并且在35 kW/m2的外部熱通量下,當ITA-HBP添加量為7.35%(wt)[0.48%(wt)的磷含量]時,與純EP相比,PHRR和總煙霧釋放量(TSR)均降低,且拉伸強度、彎曲強度和沖擊強度分別提高了37.8%、55.6%和133.2%。

圖2 ITA-HBP的結構示意圖[31]

Luo等[32]合成了含DOPO的超支化聚酰胺低聚物阻燃劑(HPD)。結果表明,當HPD添加量僅為7.5%(wt)時,EP7.5的LOI值為29.6%,UL-94達到V-0等級。另外,EP7.5的Tg值為176.2℃,高于純EP(168.2℃)。由于HPD會導致自由基的淬滅和不可燃氣體的稀釋作用,并且其分解產生的磷酸衍生物會形成含磷保護性炭層而顯著提高EP的阻燃性。如圖3所示,在35 kW/m2的外部熱通量下,引燃時間(TTI)時間延長,PHRR,HRR平均值(av-HRR),THR,煙霧釋放速率(SPR)和總煙霧釋放量(TSP)均降低。

圖3 EP-0和EP-7.5的放熱速率HRR曲線(A);THR曲線(B);SPR曲線(C)和TSP曲線(D)[32]

Chen等[33]合成了一種含有P/N/Si/B元素和具有剛性、柔性結構的超支化阻燃劑(PTDOB)。結果表明,PTDOB能同時增強EP的阻燃性和機械性能。當添加7.5%(wt)的PTDOB時,EP7.5的LOI值為34.1%,UL-94達到V-0等級。在35 kW/m2的外部熱通量下,PHRR和THR值為550.3 kW/m2和121.1 MJ/m2,比純EP低約47.1%和22.3%。并且,EP7.5的Tg值從159.4℃提高到162.9℃。同時,機械性能也得到提高,EP7.5的沖擊強度和彎曲強度分別為43.2±5.3 kJ/m2和105.3±7.8 MPa,與純EP相比,分別增加了55.4%和37.5%。

Battig等[34]利用10-(2,5-二羥基苯基)-10-氫-9-氧雜-10-磷雜菲-10-氧化物(DOPO-HQ)、三(4-羥基苯基)氧化膦(THPPO)和1,4-對苯二甲酰氯(TPC)合成了一種新型芳香族含磷超支化阻燃劑(PDTT)。結果表明,當添加10%(wt)[0.6%(wt)的磷含量]的PDTT后,由于阻燃劑含量較低,UL-94沒有等級。但改性后的EP的放熱速率(HRR)、總放熱量(THE)、PHRR、有效燃燒熱(EHC)分別降低了20%、26%、31%、21%。其Tg值為162℃,與純EP(154℃)相比有所提高。表明PDTT在低負載下具有優異的性能和增韌效果,是一種極有前景的阻燃劑。

Teng等[35]通過含DOPO的生物基三酚(PDG)、1,4-二溴丁烷和環氧氯丙烷之間的反應合成了一種環氧基封端的超支化阻燃劑(EHBFR),合成路線見圖4A。結果表明,磷含量僅為1.04%的EP30,LOI值為33.0%,UL-94達到V-0等級,微型燃燒量熱儀(MCC)測試結果,如圖4B、4C所示,PHRR和THR分別比純EP降低了43.5%、44.2%。如圖4D所示,由于含剛性DOPO結構與高交聯密度的協同作用,EP10的Tg升高到194℃。并且,由于超支化結構中的大量分子內腔,EP30的沖擊強度比純EP增加了135%(25℃)、114%(-196℃),EP的缺口沖擊強度見圖4E。該課題組還從DOPO、香草醛和愈創木酚合成6-(雙(4-羥基-3-甲氧基苯基)甲基)二苯并[c,e]氧膦6-氧化物(BDB)[36],然后將BDB與1,3,5-異氰脲酸三縮水甘油酯(TGIC)反應合成了一種新型超支化阻燃劑(HBFR)[37]。在添加HBFR后,改性EP具有優異的阻燃性能,復合材料的韌性、強度和Tg均得到提高。

Peng等[38]合成了含有DOPO和雙鄰苯二甲腈基團的單分子含N/P阻燃劑(PBD)。由于在加熱時雙鄰苯二甲腈基團會生成三嗪環或酞菁而自交聯,通過簡單的熱處理即可將單分子阻燃劑PBD轉變為超支化阻燃劑。用于改性EP后,當PBD添加量為0.5%(wt)[磷含量僅為0.03%(wt)]時,PBD-0.5的LOI值為32.1%,UL-94達到V-0等級。當PBD含量為20%(wt)時,PBD-20的LOI值高達49.5%,且PHRR、THR值與EP相比降低了71.6%、48.8%。而Tg則在PDB添加量為10%(wt)時達到最大值,為210℃。

對于以上文獻中報道的含磷雜菲基團超支化阻燃劑改性EP的阻燃性能、機械性能、玻璃化轉變溫度(Tg)等性能總結見表1。含磷雜菲基團超支化阻燃劑在氣相和凝聚相的綜合作用實現了EP復合材料優異的阻燃性。比如添加超支化阻燃劑ITA-HBP[31]改性EP時,在氣相中,由ITA-HBP分解形成的磷自由基發生猝滅作用,可以淬滅活性自由基,而抑制燃燒。在凝聚相中,含磷碎片的脫水生成芳香碳層,形成的炭層可以有效地減緩熱傳遞,并將氧氣與EP基體隔離,抑制了材料的進一步燃燒。在TA-HBP添加量僅為3.82%(wt)時,改性EP的LOI值就高達36.4%,UL-94達到V-0等級。由于含磷雜菲基團超支化阻燃劑中的磷雜菲剛性基團、超支化結構、大量反應端基,使得改性后EP復合材料的交聯密度提高,機械性能、Tg也得到提高。利用超支化阻燃劑EHBFR[35]改性EP時,EP10的Tg升高到194℃,EP30的沖擊強度比純EP增加了135%(25℃)、114%(-196℃)。此外,由于PBD[38]在EP網絡內部發生交聯,形成半互穿網絡,使阻燃劑與EP基體接觸得更近,PBD添加10%(wt)時,改性EP的LOI值高達46.8%。

表1 總結比較不同含磷雜菲基團超支化阻燃劑改性EP的性能

(續表1)

圖5 表格1和表格3中R1-R16的結構

2 超支化聚磷酸酯阻燃劑

在合成超支化聚合物時,有兩種常用方法:AB≥2)或A+B(,≥2)[39-40]。在 AB方法中,使用具有 AB(≥2)結構的單體,當 A 和 B 基團選擇性地相互反應時,則會生成一種沒有交聯的支化聚合物[41]。在 A+B方法中,使用兩種單體進行縮聚反應[A和 B(,≥2)],最常用的方法是 A2+B3方法,即通過A的兩個相同官能團和B的三個相同官能團之間的縮聚反應制備超支化聚合物[42-43]。利用具有AB(≥2)結構的含磷單體或三氯氧磷(POCl3)及其衍生物,通過AB(≥2)或A+B(,≥2)逐步增長縮聚等方法即可獲得不同的超支化聚磷酸酯阻燃劑。

董杰等[44]以苯膦酰二氯(BPOD)為A2單體,三羥甲基丙烷(TMP)為B3單體,合成了一種超支化聚磷酸酯阻燃劑。將其用于EP的改性,分別添加10%(wt)、15%(wt)阻燃劑后,LOI值達到最大值,為33%。并且,改性EP的拉伸強度、彎曲強度、沖擊強度均得到提高,添加10%(wt)阻燃劑后,拉伸強度提高了27%,為51.52 MPa。添加15%(wt)阻燃劑后,沖擊強度提高了306%,為33.83 kJ/m2,彎曲強度也達到最大值141.62 MPa。但是,由于較大尺寸阻燃劑的加入,降低了環氧樹脂分子間作用力,導致改性EP的Tg略有下降,添加15%(wt)阻燃劑后,Tg降至140.60℃。

Zhang等[45]利用三(2-羥乙基)異氰酸酯(A3單體)和POCl3(B3單體)的縮聚反應合成了一種新型超支化聚磷酸酯阻燃劑(HPPE),并合成了不同分子量和羥基端基數的阻燃劑HPPE-1/2/3。結果表明,當添加12%(wt)的HPPE-2時,改性后EP的LOI值達到最大值,為30.25%,比純EP提高了21.2%,沖擊強度達到16.2 kJ/m2。此外,添加8%(wt)的HPPE-2后,改性EP的拉伸強度和彎曲強度達到最大值,分別為91.5 MPa和79.9 MPa。

Chen等[46]利用雙酚-A(BA)和三氯氧磷合成了一種反應型超支化聚磷酸酯阻燃劑(HPE),HPE的合成路線見圖6。將HPE和BA混合作為EP的固化劑使用。結果表明,當摻入 33%(wt)的HPE時,改性EP的LOI值增加到27.5%。在35 kW/m2的外部熱通量下,隨著HPE含量的增加,HRR、THR、EHC降低,而殘炭量和消煙面積(SEA)增加。并且,只用HPE固化的EP的Tg(135.3℃)比雙酚A固化的EP的Tg(128.7℃)高。

圖6 HPE的合成路線[46]

圖7 hbPPE的結構示意圖[48]

Huang等[47]先是利用POCl3和丙烯酸羥乙酯(HEA)反應合成三(丙烯酰氧基乙基)磷酸酯(TAEP),TAEP與哌嗪通過邁克爾加成反應合成了HPPA大分子,然后通過“硫醇-烯”點擊反應將SH-mSiO2納米顆粒與HPPA共價官能化,合成了一種含有多種阻燃元素的混合材料(HPPA-SH-mSiO2)。在35 kW/m2的熱通量下,與純EP相比,EP/HPPA-SH-mSiO2改性EP的PHRR和THR分別降低了28.7%和16.0%。并且EP/HPPA-SH-mSiO2的加入提高了EP基體的高溫穩定性。

Schartel等[48-53]合成了一系列不同種類的含磷超支化聚磷酸酯阻燃劑,并將其用于阻燃改性EP。例如,他們合成了一種結構新穎的超支化無鹵聚(磷酸酯)(hbPPE)[48],結構如圖7所示。將其作為阻燃劑改性EP,并與商業化的阻燃劑雙酚 A 雙(磷酸二苯酯)(BDP)進行比較。結果表明,由于hbPPE在提高殘炭量方面效果更好,在添加量相同的情況下,hbPPE改性的EP比BDP改性的EP表現出更低的THE和更高的LOI值。添加10%(wt)BDP的EP的THE和LOI值分別為83 MJ/m2和22.6%,UL-94沒有評級。而含有10%(wt)hbPPE的EP的THE和LOI值僅為62 MJ/m2和23.6%,UL-94達到HB等級。

該課題組還研究了基于磷的不同類型阻燃劑對化學性質不同的EP的影響[51]。對于不同的超支化阻燃劑,發現它們與 EP 基體之間分解溫度的重疊在提高阻燃性中起重要作用。當FR與基體的這種重疊達到最大時,化學相互作用最大,導致殘炭量更高,PHRR和THE降低,而產生更好的阻燃性。此外,對一系列含硫和無硫超支化聚磷酸鹽添加劑的阻燃性進行了比較[53]。硫的引入提高了阻燃劑的熱穩定性和凝聚相的活性,同時硫自由基的交聯促進了殘留物的產率。

對于以上文獻中報道的超支化聚磷酸酯阻燃劑改性EP的阻燃性能、機械性能、玻璃化轉變溫度(Tg)等性能總結見表2。由BPOD和TMP合成的超支化聚磷酸酯阻燃劑[44]改性EP后具有最優的阻燃性能,該阻燃劑與EP基體的相容性好,從而提高了EP復合材料的韌性和強度。此外,由于超支化聚磷酸酯阻燃劑在凝聚相和氣相的阻燃作用,添加10%(wt)的超支化聚磷酸酯阻燃劑后,LOI值即達到33%。

表2 總結比較不同超支化聚磷酸酯阻燃劑改性EP的性能

3 其他類型的超支化阻燃劑

Tan等[54]利用超支化聚乙烯亞胺(PEI)通過陽離子交換反應改性聚磷酸胺(APP),得到了一種高效的用于EP的阻燃固化劑PEI-APP。經改性后的APP提升了APP與EP的相容性。PEI-APP提升了APP與EP的相容性,同時改善了EP的阻燃和抑煙性能。當添加15%(wt)的PEI-APP-3時,改性EP的LOI值為29.5%,UL-94達到V-0等級。在35 kW/m2的外部熱通量下,與PEI/EP相比,PEI-APP 15/EP的PHRR和THR分別下降了73.8%和76.1%。另外,PEI-APP固化后抑煙效果增強,總煙霧產生量(TSP)下降了70.5%。

Ma等[55]合成了一種新型超支化聚(氨基甲基氧化膦-胺)共固化劑(HPAPOA),合成路線見圖8。計算出HPAPOA的胺當量為190.8 g/mol,將其用作共固化劑改性EP。結果表明,添加3.0%(wt)的HPAPOA時,EP3.0的LOI值為30.7%,UL-94達到V-0等級。在35 kW/m2的外部熱通量下,除了EP1的PHRR外,隨著HPAPOA含量的增加,PHRR、THR、CO生成速率峰值(p-COPR)、CO總生成量(TCOP)、產煙率峰值(p-SPR)和TSP均降低。Tg則隨著HPAPOA含量的增加逐漸增加,EP3.5的Tg值(164.0℃)比純EP高7.4℃。與純EP相比,EP2.0的拉伸和彎曲性能得到提高,具有較優的機械性能。

圖8 THP和HPAPOA的合成路線[55]

該課題組還利用4,4?-二苯基甲烷二異氰酸酯(MDI)和三羥甲基氧化膦(THPO)合成了一種新型超支化(氨基甲酸乙酯-氧化磷)(HPUPO)[56]。HPUPO在EP的凝聚相形成的保護性炭層提高了阻燃性。添加4%(wt)的HPUPO時,EP4的LOI值達到30.5%,UL-94達到V-0等級。改性EP的拉伸模量、強度、斷裂伸長率、沖擊強度和儲能模量因 HPUPO 的剛性骨架和氫鍵相互作用而提高。

Hu等[57]利用甲基膦酸二甲酯(DMMP)和三(2-羥乙基)異氰脲酸酯(THEIC)的酯交換反應合成了一種透明的新型超支化含磷/氮阻燃劑(HPNFR),合成路線見圖9。當HPNFR的含量為4%(wt)時,EP4.0的LOI值為34.5%,UL-94達到V-0等級。在35 kW/m2的外部熱通量下,EP4.0的PHRR和 THR值分別為734.9 kW/m2、55.2 MJ/m2,與純EP相比,分別降低了16.77%和13.88%。并且,HPNFR的低負載對EP的透明度幾乎沒有影響。

圖9 HPNFR的合成路線[57]

Zhang等[58]合成了一種非芳香族含Si、P、N超支化聚硅氧烷阻燃劑(HBPSi)。當添加8%(wt)的HBPSi時,EP-8的LOI值達到26.8%,比EP-0提高了31.4%。UL-94達到V-0等級。此外,由于HBPSi的支化結構和Si-O鏈段,當添加4%(wt)的HBPSi時,EP-4的彎曲強度和沖擊強度達到最大值,為140.02 MPa和23.63 kJ/m2,比相同條件制備的純EP分別提高了22.0%和72.9%。同時,由于HBPSi 中含有伯胺和叔胺基團,還能降低EP的固化溫度,效率與市售固化劑相當。

彭凡暢等[59]利用羧基化碳納米管(CNT-COOH)作為載體,以POCl3和N,N-二氨基二苯甲烷(DDM)為反應單體,制備了3 種不同厚度的超支化聚磷酰胺包覆碳納米管(CNT/HBPPA-1.5/3/6)阻燃劑。當添加2%(wt)的CNT/HBPPA-3后,改性EP的LOI值達到最大值,為28.2%,UL-94達到V-1等級。并且,添加2%(wt)的EP/CNT/HBPPA-3復合材料的拉伸強度和沖擊強度達到最大值,分別為53. 287 MPa 和11. 19 kJ/m2,比純EP提升了51%和18.9%。

以上文獻中報道的超支化含磷/氮阻燃劑和超支化含磷/氮/硅阻燃劑等其他類型超支化阻燃劑改性EP的阻燃性能、機械性能、玻璃化轉變溫度(Tg)等性能總結見表3。超支化含磷/氮阻燃劑HPNFR[57]賦予了EP復合材料在低添加量下具有優異的阻燃性能,致密連續炭層的阻隔作用、熱解氣體的吹出作用和自由基的淬滅作用是EP復合材料阻燃性能提高的原因。而超支化聚硅氧烷阻燃劑HBPSi[58]因為具有獨特的支化結構和靈活的Si-O鏈段,添加在EP中后,均勻分散在EP基體中,與樹脂基體結合緊密,能增加EP的交聯密度,在EP分子內腔形成自由體積,導致EP復合材料具有優異的機械性能,當添加4%(wt)的HBPSi時,EP-4的彎曲強度和沖擊強度比相同條件制備的純EP分別提高了22.0%和72.9%。

表3 不同超支化含磷/氮阻燃劑、超支化含磷/氮/硅阻燃劑等其他類型超支化阻燃劑改性EP的性能

(續表3)

4 總結與展望

含磷超支化阻燃劑改性的EP能極大改善復合材料的阻燃性,并且有的含磷超支化阻燃劑能顯著提高EP的機械性能、Tg等其他性能。隨著阻燃劑向著高效、低毒、低煙、綠色環保、多功能的方向發展,含磷超支化阻燃劑因其簡單的合成步驟、低毒高效和對力學性能的積極影響而具有廣闊的應用前景。盡管近年來超支化含磷阻燃劑取得了重大進展,但仍有一些挑戰尚未解決。首先是缺乏阻燃效率的優化,目前的工作還主要集中在含磷超支化阻燃劑的不同阻燃基團和不同添加量上。若要實現工業應用,仍需要進一步提高阻燃性和抑煙性。其次是可持續性發展問題,合成超支化阻燃劑的原料大多來自石油基資源,隨著石油基資源的使用,必將會引起可持續性問題。最后是EP復合材料的多功能改性,比如EP通常由于高交聯密度而具有很大的脆性,而限制了其在航空航天等特定領域的應用。因此,未來開發高效含磷超支化阻燃劑將會從以下幾個方面發展:1)研究開發具有磷元素與其他阻燃元素(氮、硅、硼等)協同作用的超支化阻燃劑。2)利用生物基原料合成環境友好、可持續的含磷超支化阻燃劑。3)開發除阻燃性外同時具有更多功能的超支化阻燃劑。

[1] Maychahal C , Verschuren C A , Tanaka G Y. Epoxy resins: Chemistry and technology[M]. New York: Dekker, 1973.

[2] Kumar S, Krishnan S, Samal S K,. Toughening of petroleum based (DGEBA) epoxy resins with various renewable resources based flexible chains for high performance applications: A review[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2711-2726.

[3] Wang X, Guo W W, Song L,. Intrinsically flame retardant bio-based epoxy thermosets: A review[J]. Composites Part B: Engineering, 2019, 179: 107487.1-107487.13

[4] Jin F L, Li X, Park S J. Synthesis and application of epoxy resins: A review[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 1-11.

[5] Liu Q, Zhao Y, Gao S,. Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106539.1-106539.11

[6] Luo H, Rao W, Zhao P,. An efficient organic/inorganic phosphorus-nitrogen-silicon flame retardant towards low-flammability epoxy resin[J]. Polymer Degradation and Stability, 2020, 178: 109195.1-109195.9

[7] Fang F, Ran S, Fang Z,. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water[J]. Composites Part B: Engineering, 2019, 165: 406-416.

[8] Waaijers S L, Kong D, Hendriks H S,. Persistence, bioaccumulation, and toxicity of halogen-free flame retardants[M]. Reviews of Environmental Contamination and Toxicology. New York, NY; Springer New York, 2013: 1-71.

[9] Luda M P, Balabanovich A I, Zanetti M. Pyrolysis of fire retardant anhydride-cured epoxy resins[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(1): 39-52.

[10] Guan F-L, Gui C-X, Zhang H-B,. Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide[J]. Composites Part B: Engineering, 2016, 98: 134-140.

[11] Wang J, Qian L, Xu B,. Synthesis and characterization of aluminum poly-hexamethylenephosphinate and its flame-retardant application in epoxy resin[J]. Polymer Degradation and Stability, 2015, 122: 8-17.

[12] Kawahara T, Yuuki A, Hashimoto K,. Immobilization of flame-retardant onto silica nanoparticle surface and properties of epoxy resin filled with the flame-retardant-immobilized silica (2)[J]. Reactive & Functional Polymers, 2013, 73(3): 613-618.

[13] Jiang S D, Tang G, Chen J M,. Biobased polyelectrolyte multilayer-coated hollow mesoporous silica as a green flame retardant for epoxy resin[J]. Journal of Hazardous Materials, 2018, 342: 689-697.

[14] Zhang J, Li Z, Zhang L,. Bimetallic metal-organic frameworks and graphene oxide nano-hybrids for enhanced fire retardant epoxy composites: A novel carbonization mechanism[J]. Carbon, 2019, 153: 407-416.

[15] Qu L J, Sui Y L, Zhang C L,. POSS-functionalized graphene oxide hybrids with improved dispersive and smoke-suppressive properties for epoxy flame-retardant application[J]. European Polymer Journal, 2020, 122: 109383.1-109383.12

[16] Rajaei M, Wang D Y, Bhattacharyya D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites[J]. Composites Part B: Engineering, 2017, 113: 381-390.

[17] Xu X W, Wang S, Ma S Q,. Vanillin-derived phosphorus-containing compounds and ammonium polyphosphate as green fire-resistant systems for epoxy resins with balanced properties[J]. Polymers for Advanced Technologies, 2019, 30(2): 264-278.

[18] Cheng C, Lu Y L, Ma W N,. Preparation and characterization of polydopamine/melamine microencapsulated red phosphorus and its flame retardance in epoxy resin[J]. RSC Advances, 2021, 11(33): 20391-20402.

[19] Wang G Y, Nie Z B. Synthesis of a novel phosphorus-containing epoxy curing agent and the thermal, mechanical and flame-retardant properties of the cured products[J]. Polymer Degradation and Stability, 2016, 130: 143-154.

[20] Yang S, Wang J, Huo S Q,. Synthesis of a phosphorus/nitrogen-containing compound based on maleimide and cyclotriphosphazene and its flame-retardant mechanism on epoxy resin[J]. Polymer Degradation and Stability, 2016, 126: 9-16.

[21] Wang P, Chen L, Xiao H,. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polymer Degradation and Stability, 2020, 171: 109023.1-109023.10.

[22] You G Y, Cheng Z Q, Peng H,. The synthesis and characterization of a novel phosphorus-nitrogen containing flame retardant and its application in epoxy resins[J]. Journal of Applied Polymer Science, 2014, 131(22): 41079.1-41079.8.

[23] Fang F, Song P, Ran S,. A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin[J]. Composites Communications, 2018, 10: 97-102.

[24] Sag J, Goedderz D, Kukla P,. Phosphorus-containing flame retardants from biobased chemicals and their application in polyesters and epoxy resins[J]. Molecules, 2019, 24(20): 3746.1-3746.31.

[25] Seidi F, Movahedifar E, Naderi G,. Flame retardant polypropylenes: A review[J]. Polymers, 2020, 12(8): 1701.1-1701.49.

[26] Zhang J, Chen S, Qin B,. Preparation of hyperbranched polymeric ionic liquids for epoxy resin with simultaneous improvement of strength and toughness[J]. Polymer, 2019, 164: 154-162.

[27] Wang Y, Chen S, Chen X,. Controllability of epoxy equivalent weight and performance of hyperbranched epoxy resins[J]. Composites Part B: Engineering, 2019, 160: 615-625.

[28] Mu X, Wang D, Pan Y,. A facile approach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin[J]. Composites Part B: Engineering, 2019, 164: 390-399.

[29] Qiu Y, Qian L, Feng H,. Toughening effect and flame-retardant behaviors of phosphaphenanthrene/phenylsiloxane bigroup macromolecules in epoxy thermoset[J]. Macromolecules, 2018, 51(23): 9992-10002.

[30] Tang S, Qian L, Qiu Y,. High-performance flame retardant epoxy resin based on a bi-group molecule containing phosphaphenanthrene and borate groups[J]. Polymer Degradation and Stability, 2018, 153: 210-219.

[31] Zhang J, Mi X, Chen S,. A bio-based hyperbranched flame retardant for epoxy resins[J]. Chemical Engineering Journal, 2020, 381: 122719.1-122719.14.

[32] Luo Q, Sun Y, Yu B,. Synthesis of a hyperbranched polyamide oligomer containing DOPO for simultaneously enhancing the flame retardance and glass transition temperature of epoxy resin[J]. Polymers for Advanced Technologies, 2020, 32(2): 525-537.

[33] Chen M, Lin X, Liu C,. An effective strategy to enhance the flame retardancy and mechanical properties of epoxy resin by using hyperbranched flame retardant[J]. Journal of Materials Science, 2021, 56(9): 5956-5974.

[34] Battig A, Müller P, Bertin A,. Hyperbranched rigid aromatic phosphorus-containing flame retardants for epoxy resins[J]. Macromolecular Materials and Engineering, 2021, 306(4): 2000731.1-2000731.12.

[35] Teng N, Dai J, Wang S,. Hyperbranched flame retardant to simultaneously improve the fire-safety, toughness and glass transition temperature of epoxy resin[J]. European Polymer Journal, 2021, 157: 110638.1-110638.14.

[36] Liu J, Dai J, Wang S,. Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin[J]. Composites Part B: Engineering, 2020, 190: 107926.1-107926.13.

[37] Teng N, Dai J, Wang S,. Hyperbranched flame retardant for epoxy resin modification: Simultaneously improved flame retardancy, toughness and strength as well as glass transition temperature[J]. Chemical Engineering Journal, 2022, 428: 131226.1-131226.11.

[38] Peng X, Liu Q, Wang D,. A hyperbranched structure formed by in-situ crosslinking of additive flame retardant endows epoxy resins with great flame retardancy improvement[J]. Composites Part B: Engineering, 2021, 224: 109162.1-109162.15.

[39] Gao C, Yan D. Hyperbranched polymers: From synthesis to applications[J]. Progress in Polymer Science, 2004, 29(3): 183-275.

[40] Bhat S I, Ahmadi Y, Ahmad S. Recent advances in structural modifications of hyperbranched polymers and their applications[J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 10754-10785.

[41] Shi Y, Graff R W, Cao X,. Chain-growth click polymerization of AB2monomers for the formation of hyperbranched polymers with low polydispersities in a one-pot process[J]. Angewandte Chemie International Edition, 2015, 54(26): 7631-7635.

[42] Barua S, Chattopadhyay P, Karak N. s-Triazine-based biocompatible hyperbranched epoxy adhesive with antibacterial attributes for sutureless surgical sealing[J]. Journal of Materials Chemistry B, 2015, 3(28): 5877-5885.

[43] Zhou D, Pierucci L, Gao Y,. Thermo- and pH-Responsive, Coacervate-Forming Hyperbranched Poly(β-amino ester)s for Selective Cell Binding [J]. ACS Applied Materials & Interfaces, 2017, 9(7): 5793-5802.

[44] 董杰, 陳曉婷, 李艷青, 等. 超支化聚膦酸酯改性環氧樹脂的研究[J]. 天津科技大學學報, 2010, 25(6): 30-32, 38.

[45] Zhang D, Wu H, Li T,. Preparation of high-performance flame-retardant hybrid material by hyperbranched polyphosphate ester[J]. Polymer Composites, 2011, 32(1): 36-43.

[46] Chen X, Jiao C, Li S,. Flame retardant epoxy resins from bisphenol-A epoxy cured with hyperbranched polyphosphate ester[J]. Journal of Polymer Research, 2011, 18(6): 2229-2237.

[47] Huang Z, Wang D, Zhu Y,. The influence of mesoporous silica modified with phosphorus and nitrogen-containing hyperbranched molecules on thermal stability, combustion behavior, and toxic volatiles of epoxy resin[J]. Polymers for Advanced Technologies, 2018, 29(1): 372-383.

[48] T?uber K, Marsico F, Wurm F R,. Hyperbranched poly(phosphoester)s as flame retardants for technical and high performance polymers[J]. Polymer Chemistry, 2014, 5(24): 7042-7053.

[49] Battig A, Markwart J C, Wurm F R,l. Hyperbranched phosphorus flame retardants: Multifunctional additives for epoxy resins[J]. Polymer Chemistry, 2019, 10(31): 4346-4358.

[50] Markwart J C, Battig A, Kuckhoff T,. First phosphorus AB2monomer for flame-retardant hyperbranched polyphosphoesters: AB2vs. A2+ B3[J]. Polymer Chemistry, 2019, 10(43): 5920-5930.

[51] Battig A, Markwart J C, Wurm F R,. Matrix matters: Hyperbranched flame retardants in aliphatic and aromatic epoxy resins[J]. Polymer Degradation and Stability, 2019, 170: 108986.1-108986.14.

[52] Markwart J C, Battig A, Velencoso M M,. Aromatic vs. aliphatic hyperbranched polyphosphoesters as flame retardants in epoxy resins[J]. Molecules, 2019, 24(21): 3901.1-3901.15.

[53] Battig A, Markwart J C, Wurm F R,. Sulfur?s role in the flame retardancy of thio-ether-linked hyperbranched polyphosphoesters in epoxy resins[J]. European Polymer Journal, 2020, 122: 109390.1-109390.12.

[54] Tan Y, Shao Z-B, Yu L-X,. Polyethyleneimine modified ammonium polyphosphate toward polyamine-hardener for epoxy resin: Thermal stability, flame retardance and smoke suppression[J]. Polymer Degradation and Stability, 2016, 131: 62-70.

[55] Ma C, Qiu S, Yu B,. Economical and environment-friendly synthesis of a novel hyperbranched poly(aminomethylphosphine oxide-amine) as co-curing agent for simultaneous improvement of fire safety, glass transition temperature and toughness of epoxy resins[J]. Chemical Engineering Journal, 2017, 322: 618-631.

[56] Ma C, Qiu S, Wang J,. Facile synthesis of a novel hyperbranched poly(urethane-phosphine oxide) as an effective modifier for epoxy resin[J]. Polymer Degradation and Stability, 2018, 154: 157-169.

[57] Hu X, Yang H, Jiang Y,. Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin[J]. Journal of Hazardous Materials, 2019, 379: 120793.1-120793.11.

[58] Zhang Y, Yan H, Feng G,. Non-aromatic Si, P, N-containing hyperbranched flame retardant on reducing fire hazards of epoxy resin with desirable mechanical properties and lower curing temperature[J]. Composites Part B: Engineering, 2021, 222: 109043.1-109043.12.

[59] 彭凡暢, 陳小隨, 張愛清, 等. 超支化聚磷酰胺包覆碳納米管的可控制備及阻燃應用[J]. 中國塑料, 2021, 35(9): 55-63.

Progress of Phosphorus-containing Hyperbranched Flame Retardant Modified Epoxy Resin

YANG Qing-song, LI Jin-lun, HUANG Cai-juan*

(College of Materials and Mertallurgy, Guizhou University, Guiyang 550025, China)

The research progress of phosphorous-containing hyperbranched flame retardant modified epoxy resin (EP) in recent years is reviewed,mainly including phosphorus-containing phenanthrene group hyperbranched flame retardant, hyperbranched polyphosphate flame retardant, and hyperbranched phosphorus-containing flame retardant /Nitrogen flame retardants and hyperbranched phosphorus/nitrogen/silicon flame retardants and other types of hyperbranched flame retardants. The effects of different types of flame retardants on the flame retardant and mechanical properties of EP are introduced, and the flame retardant properties, mechanical properties, glass transition temperature (Tg) and other properties of EP composites after adding different flame retardants are summarized and compared. Finally, it points out the main challenges currently faced by the phosphorus-containing hyperbranched flame retardants and looks forward to the future development trend.

epoxy resin; hyperbranched; phosphorus-containing flame retardant; flame retardant property; mechanical property

2021-11-26

貴州大學大學生創新創業訓練計劃項目(項目編號:S202010657056)。

楊青松(1994~),男,碩士研究生;主要從事生物基阻燃材料合成與性質研究。1347283416@qq.com

黃彩娟(1974~),女,碩士,副教授;主要從事綠色催化和生物基高分子材料合成的研究。Cjhuang98@163.com

TQ323.5

A

1009-220X(2022)03-0007-14

10.16560/j.cnki.gzhx.20220307

猜你喜歡
含磷磷酸酯機械性能
L-抗壞血酸-2-磷酸酯合成工藝研究進展
含磷環氧樹脂及其在無鹵覆銅板中的應用進展
磷酸酯鍵基智能響應體系在生物醫學領域的研究進展
不同磷酸酯與酚醛樹脂復配阻燃ABS的機理討論
選擇性激光熔化成型中零件成型角度對其機械性能的影響
水里的“紅孩兒”
Pxi測試系統在航空發動機試驗中的應用
鎂合金在機械加工中的應用
OMMT改性MDI型聚氨酯膠黏劑的制備及力學性能
二維反式氫磷相關脈沖序列設計及在含磷化學毒劑分析中的應用
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合