?

龍眼DlSWEET1基因的克隆、表達及功能分析

2024-04-30 07:51包雨瑩李韻江文潔謝濤方庭
果樹學報 2024年4期
關鍵詞:表達分析龍眼

包雨瑩 李韻 江文潔 謝濤 方庭

摘? ? 要:【目的】SWEET(sugars will eventually be exported transporters)是一類參與植物生長發育多個過程的糖轉運蛋白,分析DlSWEET1基因在龍眼不同組織和處理下的表達,探究其在果實糖積累中的功能?!痉椒ā恳札堁鬯娠L本果實為材料,克隆DlSWEET1基因,采用實時熒光定量PCR分析DlSWEET1在龍眼不同組織器官的表達以及在激素、冷、熱、干旱脅迫下的表達模式。通過亞細胞定位、糖轉運活性分析及草莓瞬時轉化研究DlSWEET1基因的功能?!窘Y果】DlSWEET1基因開放閱讀框(ORF)全長為750 bp,編碼249個氨基酸,包含一個PQ-loop保守結構域和蛋白典型保守結構域 MtN3_slv。DlSWEET1在龍眼根、莖、葉、果肉等組織中均有不同程度的表達,在葉中的表達量較高,在果肉中的表達量次之,而在莖和根中表達量較低;不同濃度的蔗糖、葡萄糖和果糖處理龍眼葉片后,DlSWEET1在葉片中的表達量均有顯著升高;低溫、干旱及MeJA(茉莉酸甲酯)處理可顯著提高DlSWEET1的表達。農桿菌侵染本氏煙草發現DlSWEET1蛋白定位在細胞膜和細胞核。糖轉運活性分析證明DlSWEET1蛋白可以轉運葡萄糖、果糖、蔗糖和甘露糖。草莓中瞬時轉化DlSWEET1可以顯著提升果實中的可溶性糖含量?!窘Y論】瞬時過表達DlSWEET1導致轉基因草莓果實的可溶性糖含量增加,為進一步解析DlSWEET1在龍眼果實糖積累中的作用提供理論依據。

關鍵詞:龍眼;DlSWEET1;表達分析;亞細胞定位;糖積累

中圖分類號:S667.2 文獻標志碼:A 文章編號:1009-9980(2024)04-0679-11

Cloning, expression and functional analysis of longan DlSWEET1 gene

BAO Yuying1, 2, LI Yun1, 2, JIANG Wenjie 1, 2, XIE Tao1, 2, FANG Ting1, 2*

( 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; 2Institute of Horticultural Plant Genetics and Breeding, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China )

Abstract: 【Objective】 Longan (Dimocarpus longan L.) is one of the important economic fruit crops in southern China. Longan has the function of nourishing the heart, spleen and blood, and calming the mind of peaple. It has been regarded as a precious supplement since ancient times. The sugar content in fruits is a key factor affecting fruit quality, and improvement of fruit sugar content is of great significance for promoting the high-quality and efficient development of Chinas longan industry. The SWEET sugar transporters protein (SWEETs) not only plays an important role in plant stress and hormone response, but also plays a crucial role in the normal growth and development of plants, especially in promoting sugar accumulation. However, there has been limited research on the DlSWEETs in longan, especially on sugar accumulation. The purpose of this study is to screen and validate the functions of the candidate DlSWEETs that may be involved in sugar accumulation processes. 【Methods】 The CDS sequence of the DlSWEET1 was cloned using the cDNA of the preserved Songfengben fruit in the laboratory as a template. The DNAMAN software was used to translate the correctly sequenced DlSWEET1 gene nucleotide sequence into amino acid sequence, and its conserved domain was predicted by NCBI. The protein transmembrane domains were analyzed using the TMHMM2.0. We extracted the total RNA from different tissues (roots, stems, leaves, and fruits) of longan and leaf samples after different treatments, reversed the transcribe to obtain cDNA, and then used real-time fluorescence quantitative PCR (qRT-PCR) to detect the expression level of DlSWEET1 in different tissues and organs of longan, as well as its expression level under hormone, cold, heat, and drought stress. All the experiments were repeated three times in terms of biology and technology, and the relative expression levels of the genes were calculated using the 2–??CT method, and then statistically analyzed by t test. p<0.05 indicated significant difference, and the error line represented the standard deviation of three biological repeats. the CDS sequence of the DlSWEET1 was cloned and connected to the pMD18-T vector. Using this plasmid as a template, PCR amplification of the DlSWEET1 was performed using primers. The pH7LIC5.0-ccdBrc-N-eGFP vector enzyme was cleaved using Stu Ⅰ enzyme cleavage, the pSAK277 vector enzyme was cleaved +using EcoR Ⅰ and Hind Ⅲ enzyme cleavage, and the pDR196 vector enzyme was cleaved using Pst Ⅰ and Spe Ⅰ enzyme cleavage. The amplification product was inserted into the multi clone sites of each vector. The first two recombinant vectors were transformed into GV3101 strain, and the last recombinant vector was transformed into EBYVW4000 yeast strain. The lower epidermis of tobacco leaves was injected with Agrobacterium and cultured in the dark room (25 ℃) for 2 days. The distribution of green fluorescence was observed by confocal laser microscope. The strawberries injected with Agrobacterium were cultured under 16 h light/8 h darkness in a greenhouse at 25 ℃ for 9 days. The relative expression of the DlSWEET1 in strawberries and the determination of soluble sugar content were analyzed by qRT-PCR. The bacterial solutions with OD600 of 0.1, 0.01 and 0.001 were taken 5 ?L into various sugar substrate media, and the media were cultured in a constant temperature incubator at 28 ℃ for 2-3 days, and the growth was observed and recorded. The function of the DlSWEET1 gene was investigated by subcellular localization, sugar transport activity analysis and transient transformation of strawberry. 【Results】 The DlSWEET1 contained 750 bp of ORF (open reading frame) and encoded 249 amino acids, which contained a PQ-loop conserved domain and a protein typical conserved domain MtN3_slv. Further analysis indicated that DlSWEET1 protein contained seven transmembrane domains. The qRT-PCR analysis results showed that the DlSWEET1 was expressed in different tissues such as the roots, stems, leaves, and pulp, with higher expression levels in the leaves, followed by in the pulp, and lower expression levels in the stems and roots. After treating the leaves with different concentrations of sucrose, glucose, and fructose, the expression level of the DlSWEET1 showed varying degrees of increase. The expression level of the DlSWEET1 in the leaves treated with sucrose was significantly higher than that in the control group, but there was no significant difference among different concentrations. The expression of glucose increased significantly with the increase of glucose concentration. In the treatment of fructose, lower concentration (0.5 g·L-1) and higher concentration (5 g·L-1) could significantly increase the expression of the DlSWEET1. The expression of the DlSWEET1 was significantly increased under low temperature, drought and MeJA treatments, and significantly decreased under ABA treatment. However, there was no significant change in its expression after high temperature, 6-BA and GA3 treatments. The fluorescence signals of GFP were mainly concentrated and overlapped in the cell membrane and nucleus. The sugar transport activity analysis showed that the DlSWEET1 protein could transport glucose, fructose, sucrose and mannose. After transient transformation, the contents of sucrose, glucose and fructose in the strawberry were significantly higher than those in the control treatment, and the expression level of the DlSWEET1 was significantly increased. 【Conclusion】 The DlSWEET1 gene was cloned from longan fruit, and its expression level could be induced by different sugar components (sucrose, glucose, and fructose), stress (low temperature and drought), and hormones (MeJA and ABA). The subcellular localization revealed that the gene is localized on the cell membrane and nucleus. The analysis of sugar transport activity showed that it could transport various sugar components, such as sucrose, glucose, fructose and mannose, but could not transport the toxic substrate deoxyglucose. The transient overexpression of the DlSWEET1 resulted in increased soluble sugar content in the transgenic strawberry fruits. The transient conversion of this gene in the strawberry significantly increased the relative expression of the DlSWEET1. These results indicated that the DlSWEET1 has the function of promoting sugar accumulation in fruits of longan. The article would provide a theoretical reference for improving fruit quality of longan.

Key words: Longan (Dimocarpus longan); DlSWEET1; Expression analysis; Subcellular localization; Sugar accumulation

果實的糖含量是影響果實風味品質的重要因素。前人研究表明,植物通過光合作用合成蔗糖,源器官葉片中的蔗糖需經過韌皮部裝載、長距離運輸、韌皮部卸載后進入果實的液泡中進行儲存,糖轉運蛋白在這一系列過程中起到關鍵的介導糖類跨膜運輸作用[1]。截至目前,在植物中鑒定出各種類型的糖轉運蛋白,主要可以分為單糖轉運蛋白(monosaccharide transporter-like,MST)、蔗糖轉運蛋白(sucrose transporters,SUT)和SWEET(sugars will eventually be exported transporters)3種類型[2]。

SWEET是2010年發現的一類廣泛存在于動植物中的具有糖轉運功能的蛋白家族[3],參與植物生長發育、脅迫響應和果實糖積累等多個過程[4]。在野草莓中過表達白梨的PbSWEET4 基因會降低葉片中的葉綠素含量,加速葉片衰老[5];敲除擬南芥AtSWEET17基因后側根減少,進而導致耐旱性降低[6];胡曉波等[7]發現在過表達CitSWEET11d基因的柑橘愈傷組織和番茄果實中蔗糖含量顯著增加,表明CitSWEET11d 促進了蔗糖的積累。路靜等[8]通過組織表達分析發現,MdSWEET1基因主要在蘋果的莖和花中表達,在番茄中異位表達該基因可提高果實的蔗糖和果糖含量。

龍眼是重要的熱帶、亞熱帶常綠果樹,已經有2000多年栽培歷史,廣泛種植于東南亞、 南亞、澳大利亞和美國夏威夷等地區。龍眼原產并盛產于中國,栽培面積與產量都居于世界首位[9],主要集中栽培于海南、廣東、廣西、福建等省份,為我國熱區第四大水果[10]。龍眼果實口感和風味的影響因素較多,而起主導作用的是含糖量,糖的組分及其各組分含量的多少直接決定著果實風味的好壞,除此之外,糖類還是類胡蘿卜素、有機酸和維生素等營養物質生成的基礎原料[11]。由于龍眼栽培管理相對粗放,常導致果實品質欠佳,直接影響了產業的健康持續發展。筆者在課題組前期龍眼SWEET基因家族成員鑒定的基礎上,從龍眼果實中克隆DlSWEET1基因,然后將此基因構建到eGFP載體上,利用激光共聚焦觀察熒光信號,獲得DlSWEET1基因的亞細胞定位。通過觀察酵母的生長情況及表達情況來研究DlSWEET1的糖轉運活性,并在草莓果實中瞬時過表達DlSWEET1研究其在果實糖積累中的功能,為龍眼高糖性狀改良提供理論依據和基因資源。

1 材料和方法

1.1 試驗材料與處理

本試驗中所用的龍眼材料為4個月苗齡的紅核子幼苗。在高溫和低溫脅迫中,幼苗分別在40 ℃和4 ℃下處理;通過澆灌PEG6000(20%)模擬干旱脅迫;在激素處理中,分別用50 mmol·L-1 ABA、50 mmol·L-1 GA3、75 mmol·L-1 6-BA和100 mmol·L-1 MeJA(茉莉酸甲酯)噴施葉片;在可溶性糖噴施處理中,分別用0.5、1和5 g·L-1的葡萄糖、果糖和蔗糖噴施葉片;對照為28 ℃生長的植株,所有處理均包含3次生物學重復,處理4 h后取相同位置的葉片并用液氮速凍后保存于-80 ℃冰箱。用于瞬時轉化的為紅顏草莓,用于亞細胞定位的煙草為本氏煙草,所有植物材料均種植于福建農林大學園藝學院遺傳育種實驗室的培養室中。用于基因克隆的松風本龍眼果實取自福建省農業科學院國家龍眼枇杷種質資源圃,取材時期為成熟期(花后120 d)。

1.2 龍眼DlSWEET1基因的克隆

在龍眼基因組中查詢Dlo_004842.1,即DlSWEET1,下載編碼區序列。以實驗室保存的松風本龍眼果實cDNA為模板,設計特異性引物(引物序列5-ATGGATATCGCACATTTCATATTCG-3/5-CTACACTCCAAACCGTGACCCG-3)克隆得到DlSWEET1的CDS序列并連接至pMD18-T載體上進行測序。

1.3 龍眼DlSWEET1基因序列的生物信息學分析

使用DNAMAN軟件將測序正確的DlSWEET1基因核苷酸序列翻譯成氨基酸序列,保守結構域通過NCBI(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)預測;使用TMHMM2.0網站(https://services.healthtech.dtu.dk/services/TMHMM-2.0/)在線分析蛋白的跨膜結構域。利用MEGA7.0軟件構建系統進化樹,方法為鄰接法,Bootstrap設置為1000。

1.4 龍眼DlSWEET1基因的表達分析

采用天根RNAprep Pure多糖多酚植物總RNA提取試劑盒(DP441)提取龍眼不同組織(根、莖、葉片和果實)及不同處理后的葉片樣品的總RNA,利用TransScript? One-Step gDNA Removal and cDNA Synthesis SuperMix試劑盒反轉錄得到cDNA。使用全式金的PerfectStart? Green qPCR SuperMix,在熒光定量PCR儀(Roche,LightCycler 96)上進行基因表達量的檢測。DlSWEET1基因的引物序列為5-CGGGCTCCTGATGCTTGT-3/5-TCTTGGTGTTGCCGTGCA-3,內參基因Actin引物序列為5-TGCTATCCTTCGGTTGGACC-3/5-CGGACGATTTCCCGTTCAG-3。所有試驗都進行3次生物學及技術重復,基因相對表達量的計算方法選用的是2–??CT法。

1.5 龍眼DlSWEET1基因的亞細胞定位

以連有DlSWEET1基因CDS的pMD18-T載體為模板,使用引物(引物序列5-ACAAGGATTACGC-

CGAGGCCTATGGATATCGCACATTTCATATTCG-

3/5-ATATCATTAGGGAAGAGGCCTCTACACTCCAAACCGTGACCCG-3),利用2 × Taq Master Mix-V21.1(Vazyme Biotech,P111/P112)進行PCR擴增。選擇StuⅠ酶將pH7LIC5.0-ccdB rc-N-eGFP載體進行酶切使其線性化,利用無縫克隆試劑盒ClonExpress? Ⅱ One Step(C112,南京諾唯贊)將擴增產物插入已切開的目標載體。將構建好的載體通過農桿菌注射轉化煙草,注射后的煙草于培養室(25 ℃)暗培養2 d,再借助激光共聚焦顯微鏡觀察綠色熒光的分布。

1.6 龍眼DlSWEET1基因的糖轉運活性檢測

以含有DlSWEET1基因CDS 的質粒為模板,使用引物(引物序列5-CTTGATATCGAATTCCTGCAGATGGATATCGCACATTTCATATTCG-3/5-TATACCCCAGCCTCGACTAGTCTACACTCCAA-ACCGTGACCCG-3)進行PCR擴增。用PstⅠ和SpeⅠ酶切將pDR196酵母表達載體進行酶切使其線性化,利用無縫克隆試劑盒ClonExpress? Ⅱ One Step(C112,南京諾唯贊)將擴增產物插入目標載體。將構建好的融合載體轉化釀酒酵母菌株EBYVW4000。以OD600=1的菌液為原液,用ddH2O稀釋,分別調節OD600為0.1、0.01和0.001,吸取5 ?L原液以及稀釋過的菌液點入不同糖底物培養基,倒放在28 ℃恒溫培養箱。經過2~3 d的培養后,觀察酵母能否正常生長,并比較不同濃度菌液之間酵母的生長狀態。

1.7 龍眼DlSWEET1基因在草莓果實中的瞬時過表達

以含有DlSWEET1基因CDS的質粒為模板,使用引物(引物序列5-TCCAAAGAATTCAAAAAGCTTATGGATATCGCACATTTCATATTCG-3/5-TCAT-

TAAAGCAGGACTCTAGACTACACTCCAAACCGTGACCCG-3)進行PCR擴增。選擇EcoRⅠ和Hind Ⅲ將pSAK277載體線性化,利用無縫克隆試劑盒ClonExpress? Ⅱ One Step(C112,南京諾唯贊)將擴增產物插入目標載體。將構建好的融合載體瞬時轉化白果期紅顏草莓果肉,具體操作方法參考Cheng等[12]的方法。注射農桿菌后的草莓于25 ℃溫室培養,光照情況為16 h光照/8 h黑暗,9 d后取草莓果肉樣品進行qRT-PCR分析以及糖含量測定。

2 結果與分析

2.1 DlSWEET1基因的克隆與生物學信息分析

從松風本果實cDNA中克隆得到一條長度為750 bp左右的單一條帶。將此條帶進行膠回收得到目的片段,用pMD18-T載體與膠回收產物進行連接轉化,大腸桿菌PCR鑒定結果表明,擴增到與目的片段大小一致的條帶,且與基因組中的序列完全一致(圖1)。蛋白保守結構分析表明,DlSWEET1蛋白在6~94位氨基酸之間含有1個PQ-loop保守結構域,在131~213位氨基酸之間含有1個MtN3_slv結構域(圖2-A)??缒そY構域分析表明,DlSWEET1蛋白含有7個跨膜結構域(圖2-B)。系統進化分析表明,DlSWEET1與LcSWEET1[13]、ZmSWEET1[14]和AtSWEET1為直系同源,并與AtSWEET2和AtSWEET3同屬于SWEETⅠ類(圖3)。

2.2 DlSWEET1基因在龍眼不同組織器官中的表達分析

利用qRT-PCR檢測DlSWEET1基因在龍眼根、莖、葉和果肉中的表達模式,結果表明,DlSWEET1基因在上述的龍眼組織部位中均有一定的表達,但表達模式有所差異。通過比較分析發現,DlSWEET1基因的表達量在葉中最高,其次是在果肉和根中,在莖中最低(圖4)。

2.3 不同濃度糖處理下龍眼DlSWEET1基因表達模式

為了研究DlSWEET1基因對可溶性糖的響應,對龍眼葉片進行了不同濃度葡萄糖、果糖和蔗糖噴施處理,并進行DlSWEET1的表達情況檢測。結果表明,DlSWEET1基因的表達量在葉片噴施糖處理后均呈現不同程度的上升趨勢,其中噴施蔗糖處理后期表達量相較于對照都有顯著上升(圖5-A);葡萄糖處理后期DlSWEET1基因表達量隨著濃度上升呈現顯著上升趨勢(圖5-B);在果糖處理中,較低質量濃度(0.5 g·L-1)和較高質量濃度(5 g·L-1)均可顯著提高DlSWEET1基因表達量(圖5-C)。

2.4 不同脅迫及激素處理下龍眼DlSWEET1基因的表達分析

為了進一步探討DlSWEET1基因是否響應激素及脅迫處理,利用qRT-PCR方法分析了該基因在不同激素及脅迫處理下的表達情況。結果表明,DlSWEET1基因的表達量在低溫、干旱及MeJA處理下呈現顯著上升趨勢;在ABA處理下表達量顯著下降。然而,在高溫、6-BA和GA3處理后期其表達量沒有顯著變化(圖6)。

2.5 DlSWEET1亞細胞定位分析

為進一步明確DlSWEET1蛋白的亞細胞定位情況,筆者通過農桿菌瞬時轉化了本氏煙草葉片。激光共聚焦定位觀察發現,DlSWEET1蛋白定位在植物細胞的細胞膜和細胞核中(圖7)。

2.6 DlSWEET1的糖轉運活性分析

將酵母表達載體成功轉入EBYVW4000釀酒酵母感受態細胞中,觀察酵母菌在含有不同底物(葡萄糖、果糖、甘露糖、蔗糖、麥芽糖和脫氧葡萄糖)的SD(-ura)固體培養基中能否正常生長及不同濃度菌液下的生長狀態(圖8)。轉基因酵母在含有葡萄糖、果糖、甘露糖、蔗糖及麥芽糖和脫氧葡萄糖為共同底物的培養基上能正常生長,說明DlSWEET1蛋白對某些糖有轉運能力,能轉運的糖組分包括葡萄糖、果糖、蔗糖、甘露糖,但沒有能力轉運脫氧葡萄糖這種毒性底物。

2.7 瞬時過表達DlSWEET1基因對草莓果實可溶性糖含量的影響

為驗證DlSWEET1基因在果實糖積累中的功能,利用草莓瞬時轉化體系在紅顏草莓白果期果實中過表達DlSWEET1基因。qRT-PCR結果(圖9)表明,相對于對照,DlSWEET1基因的表達量在瞬時轉化果實中顯著升高(圖9-A)。此外,經瞬時轉化后草莓果實中的蔗糖、葡萄糖和果糖的含量均顯著高于對照(圖9-B~D)。

3 討 論

作為韌皮部糖類裝載的重要參與者,近年來大量研究表明,SWEET糖轉運蛋白參與果實糖轉運,影響果實中的可溶性糖含量[15-17]。課題組此前已從龍眼基因組中篩選鑒定出龍眼的SWEET基因家族成員[2]。筆者選取DlSWEET1基因,并對其糖轉運功能及其調控機制進行研究。

有研究證明植物SWEET基因的表達具有組織差異,這種差異可能在其所調控的很多植物生理代謝過程中都起著決定性作用[18-19]。PwSWEET1基因在云杉花粉和花粉管中特異性表達,蔗糖和葡萄糖可以誘導PwSWEET1表達,PwSWEET1還可以恢復酵母菌EBY對葡萄糖的吸收[20];SWEET1基因在擬南芥花器官優先表達,在體外鑒定具有葡萄糖轉運活性[21];MeSWEET1在木薯不同組織器官中的相對表達量不同,其中在成熟葉片中最高,而在新葉和果實中最低[22]。筆者在本研究中利用qRT-PCR檢測了龍眼根、莖、葉、果肉的相對表達量,發現DlSWEET1在龍眼葉片中表達量最高,其次是果肉,而在根和莖中表達量較低,說明DlSWEET1具有組織特異性,在葉片和果肉中表達量較高說明其可能參與了龍眼葉片發育及果實的糖積累。糖轉運活性分析表明DlSWEET1可以轉運葡萄糖、蔗糖、果糖和甘露糖,推測該基因可能通過在龍眼不同組織器官中轉運不同種類的糖,進而參與多種植物生長發育過程。

除了參與植物生長發育外,SWEET糖轉運蛋白在植物脅迫和激素響應方面還發揮重要作用[23-24]。大蒜AsSWEET14基因參與逆境脅迫,在干旱和低溫脅迫下均顯著上調表達[25];小黑麥多個TwSWEETs基因在干旱或低溫脅迫下呈現出顯著差異表達[26];在蘋果中,ABA可能會通過調節MdWRKY9-MdSWEEET9b途徑來影響果實糖的積累[27]。筆者在本研究中發現在低溫和干旱處理下,龍眼DlSWEET1的表達量顯著上升,與前人在6個月苗齡紅核子龍眼幼苗上的研究結果相一致[2],但6個月苗齡條件下該基因的表達量上升幅度較4個月苗齡條件下大,推測該基因可能在龍眼幼苗發育的較長時間中都會參與低溫和干旱脅迫響應,但不同發育時期的作用大小有所差異。此外,DlSWEET1的表達量在MeJA處理下呈現顯著上升趨勢,與前人關于該基因啟動子具備多個激素響應元件的結果相一致[2]。

果實中的糖積累高度依賴于糖轉運體[28]。越來越多的研究表明,SWEET蛋白可以促進可溶性糖的積累。有研究發現 LcSWEET10的表達模式與荔枝假種皮中糖的積累呈正相關[29],異源表達IbSWEET15基因可提高擬南芥種子中的可溶性糖含量[30]。為了驗證DlSWEET1在龍眼果實糖積累中的功能,筆者通過農桿菌注射瞬時侵染草莓,檢測出轉基因草莓的可溶性糖含量顯著上升,說明DlSWEET1在促進龍眼糖分積累中起重要作用,為后期深入研究龍眼糖積累調控機制提供理論依據。

4 結 論

從龍眼果實中克隆得到DlSWEET1基因,其表達量可被不同糖組分(蔗糖、葡萄糖和果糖)、逆境(低溫和干旱)和激素(MeJA和ABA)等條件誘導。亞細胞定位發現DlSWEET1基因定位于細胞膜和細胞核。糖轉運活性分析表明其可以轉運蔗糖、葡萄糖、果糖和甘露糖等多種糖組分。草莓瞬時轉化該基因可顯著提高草莓果實的可溶性糖含量?;谏鲜鲅芯拷Y果,初步推測DlSWEET1具有促進龍眼果實糖積累的功能,為龍眼果實品質改良提供了一定的理論參考。

參考文獻References:

[1] YAMAKI S. Metabolism and accumulation of sugars translocated to fruit and their regulation[J]. Journal of the Japanese Society for Horticultural Science,2010,79(1):1-15.

[2] FANG T,RAO Y,WANG M Z,LI Y,LIU Y J,XIONG P P,ZENG L H. Characterization of the SWEET gene family in longan (Dimocarpus longan) and the role of DlSWEET1 in cold tolerance[J]. International Journal of Molecular Sciences,2022,23(16):8914.

[3] CHEN L Q,HOU B H,LALONDE S,TAKANAGA H,HARTUNG M L,QU X Q,GUO W J,KIM J G,UNDERWOOD W,CHAUDHURI B,CHERMAK D,ANTONY G,WHITE F F,SOMERVILLE S C,MUDGETT M B,FROMMER W B. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature,2010,468(7323):527-532.

[4] 張計育,王剛,王濤,賈展慧,宣繼萍. SWEET蛋白在植物生長發育中的功能作用研究進展[J]. 植物資源與環境學報,2023,32(5):1-15.

ZHANG Jiyu,WANG Gang,WANG Tao,JIA Zhanhui,XUAN Jiping. Research progress on functional roles of SWEET proteins in plant growth and development[J]. Journal of Plant Resources and Environment,2023,32(5):1-15.

[5] NI J P,LI J M,ZHU R X,ZHANG M Y,QI K J,ZHANG S L,WU J. Overexpression of sugar transporter gene PbSWEET4 of pear causes sugar reduce and early senescence in leaves[J]. Gene,2020,743:144582.

[6] VALIFARD M,LE HIR R,M?LLER J,SCHEURING D,NEUHAUS H E,POMMERRENIG B. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance[J]. Plant Physiology,2021,187(4):2716-2730.

[7] 胡曉波. 柑橘SWEET11d對果實蔗糖積累的轉錄調控機制研究[D]. 杭州:浙江大學,2021.

HU Xiaobo. Transcriptional regulation mechanism of citrus SWEET11d on fruit sucrose accumulation[D]. Hangzhou:Zhejiang University,2021.

[8] 路靜,馬齊軍,康慧,李文浩,劉亞靜,郝玉金,由春香. 蘋果糖轉運蛋白基因MdSWEET1在番茄中異源表達提高其耐鹽性[J]. 園藝學報,2019,46(3):433-443.

LU Jing,MA Qijun,KANG Hui,LI Wenhao,LIU Yajing,HAO Yujin,YOU Chunxiang. Ectopic expressing MdSWEET1 in tomato enhanced salt tolerance[J]. Acta Horticulturae Sinica,2019,46(3):433-443.

[9] LIN Y L,MIN J M,LAI R L,WU Z Y,CHEN Y K,YU L L,CHENG C Z,JIN Y C,TIAN Q L,LIU Q F,LIU W H,ZHANG C G,LIN L X,ZHANG D M,THU M,ZHANG Z H,LIU S C,ZHONG C S,FANG X D,WANG J,YANG H M,VARSHNEY R K,YIN Y,LAI Z X. Genome-wide sequencing of longan (Dimocarpus longan Lour.) provides insights into molecular basis of its polyphenol-rich characteristics[J]. GigaScience,2017,6(5):1-14.

[10] 齊文娥,陳厚彬,彭朵芬,晏發發. 中國龍眼產業發展現狀、問題與對策建議[J]. 廣東農業科學,2016,43(8):169-174.

QI Wene,CHEN Houbin,PENG Duofen,YAN Fafa. Present situation,problems and suggestions of the development of Chinese longan industry[J]. Guangdong Agricultural Sciences,2016,43(8):169-174.

[11] LUO T,SHUAI L,LIAO L Y,LI J,DUAN Z H,GUO X M,XUE X Q,HAN D M,WU Z X. Soluble acid invertases act as key factors influencing the sucrose/hexose ratio and sugar receding in longan (Dimocarpus longan Lour.) pulp[J]. Journal of Agricultural and Food Chemistry,2019,67(1):352-363.

[12] CHENG J T,WEN S Y,XIAO S,LU B Y,MA M R,BIE Z L. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation[J]. Journal of Experimental Botany,2018,69(3):511-523.

[13] XIE H H,WANG D,QIN Y Q,MA A N,FU J X,QIN Y H,HU G B,ZHAO J T. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development[J]. BMC Plant Biology,2019,19(1):499.

[14] 李明,鄭德志,郝立冬,郭海濱,孫瑩瑩. 玉米SWEET基因家族的全基因組鑒定與分析[J/OL]. 分子植物育種,2022:1-11. (2022-10-31). http://kns.cnki.net/kcms/detail/46.1068.S.20221031.1009.008.html.

LI Ming,ZHENG Dezhi,HAO Lidong,GUO Haibin,SUN Yingying. Genome-wide identification and analysis of SWEET gene family in Maize[J/OL]. Molecular Plant Breeding,2022:1-11. (2022-10-31). http://kns.cnki.net/kcms/detail/46.1068.S.20221031.1009.008.html.

[15] ZHANG Z,ZOU L M,REN C,REN F R,WANG Y,FAN P G,LI S H,LIANG Z C. VvSWEET10 mediates sugar accumulation in grapes[J]. Genes,2019,10(4):255.

[16] GENG Y Q,WU M J,ZHANG C M. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphus jujuba Mill.[J]. Frontiers in Plant Science,2020,11:1081.

[17] LI X Y,GUO W,LI J C,YUE P T,BU H D,JIANG J,LIU W T,XU Y X,YUAN H,LI T,WANG A D. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit[J]. Plant Physiology,2020,182(4):2035-2046.

[18] KO H Y,HO L H,NEUHAUS H E,GUO W J. Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato[J]. Plant Physiology,2021,187(4):2230-2245.

[19] JEENA G S,KUMAR S,SHUKLA R K. Structure,evolution and diverse physiological roles of SWEET sugar transporters in plants[J]. Plant Molecular Biology,2019,100(4/5):351-365.

[20] ZHOU Y N,CUI X Y,HU A N,MIAO Y H,ZHANG L Y. Characterization and functional analysis of pollen-specific PwSWEET1 in Picea wilsonii[J]. Journal of Forestry Research,2020,31(5):1913-1922.

[21] 辛紅佳,李鵬程,滕守振,李圣彥,汪海,郎志宏. 擬南芥SWEET1/2/3基因突變體構建及功能鑒定[J]. 中國農業科技導報,2020,22(2):39-49.

XIN Hongjia,LI Pengcheng,TENG Shouzhen,LI Shengyan,WANG Hai,LANG Zhihong. Construction and functional characterization of mutants of Arabidopsis SWEET1/2/3 genes[J]. Journal of Agricultural Science and Technology,2020,22(2):39-49.

[22] 劉秦,馬暢,馮世鵬,唐枝娟,陳銀華,羅麗娟,牛曉磊. 木薯SWEET1基因的分子克隆、亞細胞定位與功能分析[J]. 分子植物育種,2017,15(7):2502-2509.

LIU Qin,MA Chang,FENG Shipeng,TANG Zhijuan,CHEN Yinhua,LUO Lijuan,NIU Xiaolei. Molecular cloning,subcellular localization and function analysis of a MeSWEET1 gene from Manihot esculenta[J]. Molecular Plant Breeding,2017,15(7):2502-2509.

[23] CHANDRAN D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance[J]. IUBMB Life,2015,67(7):461-471.

[24] 孫文杰,左開井. SWEET轉運蛋白家族的發現、結構及功能研究進展[J]. 分子植物育種,2016,14(4):878-885.

SUN Wenjie,ZUO Kaijing. The finding of SWEET transporter family and the research advance on its structure and function[J]. Molecular Plant Breeding,2016,14(4):878-885.

[25] 鄭曉雯,徐庭亮,田潔. 大蒜糖轉運蛋白基因AsSWEET14克隆與脅迫表達分析[J]. 植物生理學報,2023,59(8):1555-1565.

ZHENG Xiaowen,XU Tingliang,TIAN Jie. Cloning and expression analysis of sugar transporter gene AsSWEET14 under stress in garlic[J]. Plant Physiology Journal,2023,59(8):1555-1565.

[26] 李根,??e. 小黑麥SWEET家族基因鑒定及其在不同逆境下表達模式分析[J]. 草地學報,2023,31(11):3310-3321.

LI Gen,NIU Kuiju. Characterization and analysis of SWEET gene family and response to abiotic stress in Triticosecale[J]. Acta Agrestia Sinica,2023,31(11):3310-3321.

[27] 張淑輝. MdWRKY9-MdSWEET9b響應ABA信號調控蘋果果實糖積累的機理研究[D]. 泰安:山東農業大學,2023.

ZHANG Shuhui. Mechanisms of MdWRKY9-MdSWEET9b regulating sugar accumulation in apple fruits in response to ABA signal[D]. Taian:Shandong Agricultural University,2023.

[28] CHEN T,ZHANG Z Q,LI B Q,QIN G Z,TIAN S P. Molecular basis for optimizing sugar metabolism and transport during fruit development[J]. aBIOTECH,2021,2(3):330-340.

[29] 謝涵涵. 荔枝SWEET基因家族的克隆及其功能初步分析[D]. 廣州:華南農業大學,2020.

XIE Hanhan. Cloning and preliminary functional analysis of SWEET gene family in Litchi Chinensis[D]. Guangzhou:South China Agricultural University,2020.

[30] 吳旭莉,吳正丹,晚傳芳,杜葉,高艷,李賾萱,王志前,唐道彬,王季春,張凱. 甘薯糖轉運蛋白IbSWEET15的功能研究[J]. 作物學報,2023,49(1):129-139.

WU Xuli,WU Zhengdan,WAN Chuanfang,DU Ye,GAO Yan,LI Zexuan,WANG Zhiqian,TANG Daobin,WANG Jichun,ZHANG Kai. Functional identification of sucrose transporter protein IbSWEET15 in sweet potato[J]. Acta Agronomica Sinica,2023,49(1):129-139.

猜你喜歡
表達分析龍眼
龍眼雞
買龍眼
5月龍眼市場監測分析
6月龍眼市場監測分析
雷公藤貝殼杉烯酸氧化酶基因的全長cDNA克隆與表達分析
甜甜的龍眼
紅花生育酚環化酶基因的克隆及表達分析
甜甜的龍眼,美美的景色
膠孢炭疽菌漆酶基因Lac2的序列特征與表達分析
玉米紋枯病病菌y—谷氨酰轉肽酶基因克隆與表達分析
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合