?

分子印跡電化學傳感器

2016-03-21 07:20郭秀春王繼磊王海輝陳小艷李圩田周文輝武四新
化學研究 2016年1期

郭秀春,王繼磊,王海輝,陳小艷,李圩田,周文輝*,武四新

( 1.河南大學中藥研究所,河南開封475004; 2.河南大學化學化工學院,河南開封475004; 3.河南大學特種功能材料重點實驗室,河南開封475004)

?

分子印跡電化學傳感器

郭秀春1,王繼磊2,王海輝3,陳小艷3,李圩田1,周文輝3*,武四新3

( 1.河南大學中藥研究所,河南開封475004; 2.河南大學化學化工學院,河南開封475004; 3.河南大學特種功能材料重點實驗室,河南開封475004)

摘要:分子印跡電化學傳感器能夠選擇性識別并檢測特定目標化合物,因其設計簡單、靈敏度高、價格低廉、攜帶方便、易于微型化和自動化等優點,在臨床診斷、環境監測、食品分析等方面越來越受到人們的關注.本文作者主要論述分子印跡技術與電化學技術相結合構建分子印跡電化學傳感器,包括分子印跡電化學傳感器的種類,以及電化學方法制備分子印跡聚合物膜的常用單體等.對分子印跡電化學傳感器領域新出現的分子印跡聚合物-納米材料復合物以及納米結構分子印跡聚合物也一并做了評述.

關鍵詞:分子印跡技術;分子印跡聚合物;電化學傳感器

分子印跡技術( Molecular Imprinting Technique,MIT)是指制備對某一特定的目標分子(模板分子)具有特異選擇性的聚合物的過程,所制備的聚合物稱為分子印跡聚合物( Molecularly Imprinted Polymer,MIP)[1].由于具有構效預定性( Predetermination)、特異識別性( Specific Recognition)和廣泛實用性( Practicability)三大特點,分子印跡技術及分子印跡聚合物已經在化合物分離與富集、仿生傳感器、人工酶催化劑、抗體模擬酶、藥物手性拆分、藥物控制釋放、藥物篩選等諸多領域得到應用,并顯示出誘人的應用前景[2].分子印跡聚合物對目標化合物具有特異性識別能力,使得其可以作為傳感器的敏感材料(識別元件)用于構建分子印跡傳感器.分子印跡聚合物在富集并識別目標化合物之后可以通過光、電、熱、質、磁等轉化手段(換能器)轉化為可以分析的電信號,并獲得目標化合物的相關信息.相比于其他類型的傳感器,電化學傳感器因具有設計簡單、靈敏度高、價格低廉、攜帶方便、易于微型化和自動化等優點,在臨床診斷、環境監測、食品分析等方面越來越受到人們的關注[3].結合分子印跡技術和電化學傳感器而來的分子印跡電化學傳感器在生物及化學傳感器領域獲得了廣泛的關注,成為國內外的研究熱點.本文作者將對分子印跡電化學傳感器進行綜述.

1 分子印跡技術原理及傳感器的制備方法

分子印跡聚合物的制備過程就是在模板分子存在的條件下,使功能單體和交聯單體發生共聚,將模板分子被包埋在所形成的剛性聚合物材料內.采用一定的方法將模板分子從聚合物材料中洗脫出來,就會在模板分子所占據的空間位置和結構處留下來一個與模板分子在尺寸、形狀和結構方面相匹配的三維孔洞.由于功能單體具有與模板分子官能團互補的功能性官能團,因此所合成的分子印跡聚合物能夠特異性的與模板分子進行識別和結合(圖1)[4].

圖1 分子印跡聚合物制備過程[4]Fig.1 Schematic illustration of the preparation of MIP[4]

根據分子印跡聚合物與換能器整合方式的不同,可以將分子印跡傳感器的制備方法分為間接法和直接法[5].間接法是先制備MIP膜或顆粒,然后將其整合至傳感器的換能器上;直接法則是采用原位聚合法直接在換能器表面制備MIP膜.應該指出,間接法制備的MIP膜一般較厚,容易形成擴散壁壘,使得響應時間延長,同時識別元件與換能器的結合不好[6].針對以上問題,研究者提出了多種方法來提高分子印跡傳感器的性能,包括旋涂[7],層層沉積[8-9],電化學聚合[10],接枝聚合[11]等.

2 電化學傳感器分類

根據電化學檢測技術的不同,電化學分子印跡傳感器分為電容型傳感器、電導型傳感器、電流型傳感器、電位型傳感器和壓電型傳感器.

2.1電容型傳感器

電容型傳感器由一個場效應電容器組成,其內部裝有分子印跡聚合物薄膜,并且該分子印跡聚合物薄膜必須是絕緣的.當待測分析物在分子印跡聚合物薄膜上結合時,電容型分子印跡電化學傳感器的電容將發生變化,并且電容變化的大小與分析物的量存在定量關系,因此根據電容的改變可實現對分析物的定量檢測.電容型化學傳感器的優點是無須加入額外的試劑或標記,而且靈敏度高,操作簡單,價格低廉.1994年MOSBACH等曾嘗試制備分子印跡電容傳感器,其敏感材料部分是苯丙氨酸的苯胺分子印跡聚合物膜,但是該試驗并不成功,只部分獲得了定性檢測的效果.1999年,PANASYUK 等[12]改進了該傳感器的制備方法,首次成功制備了分子印跡電容性傳感器.作者首先利用羥基苯硫酚與金電極之間的金硫鍵作用在金電極表面自組裝一層羥基苯硫酚膜,然后在苯丙氨酸(模板分子)存在條件下電化學聚合苯酚制備了分子印跡薄膜,最后再用烷基硫醇進行封閉,最終實現了對苯丙氨酸的檢測.

2.2電導型傳感器

電導型分子印跡傳感器的基本原理是電導(率)的轉換.在兩個電導電極中間用一層分子印跡聚合物薄膜隔開,當待測分析物與分子印跡聚合物薄膜結合后分子印跡薄膜的電導率會發生變化.由于電導率的變化與分析物的量存在定量關系,從而實現分析物的檢測.分子印跡電導傳感器的分子印跡膜不需要經過復雜的固化程序,同時其檢測方法簡單、電導信號響應及平衡速度快.KRIZ等[13]以芐基三苯基氯化膦離子為模板制備分子印跡膜,利用電導法實現了芐基三苯基氯化膦的檢測.在此基礎上,柴春彥等[14]發明了一種檢測氯霉素的電導型傳感器(圖2),其電極裝置由兩片絲網印刷電極平行設計組成,接線端子( 2)、電極連線( 3)與工作電極( 4)連成一體組成一條電極基體,電極基體則印刷在電極基片( 1)上,電極連線( 3)的表面覆蓋一層絕緣體( 5),接線端子( 2)是裸露的電導材料薄膜,兩片絲網刷電極中的一片的工作電極反應區上覆蓋有氯霉素分子印跡膜( 6),而另一片中的電極為空白電極.

圖2 檢測氯霉素的分子印跡電導傳感器[14]Fig.2 MIP-based conductometric sensor for chloramphenicol[14]

2.3電流型傳感器

電流型分子印跡傳感器是依據在固定電位條件下不同的待測分析物的濃度與響應電流之間存在一定的關系,據此來測定待測物的量.分子印跡電流傳感器的關鍵是分子印跡膜內必須有一定的孔道,使待測分子(或探針分子)能夠穿過分子印跡膜到達電極表面,進而發生氧化還原反應而產生電流.該類傳感器可對電活性物質進行直接檢測,也可對非電活性物質進行間接檢測,即通過檢測探針分子(例如鐵氰化鉀)的電化學信號實現對非電活性物質的檢測.電流型傳感器根據采用的檢測手段的不同又可以分為差示脈沖伏安法、方波伏安法、循環伏安法、計時電流法等.KRIZ等[15]最先研制成功了電流型分子印跡電化學傳感器,該傳感器采用競爭模式實現了嗎啡的檢測.該傳感器對嗎啡的響應電流隨嗎啡濃度的增大而增大,當電流達到恒定值時再加入嗎啡的結構類似物可待因,可待因與嗎啡競爭結合替代下來部分嗎啡擴散到金電極表面發生電化學氧化并產生一個小的峰電流.研究表明,嗎啡濃度在0.1~10 μg/mL內增加時,傳感器的峰電流呈線性增大并且嗎啡結構類似物對測定沒有影響.

2.4電位型傳感器

電位型分子印跡傳感器是通過測量分子印跡膜結合待測分析物后電極電位變化的一類電化學傳感器.這類傳感器的特點是制備分子印跡膜時加入的模板分子不需要去除,同時待測分析物也不需要擴散并穿過分子印跡膜,因此待測分析物的大小不受限制.MURRAY等[16]最先實現了電位型分子印跡傳感器的研制.他們制備了一系列的分子印跡聚合物,并制備了相應的離子選擇性電極,利用電位法測定了鉛離子.該傳感器對鉛離子具有很強的選擇性,電位響應與活度的對數具有良好的線性關系.

2.5壓電型傳感器

壓電型分子印跡傳感器是利用石英晶體的壓電特性,將分子印跡薄膜固定在石英晶體電極表面,分子印跡薄膜在結合待測分析物之后質量發生變化,導致石英晶體轉化為石英晶體電極的諧振頻率發生變化.由于其諧振頻率變化量與待測物存在線性關系,因此通過計算機處理可以獲得極低的待測物含量.HAUPT等[17]最先將分子印跡聚合物和石英晶體微天平結合,成功構建了壓電型分子印跡傳感器.作者以( S) -普萘洛爾為模板分子在石英晶體電極表面沉積制備了分子印跡膜,分子印跡膜結合模板分子之后發生質量增加及相應的頻率降低,頻率降低量與模板分子濃度在一定范圍內呈線性,并且該分子印跡傳感器能夠區分( S) -普萘洛爾和( R) -普萘洛爾.

3 電化學聚合法制備分子印跡聚合物膜構建分子印跡電化學傳感器

作為一種特殊的原位聚合方法,電化學聚合法制備分子印跡聚合物薄膜具有以下諸多優點: 1)制備簡單,在功能單體和模板分子的溶液中進行循環伏安掃描等操作就能實現; 2)能夠在任何導電基底上獲得厚度可控的分子印跡薄膜[5].因此,本文作者主要討論通過電化學聚合法制備分子印跡膜,以及結合電化學檢測技術構建電化學分子印跡傳感器.

3.1以吡咯為單體制備分子印跡聚合物膜

吡咯是電化學聚合制備分子印跡聚合物薄膜時最常用的單體,很早就有人嘗試利用電化學聚合法制備聚吡咯類分子印跡聚合物.例如電化學聚合制備的聚吡咯分子印跡能夠吸附制備聚吡咯過程中所摻入的電解質陰離子[18-19],采用該方法可以實現氯離子[18]和三磷酸腺苷[19]的電位法檢測.幾年之后,HUTCHINS和BACHAS[20]采用同樣的方法電化學合成了聚吡咯分子印跡膜,并采用伏安法實現了硝酸鹽的檢測,但得到的傳感器不具有特異性吸附的特點,也能吸附其他的陰離子.需要指出的是,這些在分子印跡膜制備過程中添加的陰離子“模板分子”仍然留在分子印跡聚合物基體中并沒有被除去[21].研究者更進一步發展了電化學聚合制備過氧化聚吡咯分子印跡膜,并實現了大量陰離子模板分子的檢測.對于聚吡咯分子印跡聚合物識別體系,在電化學聚合制備分子印跡膜的過程中,聚吡咯基體中首先包埋相應的陰離子模板分子,隨后采用過氧化而非采取傳統的洗滌法來去除模板分子,最終在過氧化聚吡咯的形成過程中,在聚吡咯膜中留下與模板分子互補的納米孔洞[22].過氧化過程實際上是通過復雜的機制來消除聚合物基體網絡中的正電荷,而最終實現模板分子的釋放與去除.與此同時,在聚吡咯基體網絡中產生含氧基團使得其能夠選擇性識別模板分子.SPURLOCK等[21]在這一研究方向上進行了更進一步的研究,他們用電化學聚合方法制備了帶電荷和中性模板分子(腺苷、肌苷以及三磷酸腺苷)的過氧化聚吡咯膜,但是遺憾的是所制備的聚吡咯對模板分子的選擇性識別能力仍然較低.DEORE等[23-24]實現了過氧化聚吡咯的分子印跡膜的制備,并且所制備的過氧化聚吡咯分子印跡膜對L-谷氨酸有明顯的手性選擇性識別能力.從此以后,吡咯被大量用于各類化合物的分子印跡聚合物的制備,并與多種換能器結合實現了不同化合物甚至生物大分子的檢測,具體見表1.

表1 聚吡咯分子印跡電化學傳感器Table 1 MIP-based electrochemical sensors based on ppy

續表1 

3.2以鄰苯二胺為單體制備分子印跡聚合物膜

鄰苯二胺( 1,2-苯二胺)也是電化學聚合制備分子印跡聚合物的常用單體,但是其文獻報道量遠少于吡咯.ZAMBONIN等[10]首先報道了利用鄰苯二胺為單體制備分子印跡聚合物薄膜,并構建了仿生傳感器.作者利用電化學聚合制備了葡萄糖分子印跡聚合物膜,并將其作為識別單元與石英晶體微天平結合實現了葡萄糖的檢測.此后,研究者逐漸開始采用鄰苯二胺均聚物[38-47]或者與其他單體共聚合[48-55]進行分子印跡聚合物膜的制備.在不同pH緩沖溶液中,利用循環伏安法均能成功制備聚鄰苯二胺分子印跡膜,但是pH = 5.2的醋酸緩沖溶液仍是最常用的[10,38,46-47].聚鄰苯二胺形成的分子印跡膜較為緊密并且具有一定的剛性,因此具有較好的穩定性,特別適合作為傳感器的識別單元.另一方面,在pH=5.2的醋酸緩沖溶液中制得的聚鄰苯二胺是不導電的,這一特征使得其很合適用于制備電容型分子印跡傳感器[39,41-42].例如,CHENG 等[39]在2001年首次用聚鄰苯二胺制得了葡萄糖印跡的電容傳感器.需要指出的是,以聚鄰苯二胺分子印跡膜為識別單元的電化學傳感器一般都需要浸泡于待測物溶液中較長時間( 15 min以上)才能進行測試,這造成了基于鄰苯二胺的分子印跡聚合物傳感器的平衡時間較長,檢測相對耗時.

鄰苯二胺與其他單體的共聚物同樣可以用于分子印跡聚合物薄膜的制備.PENG等[48]首次用苯胺與鄰苯二胺共聚制備了硫酸阿托品的分子印跡聚合物,并結合波傳感器實現對阿托品的檢測.間苯二酚也常常與鄰苯二胺形成共聚物制備分子印跡聚合物.WEETALL和ROGERS[49]在石墨電極上電化學合成了等物質的量之比的間苯二酚與鄰苯二胺的共聚物分子印跡膜,利用該分子印跡膜分別印跡了3種不同的分子(染料熒光素、羅丹明以及農藥2,4-二氯苯氧乙酸),不過該分子印跡膜需要使用大量的甲醇沖洗以去除模板分子.印跡有染料的分子印跡膜可以通過經典的“再吸附實驗”識別相應的染料,最后將識別的染料洗脫至甲醇溶液中并記錄其熒光特性來檢測相應的染料.2,4-二氯苯氧乙酸分子印跡膜修飾的電極可結合方波伏安法監測連續加入2,4-二氯苯氧乙酸溶液的伏安響應.

表2 鄰苯二胺均聚物與共聚物分子印跡電化學傳感器Table 2 MIP-based electrochemical sensors based on homopolymers and copolymers of opd

3.3以酚類為單體制備分子印跡聚合物膜

酚類單體是另外一種用于電化學制備分子印跡膜的常見單體(表3).PANASYUK等[56]首次以苯酚為單體,通過電化學制備了分子印跡膜,實現了苯丙氨酸的印跡,并成功制備出第一個電容型分子印跡傳感器.在此基礎上,其他研究者成功制備出不同的聚酚類傳感器,實現了抗生素rifamycin SV ( RSV)[57]、茶堿[58]以及甲基紫精[59]等的檢測.BLANCO-LóPEZ等[57]認為RSV分子印跡膜的選擇性是基于聚酚薄膜的尺寸排阻效應以及電荷分化差異.WILLNER課題組[59]則認為形成印跡位點的原因是聚酚膜與模板分子之間的π-π相互作用.除了單純的酚類化合物,電化學制備分子印跡薄膜也常常選擇含有氨基的酚類化合物[60-62],因為該類化合物聚合得到的薄膜的孔洞內含有功能化的基團,容易提高其與模板分子之間的選擇性識別能力.

表3 聚酚分子印跡電化學傳感器Table 3 MIP-based electrochemical sensors based on polyphenols

3.4其他單體制備分子印跡聚合物薄膜

大體上來說,能夠在電化學條件下聚合并且具有一定的活性功能團的化合物都可以作為單體來制備分子印跡聚合物.除了上述吡咯、苯胺和多酚類化合物外,噻吩及其衍生物、苯磺酸及其衍生物等都可以作為單體,利用電化學聚合法來制備分子印跡膜,并進行分子印跡傳感器的構建,但是該類化合物大多比較昂貴,亦或合成和制備較為復雜,因此在此不再祥述.

4 分子印跡聚合物-納米材料復合物

單純分子印跡聚合物膜作為傳感器的識別元件,通常表現出吸附能力差和靈敏度不高的問題.研究人員發現只有改善分子印跡聚合物膜的吸附動力,縮短響應時間并徹底地去除模板分子才能成功地獲得性能優良的分子印跡傳感器[66].將納米材料與分子印跡聚合物復合或者雜化用作傳感器的識別單元,能夠使傳感器識別單元的表面積增大,提高分子印跡聚合物膜的導電性和電子傳遞能力,最終實現分子印跡電化學傳感器靈敏度的顯著提高.目前已有金、鉑納米顆粒、碳納米管以及石墨烯等材料被應用于分子印跡電化學傳感器(表4).

表4 分子印跡聚合物-納米材料復合物分子印跡電化學傳感器Table 4 MIP-based electrochemical sensors based on MIP-nanomaterial composites

續表4 

金、鉑納米顆粒具有優良的電催化活性、生物相容性等優點,已經被大量應用于分子印跡電化學傳感器的性能改進.KAN等[67]在茶堿的分子印跡聚合物薄膜中加入了金納米顆粒,提高了分子印跡聚合物薄膜導電性.此實驗中,作者在模板分子存在的條件下,先電化學聚合了鄰苯二胺.然后通過恒電位法在分子印跡薄膜表面沉積了一層金納米顆粒而使膜的導電性顯著提高(大約30倍).與傳統的分子印跡傳感器相比,金納米顆粒的加入使得分子印跡傳感器的線性范圍得到了增加,檢測限得到了降低.ZHOU等[68]首先將鉑納米顆粒固定在玻碳電極上,然后使6-巰基煙酸和模板分子β-雌二醇在鉑納米顆粒表面自組裝;然后利用循環伏安法使得自組裝膜發生電化學聚合;最后通過恒電位法去除模板分子得到對β-雌二醇具有識別能力的分子印跡電化學傳感器,其檢測靈敏度明顯高于沒有鉑納米顆粒修飾的分子印跡傳感器.

碳納米管是典型的一維納米材料,碳納米管較大的比表面積、較高的導電能力使其對電化學傳感器具有明顯的增敏效應.KAN等[69]將分子印跡聚合物與碳納米管復合得到相應的復合材料并將其作為電極修飾材料,結合計時電流法實現了神經傳遞介質多巴胺的檢測.石墨烯可以看作是將管狀的碳納米管剪切并鋪展開來形成的二維納米材料,石墨烯具有優異的導電、導熱和力學性能.因為石墨烯的每個原子都在石墨烯片層的表面,因此石墨烯與吸附分子之間的相互反應以及電子傳輸非常靈敏[70].

隨著分子印跡聚合物與不同納米材料復合體系研究的深入,部分研究人員也開始了多元復合體系的研究,比如分子印跡聚合物-石墨烯-金納米顆粒復合體系[71]等,多元復合體系結合了不同納米材料的特性,使得所制備的傳感器的性能得到了進一步的提升.

5 納米結構分子印跡聚合物

相對于平面結構的分子印跡膜,三維納米結構的分子印跡聚合物作為傳感器的識別單元可以獲得較高的比表面積,并增加印跡位點數量和比例,以此來提高識別待測分析物的結合位點[77].基于以上考慮,很多研究者一直致力于納米結構分子印跡膜的制備以及傳感器的構建.

表5 納米結構分子印跡聚合物電化學傳感器Table 5 MIP-based electrochemical sensors based on nanostructured MIPs

HUANG等[78]以樟腦磺酸為虛擬模板分子,電化學聚合得到了聚吡咯分子印跡納米線.該分子印跡納米線直徑約為100 nm,長度為幾微米.研究者用法拉第阻抗譜研究了帶電分子結合到聚吡咯分子印跡納米線修飾電極表面時的界面變化.同時,當聚吡咯分子印跡納米線傳感器用于檢測苯丙氨酸時表現出明顯的手性選擇能力,即當特定的對映異構體被識別時會引起電子傳遞阻抗降低.

CHOONG等[79]首先在鍍鈦硅基底上生長直立碳納米管陣列,然后以碳納米管陣列為三維支架,采用電化學方法制備咖啡因的分子印跡聚吡咯納米薄膜.所制備的分子印跡納米膜的厚度可控且具有較高的比表面積,同時碳納米管的高導電性使得分子印跡傳感器的電化學信號得到增強.這個實驗現象在檢測大的生物分子,例如蛋白質等方面具有很好的應用前景.采用類似的方法,CAI等[80]在碳納米管陣列的頂端,以蛋白質為模板制備了聚苯酚納米殼層.作者利用阻抗可以監測聚苯酚納米殼層對蛋白質的識別,除了能高靈敏度和高選擇性地檢測蛋白質外,該納米傳感器還能檢測到蛋白質的構象變換.利用此分子印跡傳感器,作者實現人乳頭瘤病毒-E7衍生蛋白的高靈敏度的檢測(檢測限低于pg/L).

MENAKER等[81]采用犧牲模板法合成了具有表面印跡位點的蛋白質印跡微米或者納米線.研究者以聚碳酸酯微孔膜為犧牲模板,首先通過物理吸附將模板蛋白吸附付微孔濾膜的疏水面,然后將微孔濾膜固定于金電極表面,通過電化學聚合聚乙烯二氧噻吩以及聚苯乙烯磺酸制備分子印跡微米棒,最后用氯仿將微孔膜溶解掉.作者通過熒光吸附試驗證明了所制備分子印跡材料的識別性能,分子印跡微米棒對模板蛋白的選擇性吸附大約是對牛血清蛋白的吸附的兩倍.

反蛋白石結構是另外一種制備三維納米結構分子印跡聚合物膜的方法,KAN等[82]首先將SiO2膠體晶體沉積在電極表面組裝成致密的堆積層;然后在SiO2膠體晶體表面和空隙處電沉積聚吡咯分子印跡聚合物,去掉模板分子之后得到三維有序大孔結構的分子印跡聚合物膜;最終結合電化學方法實現了多巴胺的高靈敏檢測.

ZHOU等[83]首先以電沉積法在ITO導電膜上制備稀疏的氧化鋅納米棒陣列,然后以此納米棒陣列為三維支架,通過電化學在氧化鋅納米棒陣列表面電沉積聚吡咯分子印跡納米膜,制得聚吡咯納米棒陣列修飾的ITO導電膜,將其作為傳感器的識別元件結合差示脈沖法實現了腎上腺素的高靈敏度的檢測.

6 結語

事實證明電化學與分子印跡技術相結合構建分子印跡電化學傳感器非常具有吸引力,可以應用于不同物質特異性檢測,并且通過雜交或雜化方法可以發展靈敏度更高的更復雜的電化學傳感器.在這一方面,將電化學技術與納米材料或納米結構的分子印跡聚合物結合對發展新型的分子印跡電化學傳感器至關重要.雖然已有部分報道,但這一領域尚未成熟,仍有待廣大研究者繼續推動分子印跡電化學傳感器的發展,最終使高靈敏度、高選擇性、高穩定性的分子印跡電化學傳感器進入分析儀器市場.參考文獻:

[1]姜忠義,吳洪.分子印跡技術[M ].北京:化學工業出版社,2003: 5-6.

[2]郭秀春,周文輝.分子印跡技術研究進展[J].化學研究,2012,23: 103-110.

[3]KIMMEL D W,LEBLANC G,MESCHIEVITZ M E,et al.Electrochemical sensors and biosensors [J ].Anal Chem,2012,84: 685-707.

[4]KLEIN J U,WHITCOMBE M J,MULHOLLAND F,et al.Template-mediated synthesis of a polymeric receptor specific to amino acid sequences [J ].Angew Chem Int Ed,1999,38 ( 13/14) : 2057-2060.

[5]譚天偉.分子印跡技術及應用[M].北京:化學工業出版社,2010: 188-189.

[6]PILETSKY S A.Electrochemical sensors based on molecularly imprinted polymers [J ].Electroanal,2002,14: 317-323.

[7]DAS K,PENELLE J,ROTELLO V M.Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a molecularly imprinted polymer thin film [J ].Langmuir,2003,19: 3921-3925.

[8 ]SHI F,LIU Z,WU G L,et al.Surface imprinting in layer-by-layer nanostructured films [J].Adv Funct Mater,2007,17: 1821-1827.

[9 ]NIU J,LIU Z,FU L,et al.Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives [J ].Langmuir,2008,24: 11988-11994.

[10]MALITESTA C,LOSITO I,ZAMBONIN P G.Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors [J ].Anal Chem,1999,71: 1366-1370.

[11]PANASYUK-DELANEY T,MIRSKY V M,ULBRICHT M,et al.Impedometric herbicide chemosensors based on molecularly imprinted polymers [J ].Anal Chim Acta,2001,435: 157-162.

[12]PANASYUK T L,Mirsky V M,PILETSKY S A,et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors [J ].AnalChem,1999,71: 4609-4613.

[13 ]KRIZ D,KEMPE M,MOSBACH K.Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors [J].Sensor Actuat BChem,1996,31: 178-181.

[14]柴春彥,李鋒,王莉,等.檢測氯霉素的導電型電極及其分子印跡膜的制備方法:中國,200810203012 [P].2009-05-06.

[15]KRIZ D,MOSBACH K.Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer [J].Anal Chim Acta,1995,300: 71 -75.

[16]MURRAY G M,JENKINS A L,BZHELYONSKY A,et al.Molecularly imprinted polymers for the selective sequestering and sensing of ions [J].J Hopkins APL Tech D,1997,1: 464-472.

[17 ]HAUPT K,NOWORYTA K,KUTNER W.Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance [J].Anal Commun,1999,36: 391-393.

[18 ]DONG S,SUN Z,LU Z.Chloride chemical sensor based on an organic conducting polypyrrole polymer [J].Analyst,1988,113: 1525-1528.

[19]BOYLE A,GENIES E M,LAPKOWSKI M.Application of the electronic conducting polymers as sensors: Polyaniline in the solid state for detection of solvent vapours and polypyrrole for detection of biological ions in solutions [J].Synth Met,1989,28: C769-C774.

[20]HUTCHINS R S,BACHAS L G.Nitrate-selective electrode developed by electrochemically mediated imprinting/ doping of polypyrrole [J].Anal Chem,1995,67: 1654 -1660.

[21 ]SPURLOCK L D,JARAMILLO A,PRASERTHDAM A,et al.Selectivity and sensitivity of ultrathin purine-templated overoxidized polypyrrole film electrodes [J].Anal Chim Acta,1996,336: 37-46.

[22]SURYANARAYANAN V,WU C T,HO K C.Molecularly imprinted electrochemical sensors [J].Electroanal,2010,22: 1795-1811.

[23 ]DEORE B,CHEN Z,NAGAOKA T.Overoxidized polypyrrole with dopant complementary cavities as a new molecularly imprinted polymer matrix [J ].Anal Sci,1999,15: 827-828.

[24 ]DEORE B,CHEN Z D,NAGAOKA T.Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole [J ].Anal Chem,2000,72: 3989-3994.

[25 ]SYRITSKI V,REUT J,MENAKER A,et al.Electrosynthesized molecularly imprinted polypyrrole films for enantioselective recognition of l-aspartic acid [J].Electrochim Acta,2008,53: 2729-2736.

[26]SHIIGI H,OKAMURA K,KIJIMA D,et al.Fabrication process and characterization of a novel structural isomer sensor molecularly imprinted overoxidized polypyrrole film [J].Electrochem Solid-State Lett,2003,6: H1-H3.

[27]SHIIGI H,KIJIMA D,IKENAGA Y,et al.Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film [J ].J Electrochem Soc,2005,152: H129-H134.

[28]TAKEDA S,YAGI H,MIZUGUCHI S,et al.A highly sensitive amperometric adenosine triphosphate sensor based on molecularly imprinted overoxidized polypyrrole [J].J Flow Injection Anal,2008,25: 77-79.

[29]XIE C,GAO S,GUO Q,et al.Electrochemical sensor for 2,4-dichlorophenoxy acetic acid using molecularly imprinted polypyrrole membrane as recognition element [J].Microchim Acta,2010,169: 145-152.

[30 ]OZCAN L,SAHIN Y.Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode [J].Sensor Actuat B-Chem,2007,127: 362-369.

[31]OZKORUCUKLU S P,SAHIN Y,ALSANCAK G.Voltammetric behaviour of sulfamethoxazole on electropolymerized-molecularly imprinted overoxidized polypyrrole [J].Sensors-Basel,2008,8: 8463-8478.

[32]EBARVIA B S,CABANIIIA S,SEVIlla F.Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole [J ].Talanta,2005,66: 145-152.

[33]ALLBANO D R,SEVILLA F.Piezoelectric quartz crystal sensor for surfactant based on molecularly imprinted polypyrrole [J].Sens Actuat B-Chem,2007,121: 129 -134.

[34]SUEDEE R,INTAKONG W,LIEBERZEIT P A,et al.Trichloroacetic acid-imprinted polypyrrole film and its property in piezoelectric quartz crystal microbalance and electrochemical sensors to application for determination of haloacetic acids disinfection by-product in drinking water [J].J Appl Polym Sci,2007,106: 3861-3871.

[35]VINJAMURI A K,BURRIS S C,DAHL D B.Caffeine and theobromine selectivity using molecularly imprinted polypyrrole modified electrodes [J].ECS Trans,2008,13: 9-20.

[36 ]?ZCAN L,SAHIN M,SAHIN Y.Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid[J].Sensors-Basel,2008,8: 5792-5805.

[37 ]NAMVAR A,WARRINER K.Microbial imprinted polypyrrole/poly ( 3-methylthiophene) composite films for the detection of Bacillus endospores [J].Biosens Bioelectron,2007,22: 2018-2024.

[38]PENG H,ZHANG J,NIE L,et al.Development of a thickness shear mode acoustic sensor based on an electrosynthesized molecularly imprinted polymer using an underivatized amino acid as the template [J ].Analyst,2010,126: 189-194.

[39]CHENG Z,WANG E,YANG X.Capacitive detection of glucose using molecularly imprinted polymers [J].Biosens Bioelectron,2001,16: 179-185.

[40]FENG L,LIU Y,TAN Y,et al.Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers [J].Biosens Bioelectron,2004,19: 1513-1519.

[41]YANG L,WEI W,XIA J,et al.Capacitive biosensor for glutathione detection based on electropolymerized molecularly imprinted polymer and kinetic investigation of the recognition process [J ].Electroanal,2005,17: 969-977.

[42]LIU X,LI C,WANG C,et al.The preparation of molecularly imprinted poly( o-phenylenediamine) membranes for the specific O,O-dimethyl-α-hydroxylphenyl phosphonate sensor and its characterization by AC impedance and cyclic voltammetry [J].J Appl Polym Sci,2006,101: 2222-2227.

[43 ]WEN W,SHITANG H,SHUNXHOU L,et al.Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator [J].Sensor Actuat B-Chem,2007,125: 422-427.

[44]KANG J,ZHANG H,WANG Z,et al.A novel amperometric sensor for salicylic acid based on molecularly imprinted polymer-modified electrodes [J ].Polym-Plast Technol Eng,2009,48: 639-645.

[45]LIU Y,SONG Q J,WANG L.Development and characterization of an amperometric sensor for triclosan detection based on electropolymerized molecularly imprinted polymer [J].Microchem J,2009,91: 222-226.

[46]LI J,JIANG F,WEI X.Molecularly imprinted sensor based on an enzyme amplifier for ultratrace oxytetracycline determination [J].Anal Chem,2010,82: 6074-6078.

[47]LI J,JIANG F,LI Y,et al.Fabrication of an oxytetracycline molecular-imprinted sensor based on the competition reaction via a GOD-enzymatic amplifier [J ].Biosens Bioelectron,2011,26: 2097-2101.

[48]PENG H,LIANG C,ZHOU A,et al.Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine [J ].Anal Chim Acta,2000,423: 221-228.

[49]WEETALL H H,ROGERS K R.Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes [J].Talanta,2004,62: 329-335.

[50 ]GOMEZ-CABALLERO A,ARANZAZU GOICOLEA M,BARRIO R J.Paracetamol voltammetric microsensors based on electrocopolymerized-molecularly imprinted film modified carbon fiber microelectrodes [J ].Analyst,2005,130: 1012-1018.

[51]WEETALL H H,HATCHETT D W,ROGERS K R.Electrochemically deposited polymer-coated gold electrodes selective for 2,4-dichlorophenoxyacetic acid [J].Electroanalysis,2005,17: 1789-1794.

[52 ]GOMEZ-CABALLERO A,UNCETA N,ARANZAZU GOICOLEA M,et al.Voltammetric determination of metamitron with an electrogenerated molecularly imprinted polymer microsensor [J].Electroanal,2007,19: 356-363.[53]OUVANG R,LEI J,JU H,et al.A Molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid [J].Adv Funct Mater,2007,17: 3223 -3230.

[54 ]GOMEZ-CABALLERO A,UNCETA N,ARANZAZU GOICOLEA M,et al.Evaluation of the selective detection of 4,6-dinitro-o-cresol by a molecularly imprinted polymer based microsensor electrosynthesized in a semiorganic media [J ].Sensor Actuat B-Chem,2008,130: 713-722.

[55 ]SONG W,CHEN Y,XU J,et al.Dopamine sensor based on molecularly imprinted electrosynthesized polymers[J].J Solid State Electrochem,2010,14: 1909-1914.

[56]PANASYUK T L,MIRSKY V M,PILETSKY S A,et al.Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors [J].Anal Chem,1999,71: 4609-4613.

[57]BLANCO-LóPEZ M C,GUTIERREZ-FERNANDEZ S,LOBO-CASTANON M J,et al.Electrochemical sensing with electrodes modified with molecularly imprinted polymer films [J].Anal Bioanal Chem,2004,378: 1922-1928.[58]WANG Z,KANG J,LIU X,et al.Capacitive detection of theophylline based on electropolymerized molecularly imprinted polymer [J].Int J Polym Anal Ch,2007,12: 131-142.

[59]RISKIN M,TEL-VERED R,WILLNER I.The imprint of electropolymerized polyphenol films on electrodes by donor-acceptor interactions: Eelective electrochemical sensing of N,N'-dimethyl-4,4'-bipyridinium ( methyl viologen) [J].Adv Funct Mater,2007,17: 3858-3863.

[60]PENG H,YIN F,ZhOU A,et al.Characterization of electrosynthesized poly-( o-aminophenol) as a molecular imprinting material for sensor preparation by means of quartz crystal impedance analysis [J].Anal Lett,2002,35: 435-450.

[61 ]LIAO H,ZHANG Z,LI H,et al.Preparation of the molecularly imprinted polymers-based capacitive sensor specific for tegafur and its characterization by electrochemical impedance and piezoelectric quartz crystal microbalance[J].Electrochim Acta,2004,9: 4101-4107.

[62]LI J,ZHAO J,WEI X.A sensitive and selective sensor for dopamine determination based on a molecularly imprinted electropolymer of o-aminophenol [J].Sensor Actuat B-Chem,2009,40: 663-669.

[63]HUAN S,HU S,SHEN G,et al.Au microelectrode based on molecularly imprinted oligomer film for rapid electrochemical sensing [J ].Anal Lett,2003,36: 2401-2416.

[64]PAN M F,FANG G Z,LIU B,et al.Novel amperometric sensor using metolcarb-imprinted film as the recognition element on a gold electrode and its application [J].Anal Chim Acta,2011,690: 175-181.

[65]LUO N,HATCHETT D W,ROGERS K R.Recognition of pyrene using molecularly imprinted electrochemically deposited poly( 2-mercaptobenzimidazole) or poly ( resorcinol) on gold electrodes [J ].Electroanal,2007,19: 2117-2124.

[66 ]RISKIN M,TEL-VERED R,BOURENKO T,et al.Imprinting of molecular recognition sites through electropolymerization of functionalized au nanoparticles: Development of an electrochemical TNT sensor based on π-donoracceptor interactions [J].J Am Chem Soc,2008,130: 9726-9733.

[67]KAN X,LIU T,ZHOU H,et al.Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination [J ].Microchim Acta,2010,171: 423-429.

[68]YUAN LH,ZHANG J,ZHOU P,et al.Electrochemical sensor based on molecularly imprinted membranes at platinum nanoparticles-modified electrode for determination of 17β-estradiol [J].Biosens Bioelectron,2011,29: 29 -33.

[69]KAN X W,ZHAO Y,GENG Z R,et al.Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition [J].J.Phys Chem C,2008,112: 4849-4854.

[70]ROCHEFORT A,WUEST J D.Interaction of substituted aromatic compounds with grapheme [J].Langmuir,2009,25: 210-215.

[71]MEHMET L Y,NECIP A,TANJU E,et al.Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid [J ].RSC Adv,2015,5: 65953-65962.

[72]STOBIECKA M,DEEB J,HEPEL M.Molecularly templated polymer matrix films for biorecognition processes: Sensors for evaluating oxidative stress and redox buffering capacity [J].ECS Trans,2009,19: 15-32.

[73]ZHANG J,WANG Y,LV R,et al.Electrochemical tolazoline sensor based on gold nanoparticles and imprinted poly-o-aminothiophenol film [J ].Electrochim Acta,2010,55: 4039-4044.

[74 ]LAKSHMI D,BOSSI A,WHITCOMBE MJ,et al.Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element [J].Anal Chem,2009,81: 3576-3584.

[75]RISKIN M,TEL-VERED R,LIOUBASHEVSKI O,et al.Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked Au nanoparticles composite [J ].J Am Chem Soc,2009,131: 7368-7378.

[76]RISKIN M,TEL-VERED R,FRASCONI M,et al.Stereoselective and chiroselective surface plasmon resonance ( SPR) analysis of amino acids by molecularly imprinted Au-nanoparticle composites [J ].Chem Eur J,2010,16: 7114-7120.

[77 ]WHITCOMBE M J,CHIANELLA I,LARCOMBE L,et al.The rational development of molecularly imprinted polymer-based sensors for protein detection [J ].Chem Soc Rev,2011,40: 1547-1571.

[78]HUANG J,WEI Z,CHEN J.Molecular imprinted polypyrrole nanowires for chiral amino acid recognition [J].Sensor Actuat B-Chem,2008,134: 573-578.

[79 ]CHOONG C,BENDALL J S,MILNE W I.Carbon nanotube array: A new MIP platform [J].Biosens Bioelectron,2009,25: 652-656.

[80]CAI D,REN L,ZHAO H,et al.A molecular-imprint nanosensor for ultrasensitive detection of proteins [J].Nat Nanotechnol,2010,5: 597-601.

[81 ]MENAKER A,SVRITSKI V,REUT J,et al.Electrosynthesized surface-imprinted conducting polymer microrods for selective protein recognition [J].Adv Mater,2009,21: 2271-2275.

[82]KAN X W,LI C,ZHOU H,et al.Three dimensional ordered macroporous electrochemical sensor for dopamine recognition and detection [J ].Am J Biomed Sci,2012,4: 184-193.

[83]LI H H,WANG H H,LI W T,et al.A novel electrochemical sensor for epinephrine based on three dimensional molecularly imprinted polymer arrays [J ].Sensor Actuat B-Chem,2016,222: 1127-1133.

[責任編輯:毛立群]

Molecularly Imprinted Polymer-Based Electrochemical Sensors

GUO Xiuchun1,WANG Jilei2,WANG Haihui3,CHEN Xiaoyan3,LI Weitian1,ZHOU Wenhui3*,WU Sixin3

( 1.Institute of Chinese Materia Medica,Henan University,Kaifeng 475004,Henan,China;
2.College of Chemistry and Chemical Engineering,Henan University,Kaifeng 475004,Henan,China; 3.The Key Laboratory for Special Functional Materials,Henan University,Kaifeng 475004,Henan,China)

Abstract:Molecularly imprinted polymer-based electrochemical sensors are capable of selective recognition and detection of target molecules.And,they have attracted considerable attention in clinical diagnostics,environmental monitoring and food analysis fields due to their simplicity,high sensitivity,low cost,easy to carry,possibility of easy miniaturization and automation.This review highlights the combining of molecular imprinting technology and electrochemical sensors for construction molecularly imprinted polymer-based electrochemical sensors ( MIP-based electrochemical sensors),including the types of MIP-based electrochemical sensors and monomers used for electrosynthesis of MIPs for MIP-based electrochemical sensors.New emerging MIP /nanomaterials and nanostructured MIPs in MIP-based electrochemical sensors are also reviewed.

Keywords:molecular imprinting technology ( MIT) ; molecularly imprinted polymer ( MIP) ; electrochemical sensors

作者簡介:郭秀春( 1982-),女,副教授,研究方向為藥物分析.*通訊聯系人,zhouwh@ henu.edu.cn.

基金項目:國家自然科學基金( U1204214).

收稿日期:2015-10-03.

中圖分類號:O635

文獻標志碼:A

文章編號:1008-1011( 2016) 01-0001-11

91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合