?

組蛋白修飾調控植物水楊酸信號轉導的研究進展

2018-05-14 12:17洪林楊蕾李勛蘭
植物保護 2018年6期
關鍵詞:病原菌

洪林 楊蕾 李勛蘭

摘要 真核生物中組蛋白翻譯后共價修飾直接影響染色質空間結構變化,調控相關基因表達,在植物脅迫應答過程中起重要作用。水楊酸(salicylic acid,SA)作為植物中關鍵信號分子,誘導多種病毒、真菌及細菌病害抗性。本文簡要介紹了植物細胞對病原菌的感知、轉導信號產生與防御系統激活機制,著重闡述了組蛋白甲基化、乙?;?、SUMO化修飾、組蛋白變體H2A.Z等如何參與調控水楊酸轉導途徑應答基因的轉錄表達。

關鍵詞 組蛋白修飾; 病原菌; SA信號

中圖分類號: S 432.2

文獻標識碼: A

DOI: 10.16688/j.zwbh.2018004

Abstract The gene expression in eukaryotic organisms is regulated by the change of spatial chromatin organization, which plays a very important role in the defense response of plant during the infection by plant pathogens. Salicylic acid acts as a key signal molecule,indirectly inducing systemic resistance against viral,fungal and bacterial attack. In this review,we simply introduced the mechanisms of pathogen perception,signal transduction and stimulation of plant defense response,and then focused on the posttranslational modifications of histone,histone variant and their functions in the expression of salicylic acidrelated genes.

Key words histone modification; plant pathogen; salicylic acid signal

高等植物自然生長過程中會受到細菌、真菌等植物病原體的侵染刺激,這種刺激會誘導以水楊酸(salicylic acid,SA)、茉莉酸乙烯(jasmonic acidethylene,JA/ET)信號途徑為主的關鍵調控網絡相關應答基因的活化,使植物能夠抵御外部環境對其生長發育產生的不良影響。相對于動物體能通過特殊的內分泌腺產生激素,植物細胞亦能自主合成植物內源激素。SA是植物體內廣泛存在的一種酚類物質,其作為誘導因子誘導植物對病毒、真菌及細菌病害產生抗性,對脅迫條件相關代謝過程起極其重要的調控作用。所有的植物活細胞均具備感知病原體侵染的潛能,最終建立始于局部病原體侵染信號的廣譜系統性防御狀態,即系統獲得抗性(systemic acquired resistance,SAR)。在病原體侵染脅迫下,植物體迅速感知病害,通過一系列轉錄因子及級聯信號,在細胞核內融合脅迫信號刺激,啟動SA合成積累,調控SA應答基因轉錄過程。近年來,組蛋白修飾、DNA甲基化等表觀遺傳修飾參與調控植物脅迫應答方面的研究越來越深入,組蛋白翻譯后修飾包含乙?;?、甲基化、磷酸化、泛素化、ADP核糖基化等多種方式,其中乙?;?、甲基化兩種修飾模式研究得較多,組蛋白的修飾狀態對于維持染色質結構和調控基因轉錄活性具有關鍵性作用。本文重點對植物組蛋白的主要修飾如何參與調控SA信號轉導途徑進行綜述, 同時對該領域未來的重點研究方向進行討論與展望。

1 植物天然防御應答

1.1 感知病原菌脅迫

基礎抗性(又稱非寄主抗性)是植物天然免疫性的一般表現形式,在宿主細胞內存在少量的模式識別受體(pattern recognition receptors,PRRs),PRRs特異性識別微生物-病原相關分子模式(microbial or pathogen associated molecular patterns,MAMPs/PAMPs),包括特定的蛋白、 脂多糖類或者細胞壁成分,激活MAMP/PAMP觸發的植物免疫性(MAMP/PAMPtriggered plant immunity,MTI/PTI)。病原菌為抑制或克服MTI/PTI,增強效應蛋白進入宿主細胞的能力,形成一種效應蛋白誘導的感病性(effectortriggered susceptibility,ETS)。植物特異的抗性R基因識別相應avr基因效應因子后,激活ETI(effectortriggered immunity),啟動主要防御基因表達誘導相關抗性[1],ETI通常在病原菌侵染部位引發超敏反應(hypersensitive response,HR),抑制侵染位點病原菌的生長,再由局部的PTI和ETI激發植物系統獲得性抗性(SAR),提升植物遠端組織乃至整株的防御能力[2-3]。

1.2 脅迫信號激發防御系統

致病信號通常在細胞表面或細胞質內被感知,信號傳導至細胞核,繼而引發相關基因轉錄。感知病菌侵染后,植物防御系統建立相關的早期事件涉及離子流、活性氧產生、磷酸化級聯信號[4]。進而引起SA、JA、ET等植物激素濃度變化,細胞核感知識別轉導途徑次級信號,啟動防御基因的轉錄表達[5]。

目前已鑒定出許多參與植物防御信號轉導的重要因子[6]。病原菌侵染植物組織后,EDS1與PAD4、RPS4及病菌效應蛋白AvrRps4 形成獨特的蛋白復合體,復合體穿梭于細胞質和細胞核之間,EDS1進一步與轉錄因子發生互作,調控SA應答基因進行轉錄表達[7-8]。病菌脅迫下,細胞核核質R蛋白SNC1(suppressor ofnpr1-1,constitutive1)與轉錄共抑制子TPR1(TOPLESS-related1)協同作用抑制DND1、DND2及其他負調節因子的表達[9]。NPR1 (non-expresser ofPR1)是SA介導的植物防御網絡的關鍵調控因子,SA缺乏,NPR1在細胞質內形成均一型低聚合物;病原菌侵染刺激后,SA積累促進NPR1低聚合物轉變為單聚體形態,單聚體NPR1與TGA轉錄因子作用,重新定位至細胞核,激活PR(pathogenesis-related)基因的表達[10]。此外,核質轉運MOS1、MOS3、MOS6和 MOS7基因突變影響植物防御響應,MOS7-1等位基因突變抑制細胞核內EDS1、NPR1和SNC1合成表達[11],MOS1基因調控核內循環與免疫響應等生理過程,MOS1和TCP蛋白具有直接的物理相互作用,并與R類基因SNC1啟動子結合,調控其表達,進而調節免疫應答[12]。植物細胞內大分子遷移、核內調節蛋白重新定位引起防御應答基因轉錄水平的變化,在植物防御分子調控網絡中起關鍵作用。

同樣JA信號也是在細胞核內被感知,缺乏JA的活化形式JA-ILEJA時,JAZ蛋白在核內與NINJA結合,募集共抑制子TOPLESS,抑制MYC2等JA應答轉錄因子的活性。脅迫條件下,植物體內大量合成JA,并在JAR1的催化下形成JA-Ile,JA-Ile促進COI1-JAZ共受體結合SCFCOI1形成SCFCOI1E3泛素連接酶復合體,引起多泛素化修飾和泛素化蛋白酶體途徑介導的JAZ抑制子降解。JAZ降解減弱對目標轉錄因子活性的抑制,促進JA途徑下游應答基因PDF1.2a、THI2.1、VSP2 的表達[13]。以上核內生物學過程在SA、JA等信號感知和防御相關基因的基礎轉錄具有調節作用,但核質轉運和染色質修飾如何建立直接或間接作用聯系仍不明確。

2 組蛋白修飾改變染色質構象調控轉錄

真核細胞中染色質的結構與動態高度依賴于核小體定位和染色質的空間結構。通常緊密的異染色質區的基因處于沉默狀態,而位于松散的常染色質區基因則處于轉錄激活狀態。染色質結構的持續、瞬時變化可以通過組蛋白翻譯后修飾(posttranslational histone modifications,PTMs)、組蛋白變體置換和依賴于ATP的染色質重塑等不同機制完成。

組蛋白尾部從球狀核小體核心突出,可發生乙?;?、甲基化、磷酸化、泛素化、蘇素化、羰基化和糖基化等多種可逆的PTMs[14],直接調節染色質結構或招募特定的效應子或組蛋白修飾識別蛋白,效應子或識別蛋白與組蛋白修飾的結合方式決定其復合體的調節功能[15]。通常組蛋白乙?;c轉錄激活相關,去乙?;c轉錄抑制相關。此外,組蛋白甲基化或泛素化也能激活或抑制轉錄。擬南芥全基因組分析研究表明組蛋白H3K4和H3K36三甲基化和H2B 單泛素化(H2Bub)在表達基因區富集,而H3K27三甲基化與基因的表達抑制相關,H3K9二甲基化和H4K20單甲基化在組成型異染色質和轉座子沉默區富集[16-17]。

模式植物擬南芥中已發現37種SET域蛋白,部分具有組蛋白甲基化轉移酶活性[18],還有4種LSD1-like蛋白和21種含JmiC結構域的蛋白具有組蛋白去甲基化酶活性[19]。組蛋白H2B單泛素化參與調控植物多種發育過程,與基因激活有關,它的沉積需要E2泛素連接酶UBC1 與UBC2,和E3單泛素連接酶HUB1與 HUB2[20]。此外,擬南芥中已發現超過40種基因編碼假定的依賴于ATP的染色質重塑因子,基于ATP酶亞基至少可以分為五類: SWI/SNF、ISWI、NURD/Mi-2/CHD、INO80、SWR1,依賴于ATP的染色質重塑酶利用ATP水解的能量使組蛋白和DNA結合去穩定化,降解組蛋白八聚體,催化特異組蛋白變體和DNA鏈的結合,重塑染色質結構[21]。組蛋白修飾和依賴ATP的染色質重塑相關酶在植物脅迫應答過程中起極其重要的調控作用。

3 組蛋白修飾參與植物SA信號轉導途徑調控

3.1 組蛋白乙?;图谆?/p>

3.1.1 抑制SA應答基因的基礎轉錄

SA在植物系統獲得抗性(SAR)建立過程中扮演非常重要的信號分子的角色。通常植物體未受外部病原菌侵染,組蛋白去乙?;窼RT2抑制SA生物合成相關基因PAD4,EDS5和SID2的表達;而在番茄細菌性葉斑病病菌Pseudomonas syringaepv.tomato(Pst DC3000)侵染后,SRT2基因的表達受到抑制,增加SA的生物合成量,激發防御應答基因的起始轉錄表達[22]。許多SA途徑應答基因具有W-BOX順式調控元件,WRKYs轉錄因子能與此特征序列結合,擬南芥中研究發現WRKY18、WRKY40以及TGA2、SNI1等轉錄因子參與調節SA途徑下游應答基因的基礎轉錄[23-26]。WRKYs轉錄因子同樣也調節PTI和ETI激活途徑的下游響應基因的轉錄[27]。TGA2通過結合基因啟動子as-1(activating-like sequence 1)順式調控元件抑制受SA誘導的后期應答基因的基礎轉錄[24,28-29]。在sni1和tga雙突變體中,PR1和PR2基因的基礎轉錄水平強于sni1和tga單突變體,說明TGA2抑制子與SNI1之間具有協同作用效應[24]。SNI1在植物體內組成型低水平表達且不受SA誘導[30],SNI1促進染色質修飾酶被募集至PR1基因啟動子結合位點,減少組蛋白H3乙?;徒M蛋白H3K4二甲基化水平,維持染色質結構“緊閉”狀態[31],敲除SNI1則引起PR1基因啟動子組蛋白H3乙?;虷3K4二甲基化水平升高[25]。

組蛋白去乙?;窰DA19活性也直接影響PR1、PR4、PR5等許多SA途徑下游應答基因的基礎表達水平[32]。 hda19突變體中PR1、PR4、PR5基因表達水平增加兩倍,HDA19促進組蛋白H3K9、H3K27、H4K5、H4K8位點去乙?;?,調控染色質特異位點的基因沉默[32-33],在病原體侵染后,HDA19與多種蛋白形成復合體,通過其去乙酰酶活性抑制防御反應的負調控因子,進而激活防御反應。HDA19是否在SNI1抑制轉錄位點發生去乙?;饔蒙腥狈χ苯釉囼炞C據。

組蛋白乙酰轉移酶ATX1是植物抵御病原菌Pst DC3000侵染的關鍵因子,ATX1正調控WRKY70轉錄因子的表達,WRKY70編碼一個調控SA和JA信號轉導網絡交叉節點的關鍵轉錄因子,受SA誘導,并且參與間接調控JA誘導基因THI1.2的表達[34-35]。wrky70突變不影響PR1基因轉錄,表明ATX1通過一種不依賴于WRKY70的調控機制影響PR1基因的基礎轉錄表達[36]。

組蛋白甲基轉移酶SDG8能二甲基化和三甲基化H3K36位點[37],是受PstDC3000侵染激發的植物主動防御關鍵因子[38]。SDG8維持RPM1、LAZ5等R基因的基礎表達水平,但對RPS2和RPS4沒有影響。BTH處理或接種PstDC3000可誘導野生型植株中LAZ5的表達,而不能誘導sdg8突變體中LAZ5的表達。染色質免疫共沉淀(ChIP)研究處于休眠狀態的擬南芥sdg8突變體,發現LAZ5染色質上H3K36三甲基化水平顯著下降,而野生型植株LAZ5染色質區H3K36三甲基化水平并未發生顯著上升[38]。因此,SDG8可能是通過使特定R基因的染色質H3K36位點甲基化建立一個“默許”(permissive)染色質結構狀態,保持R基因的基礎表達,SDG8建立的這種“默許”狀態可能是某些特異R基因被誘導轉錄所必需的。最近研究表明sdg8突變體對丁香假單胞菌的侵染比野生型更為敏感[39]。

3.1.2 誘導SA應答基因的表達

植物中SA合成受苯丙烷代謝途徑(phenylpropanoid metabolic pathway)的關鍵調控[40],該途徑由PTI信號介導激活,同時誘導WRKY和MYB類轉錄因子產生,調控SA途徑早期關鍵應答基因EDS1、PAD3、ICS1和NPR1的表達[41-42]。EDS1和PAD4是PTI激發SA積累的關鍵基因[43],EDS1啟動子區被一種Ca2+/鈣調蛋白結合轉錄因子SR1專一性結合后,表達受抑制,SR1突變SA水平增加,對丁香假單胞菌等病原體的抵抗力增強[44],SR1轉錄因子通過錨蛋白重復序列(ankyrin repeats)與HDAC2互作[45],在EDS1基因去乙?;揎椫衅痍P鍵作用。

NPR1基因對植物系統獲得抗性和誘導系統抗性的產生起關鍵調控作用,過量表達NPR1可提高植物抗病性。SA積累促使NPR1定位至細胞核內,并發生單聚體化[42,46]。NPR1單聚體依賴BTB/POZ結構域80~90位氨基酸殘基及羧基端半胱氨酸Cys-521和Cys-529的氧化與TGA二聚體發生作用形成NPR1-TGA增強體[46],削弱SNI1和TGA2介導的轉錄抑制作用,促進SA轉導途徑后期應答基因的大量表達,NPR1激活也能促使TGA2與as-1順式調控元件結合,促進基因表達[47]。SA大量積累誘導SA應答基因染色質區的空間構象發生變化,研究表明外源SA處理12~48 h能提高PR1基因啟動子H3和H4乙?;?、H3K4二甲基化和三甲基化水平[25,48-49],且PR1基因啟動子H3乙?;约癝A應答基因H3去乙?;蕾囉贜PR1[49],這說明激活后的NPR1募集HAT,同時抑制去乙?;钚?。NPR1可能參與調節部分SA轉導途徑早期NPR1依賴性和后期應答基因的H3乙?;?,進一步研究發現H3乙?;虷3K4二甲基化水平提高與SNI1無關,SA類似物處理sni1突變型和野生型,H3乙?;虷3K4二甲基化水平相當[25]。

SA處理24 h后或PTI激活后PR1基因染色質區H3K4二甲基化和三甲基化水平未發生改變,推測H3K4二甲基化和三甲基化標記在PR1基因受誘導表達前就可能存在于其啟動子區和編碼區[25,35],另有研究報道H3K4二甲基化水平升高[25],這種差異可能是由H3K4二甲基化和三甲基化水平的瞬時升高造成[50]。在水稻中研究則發現H3K4二甲基化處于低中水平,而H3K4三甲基化則處于高水平[51]。H3K4甲基化通過結構依賴性方式募集具有HAT活性的轉錄激活復合體或者具有HDAC活性的轉錄抑制復合物[50],已有甲基化模式研究認為H3K4甲基化不直接影響基因轉錄[52],推測H3K4甲基化可能作為沉默基因染色質區的組蛋白修飾標記或其他轉錄調控復合體的作用靶點。

NPR1激活的SA應答基因包含WRKY18、WRKY38、WRKY54、WRKY58、WRKY59、WRKY66、WRKY70等許多WRKYs[53]。WRKY18、WRKY38、WRKY58是負調控因子[53-54]。然而在NPR1下游,WRKY18卻作為正調控因子參與SA誘導的包括PR1在內的后期應答基因的表達[53]。WRKY70的轉錄不僅受到NPR1調控而且需要ATX1介導的H3K4三甲基化[35]。H3K4三甲基化是一個與轉錄激活有關的組蛋白標記,ATX1正調控WRKY70的表達,病原菌侵染或SA處理后,PR1的大量表達需要ATX1參與但其不是甲基化修飾的靶位點,WRKY70上游應答基因不受ATX1調控,下游PR1基因的表達主要受轉錄因子WRKY70調控[35]??偠灾?,NPR1激活促進SA轉導途徑應答基因組蛋白H3、H4乙?;癏3K4二甲基化等。

3.1.3 抑制NPR1依賴性基因的表達

SA途徑應答基因在SA積累或植物防御系統激活后被短暫誘導。擬南芥中研究發現NPR1、NPR3、NPR4三種蛋白均為SA的受體,NPR1執行轉錄共激活子功能,NPR3和NPR4功能類似于E3連接酶,促進NPR1蛋白降解。而最新研究表明NPR3和NPR4具備轉錄共抑制子功能,SA抑制NPR3和NPR4的活性,進而促進NPR3和NPR4下游防御響應相關調控因子的表達,NPR3和NPR4與TGA2、TGA5、TGA6協同抑制參與病原菌誘導的SA合成相關轉錄因子SARD1、WRKY70。在npr4-4D(npr4等位基因)功能獲得型突變體中NPR4蛋白喪失結合SA的能力,組成型抑制SA誘導的防御應答基因表達,而npr1功能獲得型突變體中NPR1同樣失去SA結合能力,反而促進SA誘導的防御應答基因表達,進一步研究分析揭示NPR3和NPR4、NPR1彼此獨立調控SA誘導的防御應答[55]。NIMINs(NIM1-interacting proteins)參與后期響應基因的表達抑制,NIMINs通過競爭性結合NPR1,降解NPR1-TGA 激活復合物,抑制基因的表達[56-59]。NIMINs具有EAR(ethylene-response-factor-associated amphiphilic repressor)基序,在水稻中研究發現該基序是基因活性抑制所必需的[58-59]。EAR基序在適配體蛋白AtSIN3和AtSAP18的協同作用下招募HDA19共抑制復合體,增強基因沉默[60]。這暗示NIMINs可能是通過招募HDA19共抑制復合體來競爭結合NPR1-TGA 綁定的啟動子位點。轉錄因子WRKY18 和WRKY40 也具有EAR基序[61],推測兩者可能也通過上述機制來調控SA轉導途徑應答基因的表達。WRKY38和WRKY62轉錄因子在植物防御系統調控中起轉錄激活子作用,植物受病原菌侵染1~3 d后,HDA19與WRKY38和WRKY62互作,激活未知負調控因子,增強PR1基因的表達,但過表達HDA19可以完全抑制WRKY38和WRKY62的激活子活性[54]。HDA19也能與轉錄因子WRKY38 和WRKY62的轉錄共抑制子TPR1互作[9]。

參考文獻

[1] JONES J D G, DANGL J L. The plant immune system [J]. Nature, 2006, 444: 323-329.

[2] DURRANT W E, DONG X. Systemic acquired resistance [J]. Annual Review of Phytopathology, 2004, 42: 185-209.

[3] MISHINA T E, ZEIER J. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance inArabidopsis [J]. The Plant Journal, 2007, 50: 500-513.

[4] GARCIA-BRUGGER A, LAMOTTE O, VANDELLE E, et al. Early signaling events induced by elicitors of plant defenses[J].Molecular Plant-Microbe Interactions,2006,19:711-724.

[5] VERHAGE A, VAN WEES S C M, PIETERSE C M J. Plant immunity: its the hormones talking, but what do they say?[J]. Plant Physiology, 2010, 154: 536-540.

[6] GARCIA A V, PARKER J E. Heavens gate: nuclear accessibility and activities of plant immune regulators [J]. Trends in Plant Science, 2009, 14: 479-487.

[7] BHATTACHARJEE S, HALANE M K, KIM S H, et al. Pathogen effectors targetArabidopsis EDS1 and alter its interactions with immune regulators [J].Science,2011,334:1354-1355.

[8] HEIDRICH K, WIRTHMUELLER L, TASSET C, et al.Arabidopsis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses [J].Science, 2011, 334: 1401-1404.

[9] ZHU Zhaohai, XU Fang, ZHANG Yaxi, et al.Arabidopsis resistance protein SNC1 activates immune responses through association with a transcriptional corepressor [J].Proceedings of the National Academy of Science,2010,107:13960-13965.

[10]DONG Xinnan. NPR1, all things considered[J]. Current Opinion in Plant Biology, 2004, 7: 547-552.

[11]CHENG Yuti, GERMAIN H, WIERMER M, et al. Nuclear pore complex component MOS7/Nup88 is required for innate immunity and nuclear accumulation of defense regulators inArabidopsis [J]. The Plant Cell, 2009, 21: 2503-2516.

[12]ZHANG Ning, WANG Zhixue, BAO Zhilong, et al. MOS1 functions closely with TCP transcription factors to modulate immunity and cell cycle inArabidopsis [J].The Plant Journal, 2017, 93(1): 66-78.

[13]PAUWELS L, GOOSSENS A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade [J]. The Plant Cell, 2011, 23: 3089-3100.

[14]KOUZARIDES T. Chromatin modifications and their function[J]. Cell, 2007, 128: 693-705.

[15]YUN Miyong, WU Jun, WORKMAN J L, et al. Readers of histone modifications [J].Cell Research,2011,21:564-578.

[16]ZHANG Xiaoyu, GERMANN S, BLUS B J, et al. TheArabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation [J].Nature Structural & Molecular Biology,2007, 14: 869-871.

[17]ROUDIER F, AHMED I, BERARD C, et al. Integrative epigenomic mapping defines four main chromatin states inArabidopsis [J]. EMBO Journal, 2011, 30: 1928-1938.

[18]THORSTENSEN T, GRINI P E, AALEN R B. SET domain proteins in plant development [J]. Biochimica et Biophysica Acta, 2011, 1809: 407-420.

[19]CHEN Xiansong, HU Yongfeng, ZHOU Daoxiu. Epigenetic gene regulation by plant jumonji group of histone demethylase[J]. Biochimica et Biophysica Acta, 2011, 1809: 421-426.

[20]XU Lin, MENARD R, BERR A, et al. The E2 ubiquitin-conjugating enzymes, AtUBC1 and AtUBC2, play redundant roles and are involved in activation ofFLCexpression and repression of flowering inArabidopsis thaliana[J]. The Plant Journal, 2009, 57: 279-288.

[21]CLAPIER C R, CAIRNS B R. The biology of chromatin remodeling complexes[J]. Annual Review of Biochemistry, 2009, 78: 273-304.

[22]WANG Chunzheng, GAO Feng, WU Jianguo, et al.Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressingPAD4,EDS5 andSID2expression [J]. Plant Cell Physiology, 2010, 51: 1291-1299.

[23]XU Xinping, CHEN Chunhong, FAN Baofang, et al. Physical and functional interactions between pathogen-inducedArabidopsis WRKY18,WRKY40, andWRKY60 transcription factors [J]. The Plant Cell, 2006, 18: 1310-1326.

[24]KESARWANI M, YOO J, DONG Xinnian. Genetic interactions ofTGAtranscription factors in the regulation of pathogenesis-related genes and disease resistance inArabidopsis [J]. Plant Physiology, 2007, 144: 336-346.

[25]MOSHER R A, DURRANT W E, WANG Dong, et al. A comprehensive structure-function analysis ofArabidopsis SNI1 defines essential regions and transcriptional repressor activity [J]. The Plant Cell, 2006, 18: 1750-1765.

[26]MALECK K, LEVINE A, EULGEM T, et al. The transcriptome ofArabidopsis thaliana during systemic acquired resistance [J]. Nature Genetics, 2000, 26: 403-410.

[27]EULGEM T, SOMSSICH I E. Networks ofWRKY transcription factors in defense signaling [J]. Current Opinion in Plant Biology, 2007, 10: 366-371.

[28]FAN Weihua, DONG Xinnan.In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation inArabidopsis[J]. The Plant Cell, 2002, 14: 1377-1389.

[29]JOHNSON C, ERIN B, ARIAS J. Salicylic acid andNPR1 induce the recruitment of trans-activatingTGA factors to a defense gene promoter inArabidopsis [J]. The Plant Cell, 2003, 15: 1846-1858.

[30]LI Xin, ZHANG Yuelin, CLARKE J D, et al. Identification and cloning of a negative regulator of systemic acquired resistance,SNI1, through a screen for suppressors of npr1-1 [J]. Cell, 1999, 98: 329-339.

[31]PFLUGER J, WAGNER D. Histone modifications and dynamic regulation of genome accessibility in plants [J]. Current Opinion in Plant Biology, 2007, 10: 645-652.

[32]TIAN Lu, FONG M P, WANG Jiyuan, et al. Reversible histone acetylation and deacetylation mediate genome-wide, promoter-dependent and locus-specific changes in gene expression during plant development [J].Genetics,2005,169: 337-345.

[33]BENHAMED M, BERTRAND C, SERVET C, et al.Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression [J]. The Plant Cell, 2006, 18: 2893-2903.

[34]ALVAREZ-VENEGAS R, SADDER M, HLAVACKA A, et al. TheArabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes [J]. Proceedings of the National Academy of Sciences, 2006, 103: 6049-6054.

[35]ALVAREZ-VENEGAS R, AL ABDALLAT A, GUO Ming, et al. Epigenetic control of a transcription factor at the cross section of two antagonistic pathways [J]. Epigenetics, 2007, 2: 106-113.

[36]REN Chunmei, ZHU Qi, GAO Bida, et al. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling [J]. Journal of Integrative Plant Biology, 2008, 50: 630-637.

[37]XU Lin, ZHAO Zhong, DONG Aiwu, et al. Di-and tri-but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes inArabidopsis thaliana [J]. Molecular Cellular Biology, 2008, 28: 1348-1360.

[38]PALMA K, THORGRIMSEN S, MALINOVSKY F G, et al. Autoimmunity inArabidopsisacd11 is mediated by epigenetic regulation of an immune receptor [J]. PLoS Pathogens, 2010, 6(10): 1-12.

[39]DE-LA-PEA C, RANGEL-CANO A, ALVAREZ-VENEGAS R. Regulation of disease-responsive genes mediated by epigenetic factors: interaction ofArabidopsis-Pseudomonas[J]. Molecular Plant Pathology, 2012, 13(4): 388-398.

[40]NAVARRO L, ZIPFEL C, ROWLAND O, et al. The transcriptional innate immune response to flg22. Interplay and overlap withAvr gene-dependent defense responses and bacterial pathogenesis [J]. Plant Physiology, 2004, 135: 1113-1128.

[41]WIERMER M, FEYS B J, PARKER J E. Plant immunity: theEDS1 regulatory node [J]. Current Opinion in Plant Biology, 2005, 8: 383-389.

[42]TADA Y, SPOEL S H, PAJEROWSKA-MUKHTAR K, et al. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins [J]. Science, 2008, 321: 952-956.

[43]XING Denghui, CHEN Zhixiang. Effects of mutations and constitutive overexpression ofEDS1 andPAD4 on plant resistance to different types of microbial pathogens[J]. Plant Science, 2006, 171: 251-262.

[44]DU Liqun, ALI G S, SIMONS K A, et al. Ca2+/calmodulin regulates salicylic-acid-mediated plant immunity[J]. Nature, 2009, 457: 1154-1158.

[45]FINKLER A, ASHERY-PADAN R, FROMM H. CAMTAs: calmodulin-binding transcription activators from plants to human [J]. FEBS Letters, 2007, 581: 3893-3898.

[46]ROCHON A, BOYLE P, WIGNES T, et al. The coactivator function ofArabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines [J]. The Plant Cell, 2006, 18: 3670-3685.

[47]JOHNSON C, MHATRE A, ARIAS J.NPR1 preferentially binds to the DNA-inactive form ofArabidopsis TGA2 [J]. Biochimica et Biophysica Acta, 2008, 1779: 583-589.

[48]BUTTERBRODT T, THUROW C, GATZ C. Chromatin immunoprecipitation analysis of the tobacco PR-1a-and the truncated CaMV 35S promoter reveals differences in salicylic acid-dependentTGA factor binding and histone acetylation[J]. Plant Molecular Biology, 2006, 61: 665-674.

[49]KOORNNEEF A, RINDERMANN K, GATZ C, et al. Histone modifications do not play a major role in salicylate-mediated suppression of jasmonate-inducedPDF1.2gene expression[J].Communicative & Integrative Biology,2008,1(2):143-145.

[50]BERGER S L. The complex language of chromatin regulation during transcription [J]. Nature, 2007, 447: 407-412.

[51]LI Xueyong, WANG Xiangfeng, HE Kun, et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression [J].The Plant Cell, 2008,20:259-276.

[52]SIMS R J, REINBERG D. Histone H3 Lys 4 methylation: caught in a bind ?[J]. Genes & Development, 2006, 20: 2779-2786.

[53]WANG Dong, AMORNSIRIPANITCH N, DONG Xinnian. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants[J]. PLoS Pathogens, 2006, 2(11): 1042-1050.

[54]KIM K C, LAI Zhibing, FAN Baofang, et al.Arabidopsis WRKY38 andWRKY62 transcription factors interact with histone deacetylase 19 in basal defense [J].The Plant Cell, 2008, 20: 2357-2371.

[55]DING Yuli, SUN Tongjun, KEVIN Ao, et al.Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity [J].Cell,2018,173:1-14.

[56]WEIGEL R R, BUSCHER C, ARTUR J P P, et al. NIMIN-1, NIMIN-2 and NIMIN-3, members of a novel family of proteins fromArabidopsis that interact with NPR1/NIM1, a key regulator of systemic acquired resistance in plants [J]. Plant Molecular Biology, 2001, 46: 143-160.

[57]WEIGEL R R, URSULA M P, GATZ C, et al. Interaction of NIMIN1 with NPR1 modulates PR gene expression inArabidopsis [J]. The Plant Cell, 2005, 17: 1279-1291.

[58]CHERN M, CANLAS P E, RONALD P C. Strong suppression of systemic acquired resistance inArabidopsis by NRR is dependent on its ability to interact with NPR1 and its putative repression domain [J]. Molecular Plant, 2008, 1: 552-559.

[59]CHERN M, CANLAS P E, FITZGERALD H A, et al. Rice NRR, a negative regulator of disease resistance, interacts withArabidopsisNPR1 and rice NH1[J]. The Plant Journal, 2005, 43: 623-635.

[60]KAZAN K. Negative regulation of defence and stress genes by EAR-motif-containing repressors [J].Trends in Plant Science, 2006, 11: 109-112.

[61]SHEN Qianhua, SAIJO Y, MAUCH S, et al. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses [J].Science,2007,315:1098-1103.

[62]MARCH-DIAZ R, GARCA-DOMíNGUEZ M, LOZANO-JUSTE J, et al. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity inArabidopsis [J]. The Plant Journal, 2008, 53: 475-487.

[63]BRICKNER D G, CAJIGAS I, FONDUFE-MITTENDORF Y, et al. H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state [J]. PLoS Biology, 2007, 5(4): 704-716.

[64]ZILBERMAN D, COLEMAN-DERR D, BALLINGER T, et al. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks [J]. Nature, 2008, 456: 125-129.

[65]DEAL R B, TOPP C N, MCKINNEY E C, et al. Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z [J]. The Plant Cell, 2007, 19: 74-83.

[66]LAZARO A, GOMEZ-ZAMBRANO A, LOPEZ-GONZALEZ L, et al. Mutations in theArabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development[J]. Journal of Experimental Botany, 2008, 59: 653-666.

[67]SMITH A P, JAIN A, DEAL R B, et al. Histone H2A.Z regulates the expression of several classes of phosphate starvation response genes but not as a transcriptional activator [J]. Plant Physiology, 2010, 152: 217-225.

[68]LEE J, NAM J, PARK H C, et al. Salicylic acid-mediated innate immunity inArabidopsis is regulated by SIZ1 SUMO E3 ligase [J].The Plant Journal, 2007, 49(1): 79-90.

[69]CATALA R, OUYANG J, ABREU I A, et al. TheArabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses [J].The Plant Cell,2007,19:2952-2966.

[70]SHIIO Y, EISENMAN R N. Histone sumoylation is associated with transcriptional repression [J].Proceedings of the National Academy of Sciences, 2003, 100: 13225-13230.

[71]NATHAN D, INGVARSDOTTIR K, STERNER D E, et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications [J].Genes & Development,2006,20:966-976.

[72]GARCIA-DOMINGUEZ, MARCH-DIAZ R, REYES J C. The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE proteins [J].Journal of Biological Chemistry,2008,283: 21469-21477.

[73]ZENG Lei, ZHOU Mingming. Bromodomain: an acetyl-lysine bindingdomain [J]. FEBS Letters, 2002, 513: 124-128.

[74]JIN Jingbo, JIN Yinhua, LEE J, et al. The SUMO E3 ligase, AtSIZ1, regulates flowering by controlling a salicylic acid-mediated floral promotion pathway and through affects on FLC chromatin structure [J]. The Plant Journal, 2008, 53(3): 530-540.

[75]HAY R T. SUMO-specific proteases: a twist in the tail [J]. Trends in Cell Biology, 2007, 17: 370-376.

[76]KIM J G, TAYLOR K W, HOTSON A, et al. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development inXanthomonas-infected tomato leaves [J].The Plant Cell,2008,20(7):1915-1929.

[77]LAMKE J, BAURLE I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants [J]. Genome Biology, 2017, 18: 124.

[78]OHAMA N, SATO H, SHINOZAKI K, et al. Transcriptional regulatory network of plant heat stress response [J]. Trends in Plant Science, 2017, 22(1): 53-65.

(責任編輯:田 喆)

猜你喜歡
病原菌
細菌性食物中毒的病原菌調查與預防淺談
植物免疫系統“合作”御敵
茶樹炭疽病的研究進展
早產兒與足月兒發生新生兒敗血癥的特點比較
一種煙草細菌性病害病原菌分離培養及致病性測定
重癥監護病房患者下呼吸道感染病原菌的分布特點及耐藥性分析
肝硬化并自發性腹膜炎腹水培養的病原菌及耐藥性分析
重癥監護病房醫院獲得性感染病原菌分布情況及耐藥性特點研究
肺癌并發肺部感染患者痰培養分離的病原菌分布特征及耐藥性特征研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合