?

廣東良口亞髻山霞石正長巖地球化學特征及大地構造意義*

2018-04-02 09:40蘇扣林
關鍵詞:圖解堿性花崗巖

蘇扣林

(廣州市地質調查院,廣東 廣州 510440)

廣東良口亞髻山霞石正長巖位于廣州市從化區良口石嶺村和佛岡縣四九芒寨村一帶,面積約7.45 km2,2010年該巖體被廣東省國土資源廳列為典型巖石遺跡。該巖體面積小但成因特殊,是華南陸塊腹地早白堊世重要的代表性堿性巖體,對于華南陸塊乃至整個中國東部晚中生代地球動力學過程和大地構造環境有著重要意義[1-2]。該巖體最初于20世紀60年代區測工作中被發現[3],被冠名為“惡雞腦”巖體;后來又有很多學者以“從化石嶺堿性雜巖”[4]、“從化石嶺方鈉石正長巖”[5-6]、“惡雞腦堿性正長巖”[7]、“從化石嶺堿性雜巖體”[8]等冠名。2010年,廣東省正式以“亞髻山霞石正長巖”命名。該巖體定年也運用了多種方法和手段,最早是角閃石Ar-Ar法獲得的坪年齡為127.5 Ma[9],礦物-全巖Rb-Sr等時線法年齡為145 Ma[6]鋯石U-Pb年齡為137±2 Ma[10],140.9±1.4 Ma[11]和125.3±3.51 Ma[8];本文獲得全巖Rb-Sr等時線法年齡為134.6±8.9 Ma。因此,可以認為該巖體侵位時間140~130 Ma,為白堊紀早期形成產物。

1 區域地質概況

據1∶100萬廣東省地質構造圖,良口亞髻山霞石正長巖位于NE向廣州-從化斷裂帶和EW隱伏佛岡-豐良深大斷裂帶交匯部位,巖體總體走向近東西向,受F4斷層控制;西端受北東向F1斷層影響,巖體向北突出呈蝌蚪狀;巖體最寬達2.2 km,面積約7.45 km2,呈巖株狀產出,巖體尾部分布有燕山期黃田埔單元細?;◢弾r(J3H),北東面為隱伏的石磴子組(C1sh)灰巖,其余外圍為燕山期高橋單元中粒斑狀黑云母二長花崗巖(J3G),巖株與外圍巖體呈侵入接觸,產狀向外傾,傾角在75°~85°。F1斷層北東走向,傾角70°~78°,長2 100 m,寬1.0~1.5 m(圖1)。

2 巖相學特征

根據主要造巖礦物組合、結構和構造,亞髻山霞石正長巖可劃分出2個相帶,即霞石角閃正長巖帶(內帶)和黑云角閃正長巖帶(外帶)。

1)內帶霞石角閃正長巖:只出露在亞髻山山頂附近,面積0.70 km2,約占堿性巖體出露面積9.4%。巖石為淺灰色,風化后為灰白色,中細粒,似粗面結構,塊狀構造,粒度1~3 mm。礦物特征:堿性長石主要為微斜條紋長石,次之為正長石,具有條紋連晶構造,呈板柱狀自形-半自形晶體,卡式雙晶發育,晶體具有定向或半定向排列,含量介于72%~80%之間;斜長石為灰白色,呈半自形的板柱狀,粒徑0.5~1.5 mm,聚片雙晶,含量為3%~10%;角閃石呈自形-半自形柱狀,有較強的多色性,有兩組菱形的完全解理和六邊形切面,粒徑0.2~1.5 mm,Ng′-藍灰、藍綠或褐綠色,Nm′-綠色,Np′-淡草綠色、藍綠色,Ng∧C=25(最大),2V(-)光軸角偏小,為富鐵和鈉的角閃石,含量為5%~8%;淺紅色霞石呈細小六方柱狀產于長石中,呈紅色斑點“紅診”現象,油脂光澤,負低突起,正交偏光下近于全消光,粒徑0.1~1.2 mm,含量1%~5%;黑云母呈厚板狀自形-半自形晶體,Ng-黑褐、深褐色,Nm-褐色,Np-淡黃色,含量1%~2%;蝕變方鈉石為均質體,N<1.540,無色透明,含量小于1%。手標本及巖石顯微照片見圖2(a和b)。

圖1 廣東亞髻山霞石正長巖區域地質簡圖Fig.1 Regional geological sketch map of the Yajishan nepheline-syenite1-高橋單元中粗斑狀二長花崗巖;2-黃田埔單元細?;◢弾r;3-霞石正長巖;4-石磴子組灰巖;5-內帶(霞石角閃正長巖);6-外帶(黑云角閃正長巖);7-斷裂及編號;8-地質界線;9-巖相帶界線

2)外帶黑云角閃正長巖:面積6.75 km2,約占堿性巖體出露面積90.6%。巖石為淺灰色,風化后為灰白色,中粗粒結構,似花崗結構,塊狀構造,粒度3~6 mm。礦物特征:堿性長石為主要是微斜條紋長石,次之為正長石,具有條紋連晶構造,呈寬板狀、板條狀自形-半自形晶體,卡式雙晶發育,晶體具有定向或半定向排列,含量介于60%~75%之間;斜長石為灰白色,呈半自形的板狀,相對粒徑小于堿性長石,大小0.5~3 mm,見有聚片雙晶等現象,含量為10%~15%;角閃石呈半自形-它形柱狀,為富鐵和鈉的角閃石,含量為7%~8%;黑云母,黃褐色-棕黃色,具有較強的多色性,吸收性,呈厚板狀自形-半自形晶體,見有一組極完全的解,粒徑0.5~2 mm,含量為2%~3%;淺紅色霞石呈細小六方柱狀產于長石中,含量不超過1%。見有少量的石英,含量小于1%,呈他形粒狀,粒徑0.2~1 mm,出現于長石晶體的間隙之間。手標本及巖石顯微照片見圖2(c和d)。

由內帶向外帶巖石礦物成份、結構和構造特征表現出以下變化: ① 粒度由細?;蛑屑毩!写至W兓?。② 霞石含量由約3%→0%變化,由無石英→少量石英(約1%)變化。③ 由似粗面結構或似條帶→似花崗結構變化(暗色礦物比較均勻)。

CIPW標準礦物計算(表1)內帶出現了橄欖石,外帶出現了紫蘇輝石,反映了巖石由來自上地幔巖漿分異而成。

圖2 廣東亞髻山堿性巖體巖石標本及巖石正交偏光顯微照片Am-角閃石;Ne-霞石;Or-鉀長石;Pl-斜長石;Q-石英Fig.2  Hand specimens and photomicrographs of the Yajishan nepheline-syenite

wB/%

3 巖石化學特征

3.1 分析方法

主量元素、微量元素和稀土元素由澳實礦物實驗室(廣州)完成,同位素分析由澳實總部(澳大利亞)實驗室完成。其中主量元素采用PAnalytic PW2424型熒光光譜儀(XRF)分析,微量元素采用Agilent 7700x型電感耦合等離子體發射質譜(ICP-MS)分析,稀土元素采用Perkin Elmer Elan 9000型電感耦合等離子體發射質譜(ICP-MS)分析。XRF主量元素分析方法與Goto and Tatsumi[12]報道的相似,分析精度優于1%。微量元素分析流程和相關參數見劉穎等[13],分析精度優于5%。Rb-Sr和Sm-Nd同位素測試,采用同位素稀釋-扇形電感耦合等離子質譜(ID-ICP-SFMS)測定Rb-Sr和Sm-Nd的精確含量,采用Eichrom鍶離子交換色譜柱分離富集Sr,采用AG50-X8離子交換柱分離稀土元素、并采用Ln樹脂HDEHP基離子交換色譜分離Nd與Sm,然后采用ThermoScientific NEPTUNE型多接收器電感耦合等離子體質譜儀(MC-ICP-MS)在靜態模式下分別測定Sr同位素比值和Nd同位素比值,Sr同位素分析精度可達到RSD<0.01%,Nd同位素分析精度可達RSD<0.005%,詳細的分析流程見梁細榮等[14]。

3.2 主量氧化物特征

堿性巖體主要元素按巖相帶分類統計(表2),內帶16件樣品,w(SiO2) 59.32%~62.96%,平均值60.45%,李特曼指數(σ)7.45~9.68,平均值8.54,賴特堿度率(A.R)3.38~5.78,平均值4.33,全堿(ALK)11.34~13.11,平均值12.19,鋁堿比(ACNK)0.89~1.23,平均值1.03,w(FeOT)/w(MgO) 8~64,平均值19.91,TAS圖解落在正長巖區(圖3),SiO2-AR圖解落在堿性-過堿性區(圖4a),NK/A-ACNK圖解落在準鋁-過鋁區(圖4b)。

外帶123件樣品,w(SiO2) 55.37%~66.95%,平均值60.34%,李特曼指數(σ)2.30~11.27,平均值7.69,賴特堿度率(AR)1.84~5.53,平均值3.79,全堿(ALK)6.39~13.56,平均值11.47,鋁堿比(ACNK)0.75~2.49,平均值1.06,w(FeOT)/w(MgO) 3~101,平均值15.78,TAS圖解落在正長巖(大部分)-二長巖區,SiO2-AR圖解落在堿性(大部分)-過堿性區,NK/A-ACNK圖解落在準鋁-過鋁區。

表2 廣東亞髻山霞石正長巖主量元素(wB/%)和微量元素(wB/(mg·kg-1))Table 2 Major elements (wB/%) and trace elements (wB/(mg·kg-1)) of the Yajishan nepheline-syenite

續上表

LOI1.161.861.454.16Total99.3899.4999.9699.38σ8.547.692.211.89AR4.333.793.622.15ALK12.1911.478.206.47ACNK1.031.061.181.06NK/A0.890.830.780.56K2O/Na2O0.971.501.592.87FeOT/MgO19.9115.785.153.01R128957826212630R2491548367719Cs5.005.8510.6912.57Rb262.50262.36582.22329.00Ba196.81321.5584.61830.30Th20.1118.9547.0316.71U4.314.6022.717.37Nb81.1371.7256.7217.48Ta3.603.4311.522.04K4.955.024.093.63Al9.168.897.197.00La76.0297.6831.2051.15Ce130.41146.1779.0394.65Pb29.9638.3651.9066.24Pr19.3020.717.1110.20Sr94.99158.4633.87217.30P188.13373.63100.00695.00Nd61.3364.6326.9933.24Sm8.589.437.515.89Zr247.06319.8572.58272.70Hf6.186.853.696.60Eu0.731.270.361.15Ti0.120.180.070.28Gd6.457.117.924.44Tb0.971.031.570.66Dy5.656.2010.503.66Y24.4824.2455.5815.96Ho1.191.262.150.71Er3.523.687.262.01Tm0.550.571.190.30Yb4.033.908.802.00Lu0.670.631.290.31Sc0.911.844.135.44V5.196.984.8954.00Cr6.564.464.5619.90Mn1360.691229.31410.67736.60Co3.033.001.275.62Ni1.331.171.892.56Cu7.236.4016.637.46Zn120.56119.8836.6793.20Ga24.5422.2424.8119.16

續上表

ΣREE343.86388.52248.46226.32ΣCe/ΣYb6.327.862.346.55(La/Yb)N12.4416.434.2117.50(La/Sm)N5.856.752.725.31(Gd/Yb)N1.241.370.851.92δEu0.300.470.160.70δCe0.820.791.281.00Rb/Sr3.892.7127.181.74Rb/Ba1.931.6115.250.57Nb/Ta22.6821.235.489.16Zr/Hf39.9643.0719.6336.85Yb/Ta1.121.130.881.06Y/Nb0.300.331.121.0110000Ga/Al2.692.513.472.75Ta/Hf0.650.823.580.39Th/Hf3.614.6814.163.34Th/Ta5.635.837.139.39Zr/Y11.6621.032.0317.55

σ—李特曼指數;AR—賴特堿度率;ACNK=Al2O3/(CaO+Na2O+K2O);NK/A= (K2O+Na2O) /Al2O3;FeOT=(TFe2O3×0.9);ALK=K2O+Na2O;R1=4Si-11(Na+K)-2(Fe+Ti);R2=Al+2Mg+6CaO(陽離子數)

圖3  廣東亞髻山霞石正長巖TAS圖解(據Middlemost[15])Fig.3 TAS diagrams of the Yajishan nepheline-syenites

3.3 微量元素特征

原始地幔標準化微量元素蛛網圖顯示,廣東亞髻山霞石正長巖明顯虧損Ba、Sr、P、Ti、Eu等元素,并形成尖銳谷(圖5a),這可能與斜長石分離結晶有關。從表2可知,w(Rb)/w(Sr)比值由2.71(外帶)變化到7.89(內帶),而w(Rb)/w(Ba)比值則由1.61(外帶)上升到1.93(內帶),遠高于原始地幔的相應值(分別為0.029和0.088[18]),w(Zr)/w(Hf)比值在39.96(內帶)~43.07(外帶),高于原始巖幔的比值(34~36)[19],反映了該巖體經歷了較高程度的分異演化。

Nb、Ta為不相容高場強元素,一般在俯沖板塊,擠壓、高溫和脫水環境下產生分餾,亞髻山巖體w(Nb)/w(Ta)比值介于21.23(外帶)~22.68(內帶)之間,遠高于原始巖幔的比值(17.5±2.0[19]),這可能是古太平洋板塊俯沖對南嶺地區縱深影響的表觀之一[31]。

3.4 稀土元素特征

原始地幔標準化稀土配分圖呈海鷗型(圖5b)顯示,亞髻山霞石正長巖δEu負異常明顯,其值介于0.30(內帶)~0.47(外帶)之間,這與斜長石結晶有關,該巖石的稀土總量ΣREE由344 mg/kg(內帶)變化到389 mg/kg(外帶),相對富集且含量較高;w(∑Ce)/w(∑Y)介于6.32(內帶)~7.86(外帶)之間,顯示明顯右傾,輕稀土分餾明顯;(La/Yb)N介于12.44(內帶)~16.43(外帶)之間,具有較富集的輕稀土。上述特征反映了亞髻山巖體原始巖漿來源很深,分離結晶等復雜成巖過程[21]。

3.5 Rb-Sr、Nd-Sm同位素特征

亞髻山巖體12件樣品Rb-Sr和Nd-Sm同位素測試結果見表3。Isr值0.705 33~0.708 6,平均值0.706 75;εNd(t)值-1.1~-3.6,平均值-2.8,Nd的二階段模式年齡介于680~910 Ma之間,平均值815 Ma,暗示了來自上地幔巖漿受少量殼源物質的混染。43Nd/144Nd比值和εNd(t)高于周圍高橋單元花崗巖(0.512 164和-8.0)[7],而模式年齡則遠低于周圍高橋單元花崗巖(1 600 Ma)[7],和外圍花崗巖巖體有本質區別,不支持該巖體成因為佛岡巖體分異說[4]。

圖4  廣東亞髻山霞石正長巖SiO2-AR(a)和NK/A-ACNK(b)圖解(據Wright[16] [和Maniar & Piccolli[17])Fig.4 Plots of A.R-SiO2(a)and ACNK-NK/A (b) of the Yajishan nepheline-syenites

圖5 廣東亞髻山霞石正長巖微量元素蛛網圖(a)和稀土元素配分圖(b)((a)原始地幔標準化值據Sun and McDonough[20];(b)球粒隕石標準化值據McDonough and Sun[19] )Fig.5 The primitive mantle-normalized trace element spidergrams and chondrite-normalized REE distribution patterns of the Yajishan nepheline-syenites

相帶編號SmNd147Sm/144Nd143Nd/144Nd±2σεNd(t)T2DM/MaRbSr87Rb/86Sr87Sr/86Sr±2σISr內帶H515.77340.030.08720.512477±8-3.1830188.457.859.4450.72753±200.7086H528.60058.830.08840.512466±8-3.4850201.5118.84.910.71643±400.70659H538.27555.920.08950.512465±9-3.4860233.665.7310.310.72739±500.70674H545.30737.010.08670.512466±8-3.4840210.428.6321.360.74813±100.70533H558.11655.550.08830.512483±7-3.0830197129.24.4160.71509±700.70624外帶H14.95432.850.09120.512515±10-2.4810263.2149.75.0930.71789±200.70769ZK101-H108.26252.840.09460.512512±10-2.5830214.4103.406.0040.71797±300.70594ZK101-H1512.5287.200.08680.512507±8-2.6790225.7107.306.0940.71911±200.70699ZK101-H204.88431.210.09460.512456±9-3.6910168.3190.802.5540.71334±500.70822ZK102-H200.8386.0250.08410.512581±8-1.1680277.564.7012.4500.73073±200.70578ZK102-H264.01628.590.08500.512517±9-2.4770227.6159.704.1280.71488±200.70661ZK102-H323.63925.990.08470.512501±8-2.7780260.0117.006.4400.71922±200.70631平均值6.2742.670.08840.512496±9-2.8815222.3107.737.7670.72231±300.70675

1)巖體侵位時間取140 Ma

在εNd(t)-ISr圖解上投影到華南I型花崗巖中(圖6)。

圖6 廣東亞髻山霞石正長巖εNd(t)-ISr圖解(據Ding et al[22])Fig.6 εNd vs ISr diagram of the Yajishan nepheline-syenites

3.6 Rb-Sr同位素年齡

本次獲得的全巖Rb-Sr同位素年齡為134.9±8.9 Ma(12個樣品,圖7),MSWD=0.75,等時線年齡較為可信。從區域地質環境條件分析,在該巖體南部,黃田埔單元堿性中細?;◢弾r(146±13 Ma)[23]蓋在該巖體之上,該巖體形成于早白堊世,時間在140~130 Ma相對較為準確。

4 巖體物質來源及成因

A型花崗巖的概念首先由Loisell et al[24]提出來,認為該類巖石具有“三A”特征,即非造山(anorogenic)、高堿質(alkaline)和巖漿貧水(anhydrous)。文獻[25-28]根據構造和起源不同再進一步細分為A1型和A2型二個亞類,其中A1型與上地幔熱柱或裂谷有關;A2型則與大陸邊緣地殼伸展作用有關。

圖7 廣東亞髻山霞石正長巖全巖87Sr/86Sr-87Rb/86Sr圖解Fig.7 The 87Sr/86Sr-87Rb/86Sr diagram for the Yajishan nepheline-syenites

亞髻山堿性巖具有A型花崗巖特點(圖8),與高橋單元中粒斑狀黑云母二長花崗(佛岡巖體)有明顯區別,在Nb-Y-Ce和Nb-Y-3Ga三角投影中(圖8),絕大部分投影到A1花崗巖中。

亞髻山堿性巖在Th/Hf-Ta/Hf判別圖投影中(圖9),大部分投影到Ⅳ3大陸拉張帶(或初始裂谷)玄武巖區,少部分投影到Ⅳ2陸內裂谷堿性玄武巖區,與陸內裂谷有關。

亞髻山霞石正長巖在R1-R2圖解投影中(圖10),大部分投影到非造山區或造山晚期。

在中-晚侏羅世,古太平洋板塊以低角度快速向歐亞板塊下俯沖,板塊間擠壓強烈,在中國東南沿海形成了安第斯型的大陸邊緣巖漿弧,弧寬可達1 000 km,抵至南嶺地區[31]。到早白堊世俯沖傾角變大且速度變慢,導致巖石圈伸展,形成了EW向佛岡-豐良張性大斷裂和NE-SW向廣-從左旋大斷裂,誘發軟流圈沿斷裂上涌、地幔巖漿熔融而形成堿性巖體。

5 結 論

1)亞髻山霞石正長巖巖體出露面積約7.45 km2,巖體形成時間約134.6±8.9 Ma,地質時代為白堊紀早期,巖體內帶為霞石角閃正長巖,外帶為黑云角閃正長巖。

2)亞髻山霞石正長巖具有典型A1型巖套高演化花崗巖特征,ISr值0.705 33~0.707 69,εNd(t)值-1.1~-3.4, Nd的二階段模式年齡680~910 Ma,暗示巖漿源區為上地幔-下地殼重熔型物質,其高堿特征可能與上地幔巖漿分異有關。

圖8 廣東亞髻山霞石正長巖巖石類型判別圖解(a、b據Whalen et al.[26]; c、d據Eby[27])Fig.8 Discrimination diagram of the Yajishan nepheline-syenites

圖9 廣東亞髻山霞石正長巖大地構造環境Th/Hf-Ta/Hf判別圖(據汪云亮等[29])Fig.9 Th/Hf vs Ta/Hf identification diagram of tectonic setting for the Yajishan nepheline-syenitesⅠ-板塊發散邊緣N-MORB區;Ⅱ-板塊匯聚邊緣(Ⅱ1大洋島弧玄武巖區;Ⅱ2陸緣島弧及陸緣火山弧玄武巖區);Ⅲ大洋板內洋島、海山玄武巖區及T-MORB、E-MORB區;Ⅳ大陸板內(Ⅳ1陸內裂谷及陸緣裂谷拉斑玄武巖區;Ⅳ2陸內裂谷堿性玄武巖區;Ⅳ3大陸拉張帶(或初始裂谷)玄武巖區);Ⅴ地幔熱柱玄武巖區

圖10  廣東亞髻山霞石正長巖R1-R2圖解(據Batchelor和Bowden[30])Fig.10 R1 vs R2 for the Yajishan nepheline-syenites

3)髻山霞石正長巖巖體形成于白堊紀早期古太平板塊俯沖后撤誘發的陸-陸碰撞造山后拉張構造環境,這一過程對華南地區構造演化具有一定重要的地質意義

致謝:在本文寫作過程中得到楊超群研究員大力幫助,在此表示衷心感謝!

參考文獻:

[1]王德滋,趙廣濤,邱檢生.中國東部晚中生代A型花崗巖的構造制約[J].高校地質學報,1995,1(2):13-21.

WANG D Z,ZHAO G T,QIU J S.The tectonic constraint on the late Mesozoic A-type granitoids in eastern china[J].Geological Journal of China Universities,1995,1(2):13-21.

[2]王德磁.華南花崗巖研究的回顧與展望[J].高校地質學報,2004,10(3):305-314.

WANG D Z.The study of granitic rocks in south China:looking back and forward[J].Geological Journal of China Universities,2004,10(3):305-314.

[3]潘維祖.廣東發現角閃霞石正長巖體[J].地質論評,1966,24(1):71.

PAN W Z.Guangdong Provincial discovered the nepheline-syenite rock[J].Gelogical Review,1966,24(1):71.

[4]肖振宇,汪禮明,楊學明,等.廣東從化石嶺堿性雜巖的巖石學特征及其地質意義[J].高校地質學報,1998,4(2):133-138.

XIAO Z Y,WANG L M,YANG X M,et al. Petrological characteristics of Shiling alkaline complex,Conghua, Guangdong province and its geolgical implications[J].Geological Journal of China Universities, 1998,4(2):133-138.

[5]劉昌實,陳小明,王汝成,等.廣東從化方鈉石正長巖礦物學特征及成因[J].礦物學報,2002,22(3):261-269.

LIU C S,CHEN X M,WANG R C,et al.Mineralogic characteristics and genesis for Shiling sodalite syenite, Nanling area, south china[J].Acta Mineralogica Sinica,2002,22(3):261-269.

[6]劉昌實, 陳小明,王汝成,等.廣東從化石嶺方鈉石正長巖特征及其起源[J].地質論評,2003,49(1):28-40.

LIU C S,CHEN X M,WANG R C,et al. Characteristic and origin of the Shiling sodalite syenite, Conghua city Guangdong province[J].Gelogical Review,2003,49(1):28-40.

[7]包志偉,趙振華,熊小林.廣東惡雞腦堿性正長巖的地球化學及其地球動力學意義[J].地球化學,2000,29(5):462-468.

BAO Z W,ZHAO Z H,XIONG X L.Geochemistry of the Jinao alkali syenite and its geodynamic significance[J].Geochimica,2000,29(5):462-468.

[8]李宏衛,林小明,黃建樺.廣東從化石嶺堿性雜巖體角閃石正長巖LA-ICP-MS鋯石U-Pb定年[J].地球科學前沿,2015(5):27-32.

LI H W, LIN X M, HUANG H H.LA-ICP-MS zircon U-Pb dating of hornblende syenite form Shilling alkaline complex, Conghua city, Guangdong province[J].Frontiers of Earth Science,2015(5):27-32.

[9]周玲棣,趙振華,周國富.我國一些堿性巖的同位素年代學研究[J].地球化學, 1996,25(2):164-171.

ZHOU L D, ZHAO Z H, ZHOU G F. Isotopic chronology of some alkaline rock bodies in China[J]. Geochimica, 1996,25(2):164-171.

[10]王強, 趙振華,簡平,等.華南腹地白堊紀A型花崗巖類或堿性侵入巖年代學及其對華南晚中生代構造演化的制約[J].巖石學報,2005,21(3):795-808.

WANG Q,ZHAO Z H,JIAN P, et al. Geochronology of Cretaceous A-type granitoids or alkaline intrusive rocks in the hinterland, south China: constraints for late-Mesozoic tectonic evolution[J].Acta Petrologica Sinica, 2005,21(3):795-808.

[11]蘇扣林,丁興,黃永貴,等.粵中早白堊世亞髻山正長雜巖體的成分分異及巖石成因[J].巖石學報,2015,31(3):829-845.

SU K L, DING X, HUANG Y G, et al. Compositional differentiation of early Cretaceous Yajishan syenitic complex and its petrogenesis[J].Acta Petrologica Sinica,2015,31(3):829-845.

[12]GOTO A,TATSUMI Y. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer (I) [J].The Rigaku Journal,1994,11:40-59.

[13]劉穎,劉海臣,李獻華.用ICP-MS準確測定巖石樣品中的40余種微量元素[J].地球化學,1996,25(6):552-558.

LIU Y, LIU H C, LI X H. Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS[J].Geochimica,1996,25(6):552-558.

[14]梁細榮,韋剛健,李獻華,等.利用MC-ICPMS精確測定143Nd/144Nd和Sm/Nd比值[J].地球化學,2003,32(1):91-96.

LIANG X R, WEI G J, LI X H,et al. Precise measurement of143Nd/144Nd and Sm/Nd ratios using MC-ICPMS[J]. Geochimica,2003,32(1):91-96.

[15]MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Review,1994,37:215-224.

[16]WRIGHT J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J].Geol Mag,1969,106:370-384.

[17]MANIAR P, PICCOLI P. Tectonic discrimination of granitoids[J]. Geol Soc of Amer Bull,1989,101:635-643.

[18]HOFMANN A W. Chemical differentiation of the earth: The relationship between mantle,continental crust and oceanic crust[J].Earth Planet Sci Lett,1988,90:297-314.

[19]McDONOUGH W F, SUN S S. The composition of the Earth[J]. Chemical Geology,1995,120(3/4):223-253.

[20]SUN S S, McDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]∥ Magmatism in the ocean basins. SAUNDERS A D & NORRY M J, eds. London, United Kingdom: Geological Society of London,1989:313-345.

[21]王德滋,彭亞鳴,袁樸.福建省魁岐花崗巖的巖石學和地球化學特征及成因探討[J].地球化學,1985(3):197-205.

WANG D Z, PENG Y M, YUAN P. Petrological and geochemical characteristics and genesis of Kuiqi granites, Fujian Province[J].Geochimica,1985(3):197-205.

[22]DING X, SUN W D, CHEN W F,et al. Multiple Mesozoic magma processes formed the 240-185 Ma composite Weishan pluton, South China: Evidence from geochronology, geochemistry, and Sr-Nd isotopes[J]. International Geology Review, doi:2014, 10.1080/00206 814.2014.905997.

[23]蘇扣林.廣東良口黃田埔A型花崗巖地球化學特征及大地構造意義[C]∥廣東首屆地質工程學術大會論文集.廣州:羊城晚報出版社,2017.

[24]LOISELLE M C. Characteristics of anorogenic granite[C].Geological Society of America, 1979, Abstracts 11:468.

[25]COLLINS W J, BEAMS S D, WHITE A J R, et al. Nature and origin of A-type granites with particular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982,80(2):189-200.

[26]WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95(4): 407-419.

[27]EBY G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology,1992,20(7):641-644.

[28]洪大衛,王式洸,韓寶福,等.堿性花崗巖的構造環境分類及其鑒別標志[J].中國科學(B輯),1995,25(4):418-426.

HONG D W,WANG S G, HAN B F,et al. Classification of tectonic environments and identification mark of alkaline granites[J].Science in China (Series B),1995,25(4):418-426.

[29]汪云亮,張成江,修淑芝.玄武巖類形成的大地構造環境的Th/Hf-Ta/Hf圖解判別[J].巖石學報,2001,17(3): 413-421.

WANG Y L,ZHANG C J,XIU S Z. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J].Acta Petrologica Sinica,2001,17(3): 413-421.

[30]BONIN B, GIRET A. Contrasting roles of rock-forming minerals in alkaline ring complexes[J]. Journal of African Earth Sciences. 1985,3(1/2):41-49.

[31]ZHOU X M, LI W X. Origin of late Mesozoic igneous rocks in southeastern China: implication for lithosphere subduction and underplating of mafic magma[J].Tectonophysics,2000,326:269-287.

猜你喜歡
圖解堿性花崗巖
酵母片不宜與堿性物同服
12Cr1MoV焊接接頭在堿性溶液中的應力腐蝕開裂行為
花崗巖
粵北地區花崗巖型鈾礦勘查模式分析
不同構造環境花崗巖類的Na2O和K2O含量變化特征
抗剝落劑TR-500S改善花崗巖混合料路用性能研究
日常生活的堿性食物
試析蒸汽鍋爐堿性排污水的綜合利用
圖解十八屆六中全會
圖解天下
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合