?

球孢白僵菌植物內生性及其應用特性研究進展

2022-06-12 22:39李子正張蕾蕾褚鵬飛楊婧華學文郭尚敬劉婷婷姜會嶺
江蘇農業科學 2022年10期
關鍵詞:內生性抗逆性

李子正 張蕾蕾 褚鵬飛 楊婧 華學文 郭尚敬 劉婷婷 姜會嶺

摘要:球孢白僵菌(Beauveria bassiana)是一種廣泛應用于農林業害蟲防治的昆蟲病原真菌,亦有研究證實其對某些植物病原菌存在拮抗作用,是一種雙重生防真菌。最新研究表明,球孢白僵菌還可以在自然條件下或通過人工接種定殖于植物體內,其顯著的病蟲害防治效果和較長的內生持續期為高效生物防治研究提供了新思路。此外,諸多研究表明內生球孢白僵菌可通過以提高植物對營養物質的吸收或引起相關激素的變化促進植物生長、增強植物在生物和非生物脅迫下的抗逆性,還可以與其他有益微生物協作對植物生長與抵御病蟲害過程產生積極影響?;趪H最新研究成果,在綜述球孢白僵菌內生性生物學機制基礎上,總結其作為雙重生防真菌在病蟲害防治以及促進植物生長中的作用機制,探討內生球孢白僵菌-其他內生菌-植物之間的互作效應,以期為利用昆蟲病原真菌內生特性所展開的深入研究和應用提供理論參考。

關鍵詞:球孢白僵菌;內生性;雙重生防真菌;促生性;抗逆性

中圖分類號:S476.12 ??文獻標志碼: A

文章編號:1002-1302(2022)10-0001-08

目前已探明的能夠感染昆蟲且致死的蟲生真菌種類高達750多種[1]。在害蟲綜合治理(IPM)中利用昆蟲病原真菌,不僅能夠減輕害蟲的危害程度,還可以極大地降低害蟲耐藥性的風險,保持田間生態系統長久的穩定性,使害蟲數量維持在環境可持續發展的閾值下。越來越多的昆蟲病原真菌,如球孢白僵菌(Beauveria bassiana)[2-6]、金龜子綠僵菌(Metarhizium anisopliae)[7-10]、淡紫擬青霉(Paecilomyces lilacinus)[5,11]等廣泛應用于農田、溫室等害蟲防治中。研究表明,昆蟲病原真菌在寄生蟲體的同時可以通過人工接種或在自然條件下作為內生菌在植物體內生長[12-15],進一步提高植食性害蟲的死亡率[12],并對植物生長具有積極作用[5,16-17],相關研究拓寬了內生昆蟲病原真菌與植物間互作的視野。

球孢白僵菌是一種廣泛應用于農林業害蟲生物防治的絲孢類昆蟲病原真菌,可寄生包括棉鈴蟲、小菜蛾、馬尾松毛蟲等咀嚼式口器害蟲,以及白粉虱、蚜蟲等刺吸式口器害蟲在內的700多種昆蟲[18],寄主范圍廣泛。同時,球孢白僵菌還具有易于培養、利于規?;a和殺蟲效果顯著等優勢,因此相關制劑廣泛應用于商業化生產,被公認為是最有應用前景的化學殺蟲劑替代品之一[19],但其施用效果尚受紫外線、雨水、溫度等非生物因素的制約[20],亟需進一步研究完善施用方法,降低環境的影響。近年來有研究表明,可將球孢白僵菌人工接種至寄主植物中,且接種成功一次即能夠使植物長期帶菌,在整個生活史中發揮防治蟲害的作用,為提升害蟲綜合治理效果提供了新思路[21-23]。

諸多研究表明,球孢白僵菌作為一種雙重生防真菌,其在植物體內的定殖不僅能夠有效防治害蟲,還能提高植物的抗病性[15],此外,它還具有促進植物生長[24-27]、提高植物對非生物脅迫的耐受性[28-29]的作用。本文基于前人關于球孢白僵菌在植物中內生化的最新研究成果,總結其內生特性在生物防治及植物生長過程中的積極作用,探討內生球孢白僵菌-其他有益微生物-植物之間的互作效應,以期為利用昆蟲病原真菌內生特性所展開的深入研究和應用提供理論參考。

1 球孢白僵菌的植物內生性

球孢白僵菌內生性的研究始于1992年Bing等首次通過葉面噴施和莖部注射2種方式將球孢白僵菌孢懸浮液接種至V7期玉米植株內,并成功觀測到選擇性培養基上成熟期玉米各組織內白僵菌的生長[2]。Wagner等利用光學和電子顯微鏡首次觀察到球孢白僵菌分生孢子萌發的菌絲透過玉米葉表面進入植株內部及其在植物中的傳播過程[30]。Chambers等利用掃描電鏡和分子生物學技術確認了球孢白僵菌在番茄植株中的定殖,為進一步確定其內生性提供了便捷方法[31]。Landa等利用兩步巢式PCR(two-step nested specific-PCR)和RT-qPCR等分子生物學新技術檢測到罌粟植株內球孢白僵菌的存在,并對其在各組織內的定殖進行了定量研究[32]。Landa等分別利用共聚焦顯微鏡(CLSM)明確了已轉入綠色熒光蛋白(GFP)的球孢白僵菌在罌粟、菜豆等植物組織內的分布特征[32-33],為進一步探索內生菌在植物不同組織的定殖特點提供了技術支持。

研究表明,利用葉面噴施[27,32-35]、灌根[7,24-25]、浸種[24-25,36]、莖部注射[2,37-38]、根莖浸泡[3,39-41]等多種人工接種方式都可成功地將球孢白僵菌定殖于罌粟[32]、可可[42]、咖啡[21]、小麥、蕓豆、南瓜[27]、葡萄[33]、大豆、煙草[43]、棗椰樹[39]、黃瓜[36]、木薯[44]、花椰菜[45]、白黃麻[3]、山核桃樹[4]等多種植物體內。Jaber等利用球孢白僵菌孢子懸浮液對蠶豆進行浸種處理后發現,在接種14、28 d后不同器官內均有球孢白僵菌的存在[17]。Sánchez-Rodríguez等在小麥上的研究亦得出相似結果,證明球孢白僵菌作為植物內生菌可以從接種部位擴散至植株各組織并長期存活[24]。更多研究顯示,球孢白僵菌成功定殖后的內共生過程可在黃麻中持續3個月[22],在咖啡中持續8個月[21],在輻射松中持續9個月[23]。

2 植物內生球孢白僵菌在害蟲管理上的作用

球孢白僵菌最早作為高效的生防殺蟲菌劑被廣泛應用,其定殖對植食性害蟲的影響已成為植物內生菌研究的熱點之一[46]。與傳統化學殺蟲劑相比,球孢白僵菌在殺死植食性害蟲時,對常見傳粉性昆蟲以及天敵昆蟲等非靶標昆蟲危害微小[47-51],更利于保護農田生態環境、維持農田生態系統穩定發展。內生球孢白僵菌通過產生細胞毒素、白僵菌素等次生代謝物直接或間接對害蟲產生負面影響,常導致害蟲發育遲緩[27,52-53]、抑制昆蟲食物消耗率[12,54]、降低幼蟲存活率[10,55]和成蟲的產卵率[10,27,56]等。7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

Bing等通過葉面噴施和莖部注射的方式向玉米植株接種球孢白僵菌孢懸浮液,顯著降低了歐洲玉米螟的危害,首次證明內生球孢白僵菌的殺蟲作用[2]。其后,Lopez等研究發現,浸種處理后的棉花植株能夠有效降低棉蚜危害,并能顯著抑制棉蚜的繁殖[5]。Biswas等的研究表明,莖象甲蟲對接種球孢白僵菌ITCC5408和ITCC6063菌株的黃麻植株的危害株數從未接種組的35.44%分別大幅降至10.44%、14.06%[3]。Toffa等使用B15菌株進行種子包衣處理后顯著抑制了棉鈴蟲對番茄葉片的危害,且顯著降低了棉鈴蟲的平均存活時間[6]。Mwamburi采用灌根的方式將球孢白僵菌BbC1菌株定殖于番茄植株體內,顯著降低了草地貪夜蛾幼蟲的體質量,有效減小了其對葉片的危害[7]。Ramakuwela等的研究表明,山核桃害蟲取食接種球孢白僵菌的葉片后死亡率顯著升高[4]。此外,內生球孢白僵菌還顯著提高了番茄上番茄潛葉蠅的死亡率[57],增強了煙草對桃蚜的耐受性[58],降低了大豆莢蟲在大豆上的繁殖力[59],減小了葡萄葉蟬對葡萄葉片的危害[60],抑制了蝗蟲對玉米植株的取食[61]等。

為提高害蟲綜合治理的高效性,研究人員在保護生態環境的前提下對植物內生球孢白僵菌與其他生物防治方法的結合展開了一系列探索,如與捕食性昆蟲或寄生性昆蟲相結合雙重防治害蟲[49-51]。Jaber等通過研究內生昆蟲病原真菌-害蟲-天敵昆蟲三者間的關系發現,內生性球孢白僵菌顯著減小了桃蚜對甜椒損害的同時不會對天敵昆蟲科列馬·阿布拉小蜂(Aphidius colemani)造成負面影響[49]。González-Mas等利用孢懸液噴施處理甜瓜植株后針對葉片上的蚜蟲進行天敵昆蟲選擇性取食性測試,結果表明草蛉更趨于捕食經球孢白僵菌處理后的甜瓜上的蚜蟲,且繭蜂在蚜蟲上的寄生產卵行為未受顯著影響[50]。表明內生球孢白僵菌防治害蟲對天敵昆蟲不僅未造成負面影響,還可能與其存在協作效應,進而提高防治效果,對農田生態系統的穩定具有積極意義。

3 植物內生球孢白僵菌對植物病害的生防潛力

利用有益微生物降低病原體在組織內的擴繁率[15,62]是目前植物病害生物防治的有效途徑之一。有研究發現,內生昆蟲病原真菌在防治害蟲的同時,還可以通過寄生、競爭、拮抗、誘導植物系統性抗性等方式直接或間接地抵御、減輕病原體對植物造成的危害[5],其功能類似于木霉菌、枯草芽孢桿菌等“植物疫苗”。內生球孢白僵菌可以通過競爭感染部位的碳、氮等多種養分抑制植物病原體的擴繁,這種競爭常發生在根際、葉片或細胞間[5],但會受溫濕度[63]等多種因素的影響。

Ownley等利用孢子懸浮液進行種子包衣處理使球孢白僵菌11-98菌株在番茄和棉花植株組織內定殖,顯著增強了寄主植物對立枯絲核菌(Rhizoctonia solani)、群結腐霉菌(Pythium myriotylum)和細菌性葉枯病病菌(Xanthomonas axonopodis)的抵御能力,提高了幼苗的存活率,促進了含病菌土壤中棉花幼苗株高的增加[64-65]。Jaber等研究發現,葉面噴施白僵菌孢懸液后顯著降低了西葫蘆黃花葉病毒(zucchini yellow mosaic virus,ZYMV)對南瓜葉片的危害[66];次年用相同方式對葡萄植株進行處理的結果表明,內生球孢白僵菌也可以顯著降低霜霉病病菌(Plasmopara viticola)引起的葡萄霜霉病在葡萄藤上的發病率及危害程度[34]。Dara等的研究表明,接種球孢白僵菌顯著提高了棉花在含枯萎病病菌(Fusarium oxysporum f. sp. vasinfectum)土壤上的存活率,并顯著促進了植株的生長[67]。Dara等分別利用球孢白僵菌和綠僵菌處理草莓,均顯著降低了炭腐病病菌(Macrophomina phaseolina)的危害,改善了植株的生長狀況[68]。Barra-Bucarei等對辣椒、番茄進行浸根處理后發現,球孢白僵菌RGM547和RGM644菌株成功定殖于植株組織內并對灰霉病病菌(Botrytis cinerea)產生顯著拮抗作用[69]。Jaber研究發現,球孢白僵菌處理種子后顯著提高了小麥根長、鮮質量等生長參數,并有效抑制了小麥冠腐根腐?。–RR)的發病率[37]。

諸多針對不同植物的研究均已證明,球孢白僵菌作為內生真菌能夠降低病原體對寄主植物的危害,但其內在機制仍未詳解,綜合分析前人的研究結果,后續研究可從以下3個方面進行深入探索:其一,內生球孢白僵菌通過競爭、產生抗生素等次生代謝物直接抑制病原體發展[15,62,70];其二,通過激活茉莉酸(JA)、乙烯(ET)途徑從而使植物產生植物誘導性系統抗性(ISR)以及觸發水楊酸(SA)途徑來激活系統獲得抗性(SAR),致使植物自身產生次生代謝產物和免疫化合物以及誘導相關氧化酶的產生,從而間接幫助植物抵御病原體侵害[62,70-71];其三,促進植物生長,提高植物自身免疫力[39,62,66,72]。

4 植物內生球孢白僵菌對寄主植物的促生作用

存在于土壤中的球孢白僵菌等昆蟲病原真菌可以促進土壤微生物群中的有益微生物競爭性地取代有害微生物,改善土壤結構,優化土層中的養分物質以利于植物吸收利用[71]。球孢白僵菌通過土壤施用等多種接種方式定殖于植物體不同組織時,會以一種或多種方式使植物受益。Gurulingappa等利用孢懸液葉面噴施處理后的小麥植株地上、地下部分干質量均顯著高于未處理組,有利于小麥的干物質積累[27]。Afandhi等研究發現,葉面噴施和灌根處理后的菜豆植株在接種20 d后根長顯著增加,促進了根系的延伸,有利于植株對土壤水分和養分的吸收[25]。Lopez等研究發現,經球孢白僵菌孢懸液浸種處理的陸地棉,其生物量、株高、營養生長階段開花數量均顯著增加[26]。Dash等通過球孢白僵菌B13菌株對綠豆進行種子處理,植株株高、地上和地下部鮮質量顯著高于對照組[73]。Raya-Díaz等通過土壤處理的方式,發現內生球孢白僵菌和綠僵菌能夠在鈣質基質條件下顯著促進高粱對鐵(Fe)的吸收,進而提高葉片光合能力、促進根系生長,最終提高產量[74]。Sánchez-Rodríguez等利用球孢白僵菌孢子懸浮液接種硬粒小麥,與對照相比,灌根處理植株的磷(P)、鐵(Fe)、鎂(Mg)、鉀(K)含量分別提高了17.86%、19.44%、22.22%、21.43%,而葉面噴施處理分別提高了14.29%、1429%、22.22%、4286%;拌種處理后的面包小麥的籽粒產量和根長分別均約提高了40%[24]。Moloinyane等對盆栽葡萄植株進行球孢白僵菌孢懸液處理后,葉片中的鈣(Ca)、Mg含量顯著增加[75]。Macuphe等的研究表明,內生球孢白僵菌定殖顯著增加了生菜錳(Mn)、Fe、銅(Cu)和硼(B)等微量元素的含量,促進地上部分生長,提高了產量[76]。Dara等在模擬干旱條件下卷心菜的生長情況時發現,經球孢白僵菌處理后卷心菜的存活率、株高、根冠比和生物量均顯著增加,對氮(N)、P、K養分的吸收亦相應提高[77]。7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

內生球孢白僵菌對寄主植物的促生作用已在多種植物中得到驗證,但其促生機制仍存在爭議。有研究表明,內生球孢白僵菌通過增加寄主植物對N、P、K等營養元素的吸收參與植物的能量代謝、提高光合產物的積累與轉運、促進根系對水分的獲取并維持高水分利用效率,從而促進植物地上、地下部分的生長[39,75-77];亦有學者認為,它與其他具有促生作用的真菌相似,通過產生次生代謝物(如黃酮類、類固醇、吲哚-3-乙酸等)刺激植物生長[78-80];還有研究示出,它可以增加如吲哚乙酸(IAA)、赤霉素(GAs)等植物體內促生激素的含量,減少乙烯的含量以促進植物生長[81-82]。

雖然內生球孢白僵菌能夠在很大程度上促進植物生長,但仍不能忽略環境因子對這一過程的影響。Tall等研究發現,高營養條件下玉米植株內球孢白僵菌的定殖率升高,同時植株生長也得到提高,表明土壤肥力對微生物發展和植物生長發育均具有重要的調控作用[83]。此外,Heinz等利用多種昆蟲病原真菌菌株進行種子處理,發現僅球孢白僵菌能夠顯著縮短種子的發芽時間、提高發芽率,表明昆蟲病原真菌作為內生菌對植物生長過程的調控可能受特定真菌與植物的特異性結合影響[84]。因此,球孢白僵菌對植物的促生效果,應從菌株特性、施用條件、土壤特性等多方面進行更加深入的探討。

5 植物內生球孢白僵菌對植物非生物脅迫抗性的誘導作用

球孢白僵菌等內生真菌不僅能夠提高植物對害蟲和病原體的抵御能力,同時還可以增強植物對高溫、干旱、鹽堿等非生物脅迫的耐受性[85]。Kuzhuppillymya-Prabhakarankutty等利用不同球孢白僵菌菌株的孢子懸浮液對玉米種子進行處理,發現在斷水模擬干旱處理10 d后,處理組玉米幼苗活力的恢復率顯著增加,證明內生球孢白僵菌可誘導植物提高抗旱能力[28]。Ferus等研究發現,在干旱脅迫下,接種球孢白僵菌的紅橡樹苗葉片相對含水量和氣孔導度降低速率減緩,并且利用回歸分析得出嚴重干旱脅迫下接種球孢白僵菌的紅橡樹苗較對照組顯著促進了根系生長、提高了水分利用效率[29]。Dara等研究指出,內生性球孢白僵菌可以通過影響根冠比來維持植物在缺水條件下的穩定生長[77]。內生球孢白僵菌對植物在非生物脅迫的影響多集中于抗旱生理研究領域,與其他內生真菌相比研究范圍較窄。目前,關于非生物脅迫條件下植物內生球孢白僵菌是否像淡紫擬青霉[86]、長枝木霉菌(Trichoderma longibrachiatum)[87]等其他內生真菌一樣增強寄主植物在冷害、鹽堿等不同非生物脅迫下的耐受性還有待進一步研究。

6 植物內生球孢白僵菌與其他內生菌的協作

有研究表明,內生菌之間存在協作效應,可增加作用方式的多樣性并提高對病蟲害的防治效果,同時還能夠促進植物生長[88-93]。Karthiba等將熒光假單胞菌(Pseudomonas fluorescens)Pf1和AH1菌株與球孢白僵菌B2菌株混合使用,通過灌根和葉面噴施2種接種方式分別在播種后25、30 d處理水稻幼苗,均顯著降低了水稻紋枯病的發病率,減輕了稻縱卷葉螟幼蟲的危害,且處理后的植株幾丁質酶、脂氧合酶、過氧化物酶、多酚氧化酶等防御酶活性顯著增強[88]。Senthilraja等研究發現,采用熒光假單胞菌TDK1、Pf1菌株與球孢白僵菌B2菌株結合防治花生潛夜蛾和腐爛病具有顯著效果[89]。Shrivastava等將叢枝菌根真菌與球孢白僵菌混合定殖于番茄植株,顯著增加了植株內萜類化合物的含量,降低了甜菜夜蛾對葉片的危害[90]。Batool等采用種子包衣和土壤浸濕2種方式,使用不同混合比例的球孢白僵菌與棘孢木霉(Trichoderma asperellum)處理玉米植株,通過掃描電鏡在玉米組織內觀察到了2種真菌的定殖,并明確了2種內生菌協同作用增加了植株蛋白酶,如超氧化物歧化酶、過氧化物酶、多酚氧化酶活性和脯氨酸含量以介導植物防御系統,顯著減少了亞洲玉米螟的危害,增加了幼蟲的死亡率[91]。Farias等使用球孢白僵菌與其他4種生防真菌的混合孢子懸浮液對甘蔗、玉米和大豆分別進行浸種與葉片噴施處理,顯著增加了玉米、大豆根系鮮質量和大豆根系干質量,但甘蔗的各生長指標與對照無顯著差異[92]。Prabhukarthikeyan等利用球孢白僵菌菌株B2和枯草芽孢桿菌(Bacillus subtilis)菌株EPC8混合后對番茄植株進行處理,不僅顯著提高了株高、葉片數、結實數、產量等生長相關指標,而且還顯著降低了棉鈴蟲的危害和枯萎病的發病率[93]。

7 展望

近年來,植物內生球孢白僵菌應用潛力研究已逐漸成為植物-微生物互作研究領域的新熱點,人工接種定殖的內生球孢白僵菌不僅對植物害蟲和病原體具有良好的持續抑制效果,其對寄主植物的促生作用和抗逆誘導作用的發現為豐富高產、優質、高效、可持續發展的農作物栽培措施和生物防治方案提供了新的思路。目前,采用人工接種定殖的方式利用內生球孢白僵菌綜合防治病蟲害在實際生產中的推廣應用仍受諸多因素制約。首先,不同接種方式對球孢白僵菌在植物體內的定殖效果和作用發揮存在顯著影響[46,53],應進一步明確其內在機制并探索出更加簡便、高效的接種方法;其次,目前可推廣應用的菌株較少,應有針對性地選育活性高、對害蟲毒力高、定殖成功率高、綜合防治持續期長的優良內生球孢白僵菌菌株;此外,還需要進一步探明脅迫條件下內生真菌基因型與植物基因型間相互作用的內在機制,為利用共生微生物提升植物防御系統的新路徑提供理論依據。

雖然前人已從不同角度對內生球孢白僵菌促進植物生長的生物學基礎進行了較多研究[24-27,73-77],并對其在生物和非生物脅迫下誘導植株抗性的生理機制以及與其他有益微生物的互作效應進行了初步探索[28-29,39,52-56,70-72,77,88-93],但其實際應用仍需開展諸多深入探索。未來,應利用分子生物學、微生物組學、蛋白質組學、生理學以及生態學等多學科工具對內生真菌-植物-病蟲害三者相互關系的內在機制進行更加系統深入的研究,進一步闡明內生昆蟲病原真菌的作用機制,提升病蟲害綜合治理水平,推動農業可持續發展。7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

參考文獻:

[1]Barelli L,Moonjely S,Behie S W,et al. Fungi with multifunctional lifestyles:endophytic insect pathogenic fungi[J]. Plant Molecular Biology,2016,90(6):657-664.

[2]Bing L A,Lewis L C. Temporal relationships between Zea mays,Ostrinia nubilalis (Lep.:Pyralidae) and endophytic Beauveria bassiana[J]. Entomophaga,1992,37(4):525-536.

[3]Biswas C,Dey P,Satpathy S,et al. Endophytic colonization of white jute (Corchorus capsularis) plants by different Beauveria bassiana strains for managing stem weevil (Apion corchori)[J]. Phytoparasitica,2013,41(1):17-21.

[4]Ramakuwela T,Hatting J,Bock C,et al. Establishment of Beauveria bassiana as a fungal endophyte in pecan (Carya illinoinensis) seedlings and its virulence against pecan insect pests[J]. Biological Control,2020,140:104102.

[5]Lopez D C,Zhu-Salzman K,Ek-Ramos M J,et al. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions[J]. PLoS One,2014,9(8):e103891.

[6]Toffa J,Loko Y L E,Kpindou O K D,et al. Endophytic colonization of tomato plants by Beauveria bassiana Vuillemin (Ascomycota:Hypocreales) and leaf damage in Helicoverpa armigera (Hübner) (Lepidoptera:Noctuidae) larvae[J]. Egyptian Journal of Biological Pest Control,2021,31:82.

[7]Mwamburi L A. Endophytic fungi,Beauveria bassiana and Metarhizium anisopliae,confer control of the fall armyworm,Spodoptera frugiperda (J.E.Smith) (Lepidoptera:Noctuidae),in two tomato varieties[J]. Egyptian Journal of Biological Pest Control,2021,31:7.

[8]Mantzoukas S,Lagogiannis I. Endophytic colonization of pepper (Capsicum annum) controls aphids (Myzus persicae Sulzer)[J]. Applied Sciences,2019,9(11):2239.

[9]Russo M L,Jaber L R,Scorsetti A C,et al. Effect of entomopathogenic fungi introduced as corn endophytes on the development,reproduction,and food preference of the invasive fall armyworm Spodoptera frugiperda[J]. Journal of Pest Science,2021,94(3):859-870.

[10]Akello J,Sikora R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness[J]. Biological Control,2012,61(3):215-221.

[11]Kepenekci I,Oksal E,Saglam H D,et al. Identification of Turkish isolate of the entomopathogenic fungi,Purpureocillium lilacinum (syn:Paecilomyces lilacinus) and its effect on potato pests,Phthorimaea operculella (Zeller) (Lepidoptera:Gelechiidae) and Leptinotarsa decemlineata (Say) (Coleoptera:Chrysomelidae)[J]. Egyptian Journal of Biological Pest Control,2015,25(1):121-127.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

[12]Vega F E. Insect pathology and fungal endophytes[J]. Journal of Invertebrate Pathology,2008,98(3):277-279.

[13]Vidal S,Jaber L R. Entomopathogenic fungi as endophytes:plant-endophyte-herbivore interactions and prospects for use in biological control[J]. Current Science,2015,109:46-54.

[14]Card S,Johnson L,Teasdale S,et al. Deciphering endophyte behaviour:the link between endophyte biology and efficacious biological control agents[J]. FEMS Microbiology Ecology,2016,92(8):fiw114.

[15]Ownley B H,Gwinn K D,Vega F E. Endophytic fungal entomopathogens with activity against plant pathogens:ecology and evolution[J]. BioControl,2010,55(1):113-128.

[16]Liao X G,OBrien T R,Fang W G,et al. The plant beneficial effects of Metarhizium species correlate with their association with roots[J]. Applied Microbiology and Biotechnology,2014,98(16):7089-7096.

[17]Jaber L R,Enkerli J. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum[J]. Biological Control,2016,103:187-195.

[18]Inglis G D,Goettel M S,Butt T M,et al. Use of hyphomycetous fungi for managing insect pests[M]//Butt T M,Jackson C W,Magan N. Fungi as biocontrol agents:progress,problems and potential. Wallingford,UK:CABI Publishing,2001:23-55.

[19]de Faria M R,Wraight S P. Mycoinsecticides and mycoacaricides:a comprehensive list with worldwide coverage and international classification of formulation types[J]. Biological Control,2007,43(3):237-256.

[20]Zhang Y J,Zhao J H,Fang W G,et al. Mitogen-activated protein kinase hog1 in the entomopathogenic fungus Beauveria bassiana regulates environmental stress responses and virulence to insects[J]. Applied and Environmental Microbiology,2009,75(11):3787-3795.

[21]Posada F,Vega F E. Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the fungal entomopathogen Beauveria bassiana (Ascomycota:Hypocreales)[J]. Mycoscience,2006,47(5):284-289.

[22]Biswas C,Dey P,Satpathy S,et al. Establishment of the fungal entomopathogen Beauveria bassiana as a season long endophyte in jute (Corchorus olitorius) and its rapid detection using SCAR marker[J]. BioControl,2012,57(4):565-571.

[23]Brownbridge M,Reay S D,Nelson T L,et al. Persistence of Beauveria bassiana (Ascomycota:Hypocreales) as an endophyte following inoculation of radiata pine seed and seedlings[J]. Biological Control,2012,61(3):194-200.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

[24]Sánchez-Rodríguez A R,Raya-Díaz S,ZamarreoM,et al. An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae[J]. Biological Control,2018,116:90-102.

[25]Afandhi A,Widjayanti T,Emi A A L,et al. Endophytic fungi Beauveria bassiana Balsamo accelerates growth of common bean (Phaeseolus vulgaris L.)[J]. Chemical and Biological Technologies in Agriculture,2019,6(1):11.

[26]Lopez D C,Sword G A. The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea)[J]. Biological Control,2015,89:53-60.

[27]Gurulingappa P,Sword G A,Murdoch G,et al. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta[J]. Biological Control,2010,55(1):34-41.

[28]Kuzhuppillymyal-Prabhakarankutty L,Tamez-Guerra P,Gomez-Flores R,et al. Endophytic Beauveria bassiana promotes drought tolerance and early flowering in corn[J]. World Journal of Microbiology & Biotechnology,2020,36(3):47.

[29]Ferus P,Barta M,Konpková J. Endophytic fungus Beauveria bassiana can enhance drought tolerance in red oak seedlings[J]. Trees,2019,33(4):1179-1186.

[30]Wagner B L,Lewis L C.Colonization of corn,Zea mays,by the entomopathogenic fungus Beauveria bassiana[J]. Applied and Environmental Microbiology,2000,66(8):3468-3473.

[31]Chambers A,Geary B,Black S,et al. Confirmation of artificial endophyte inoculation in maize (Zea mays) and tomato (Lycopersicon esculentum) by scanning electron microscopy and PCR amplification of ITS sequences[J]. Phytopathology,2007,97(7):S19.

[32]Landa B B,López-Díaz C,Jiménez-Fernández D,et al. In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy[J]. Journal of Invertebrate Pathology,2013,114(2):128-138.

[33]Behie S W,Jones S J,Bidochka M J. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria[J]. Fungal Ecology,2015,13:112-119.

[34]Jaber L R. Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana s.l.and its effect against downy mildew[J]. BioControl,2015,60(1):103-112.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

[35]Reddy N P,Ali Khan A P,Devi U K,et al. Treatment of millet crop plant (Sorghum bicolor) with the entomopathogenic fungus (Beauveria bassiana) to combat infestation by the stem borer,Chilo partellus Swinhoe (Lepidoptera:Pyralidae)[J]. Journal of Asia-Pacific Entomology,2009,12(4):221-226.

[36]Rajab L,Ahmad M,Gazal I. Endophytic establishment of the fungal entomopathogen,Beauveria bassiana (Bals.) Vuil.,in cucumber plants[J]. Egyptian Journal of Biological Pest Control,2020,30(1):143.

[37]Jaber L R. Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat[J]. Planta,2018,248(6):1525-1535.

[38]Quesada-Moraga E,Landa B B,Muoz-Ledesma J,et al. Endophytic colonisation of opium poppy,Papaver somniferum,by an entomopathogenic Beauveria bassiana strain[J]. Mycopathologia,2006,161(5):323-329.

[39]Gómez-Vidal S,Salinas J,Tena M,et al. Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi[J].Electrophoresis,2009,30(17):2996-3005.

[40]Akello J,Dubois T,Coyne D,et al. The effects of Beauveria bassiana dose and exposure duration on colonization and growth of tissue cultured banana (Musa sp.) plants[J]. Biological Control,2009,49(1):6-10.

[41]Muvea A M,Meyh fer R,Subramanian S,et al. Colonization of onions by endophytic fungi and their impacts on the biology of Thrips tabaci[J]. PLoS One,2014,9(9):e108242.

[42]Posada F,Vega F E. Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota:Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao)[J]. Mycologia,2005,97(6):1195-1200.

[43]Russo M L,Pelizza S A,Cabello M N,et al. Endophytic colonisation of tobacco,corn,wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota,Hypocreales)[J]. Biocontrol Science and Technology,2015,25(4):475-480.

[44]Greenfield M,Gómez-Jiménez M I,Ortiz V,et al. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation[J]. Biological Control,2016,95:40-48.

[45]Gautam S,Mohankumar S,Kennedy J S. Induced host plant resistance in cauliflower by Beauveria bassiana[J]. Journal of Entomology and Zoology Studies,2016,4(2):476-482.

[46]Mantzoukas S,Eliopoulos P A. Endophytic entomopathogenic fungi:a valuable biological control tool against plant pests[J]. Applied Sciences,2020,10(1):360.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

[47]Akmal M,Freed S,Malik M N,et al. Efficacy of Beauveria bassiana (Deuteromycotina:Hypomycetes) against different aphid species under laboratory conditions[J]. Pakistan Journal of Zoology,2013,45(1):71-78.

[48]Bajya D R,Ranjith M,Raza S. Evaluation of Beauveria bassiana against chickpea pod borer,Helicoverpa armigera and its safety to natural enemies[J]. Indian Journal of Agricultural Sciences,2015,85(3):86-89.

[49]Jaber L R,Araj S E. Interactions among endophytic fungal entomopathogens (Ascomycota:Hypocreales),the green peach aphid Myzus persicae Sulzer (Homoptera:Aphididae),and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera:Braconidae)[J]. Biological Control,2018,116:53-61.

[50]González-Mas N,Cuenca-Medina M,Gutiérrez-Sánchez F,et al. Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid,Aphis gossypii,and its natural enemies in melon[J]. Journal of Pest Science,2019,92(3):1271-1281.

[51]Canassa F,Tall S,Moral R A,et al. Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth,spider mite populations and behavior of predatory mites[J]. Biological Control,2019,132:199-208.

[52]Dannon H F,Dannon A E,Douro-Kpindou O K,et al. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management[J]. Journal of Cotton Research,2020,3:24.

[53]McKinnon A C,Saari S,Moran-Diez M E,et al. Beauveria bassiana as an endophyte:a critical review on associated methodology and biocontrol potential[J]. BioControl,2017,62(1):1-17.

[54]Cherry A J,Banito A,Djegui D,et al. Suppression of the stem-borer Sesamia calamistis (Lepidoptera;Noctuidae) in maize following seed dressing,topical application and stem injection with African isolates of Beauveria bassiana[J]. International Journal of Pest Management,2004,50(1):67-73.

[55]Akutse K S,Maniania N K,Fiaboe K K M,et al. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera:Agromyzidae)[J]. Fungal Ecology,2013,6(4):293-301.

[56]Bamisile B S,Dash C K,Akutse K S,et al. Endophytic Beauveria bassiana in foliar-treated Citrus limon plants acting as a growth suppressor to three successive generations of Diaphorina citri Kuwayama (Hemiptera:Liviidae)[J]. Insects,2019,10(6):176.

[57]Klieber J,Reineke A. The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tuta absoluta[J]. Journal of Applied Entomology,2016,140(8):580-589.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

[58]Qin X,Zhao X,Huang S S,et al. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana[J]. Pest Management Science,2021,77(4):2007-2018.

[59]Russo M L,Scorsetti A C,Vianna M F,et al. Effects of endophytic Beauveria bassiana (Ascomycota:Hypocreales) on biological,reproductive parameters and food preference of the soybean pest Helicoverpa gelotopoeon[J]. Journal of King Saud University-Science,2019,31(4):1077-1082.

[60]Rondot Y,Reineke A. Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects[J]. Biological Control,2018,116:82-89.

[61]Pelizza S A,Mariottini Y,Russo L M,et al. Beauveria bassiana (Ascomycota:Hypocreales) introduced as an endophyte in corn plants and its effects on consumption,reproductive capacity,and food preference of Dichroplus maculipennis (Orthoptera:Acrididae:Melanoplinae)[J]. Journal of Insect Science,2017,17(2):53.

[62]Jaber L R,Ownley B H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens?[J]. Biological Control,2018,116:36-45.

[63]Busby P E,Ridout M,Newcombe G. Fungal endophytes:modifiers of plant disease[J]. Plant Molecular Biology,2016,90(6):645-655.

[64]Ownley B H,Griffin M R,Klingeman W E,et al. Beauveria bassiana:endophytic colonization and plant disease control[J]. Journal of Invertebrate Pathology,2008,98(3):267-270.

[65]Ownley B H,Pereira R M,Klingeman W E,et al. Beauveria bassiana,a dual purpose biocontrol organism,with activity against insect pests and plant pathogens[M]//Lartey R T,Caesar A J. Emeging concepts in plant health management:research signpost. Kerala,India,2004:255-269.

[66]Jaber L R,Salem N M. Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota:Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits[J]. Biocontrol Science and Technology,2014,24(10):1096-1109.

[67]Dara S K,Dara S S,Dara S S R,et al. First report of three entomopathogenic fungi offering protection against the plant pathogen,Fusarium oxysporum f. sp. vasinfectum [J]. E-Journal of Entomology and Biologicals,2016.

[68]Dara S S R,Dara S S,Dara S K. Preliminary report on the potential of Beauveria bassiana and Metarhizium anisopliae s.l.in antagonizing the charcoal rot causing fungus Macrophomina phaseolina in strawberry [J]. E-Journal of Entomology and Biologicals,2018,5(6):7.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

[69]Barra-Bucarei L,France Iglesias A,Gerding González M,et al. Antifungal activity of Beauveria bassiana endophyte against Botrytis cinerea in two Solanaceae crops[J]. Microorganisms,2019,8(1):65.

[70]Yan L,Zhu J,Zhao X X,et al. Beneficial effects of endophytic fungi colonization on plants[J]. Applied Microbiology and Biotechnology,2019,103(8):3327-3340.

[71]Dara S K. Non-entomopathogenic roles of entomopathogenic fungi in promoting plant health and growth[J]. Insects,2019,10(9):277.

[72]Kuldau G,Bacon C. Clavicipitaceous endophytes:their ability to enhance resistance of grasses to multiple stresses[J]. Biological Control,2008,46(1):57-71.

[73]Dash C K,Bamisile B S,Keppanan R,et al. Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L.(Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari:Tetranychidae)[J]. Microbial Pathogenesis,2018,125:385-392.

[74]Raya-Díaz S,Sánchez-Rodríguez A R,Segura-Fernández J M,et al. Entomopathogenic fungi-based mechanisms for improved Fe nutrition in Sorghum plants grown on calcareous substrates[J]. PLoS One,2017,12(10):e0185903.

[75]Moloinyane S,Nchu F. The effects of endophytic Beauveria bassiana inoculation on infestation level of Planococcus ficus,growth and volatile constituents of potted greenhouse grapevine (Vitis vinifera L.)[J]. Toxins,2019,11(2):72.

[76]Macuphe N,Oguntibeju O O,Nchu F. Evaluating the endophytic activities of Beauveria bassiana on the physiology,growth,and antioxidant activities of extracts of lettuce (Lactuca sativa L.)[J]. Plants,2021,10(6):1178.

[77]Dara S K,Dara S S R,Dara S S. Impact of entomopathogenic fungi on the growth,development,and health of cabbage growing under water stress[J]. American Journal of Plant Sciences,2017,8(6):1224-1233.

[78]Schulz B,Boyle C,Draeger S,et al. Endophytic fungi:a source of novel biologically active secondary metabolites[J]. Mycological Research,2002,106(9):996-1004.

[79]Lu H,Zou W X,Meng J C,et al. New bioactive metabolites produced by Colletotrichum sp.,an endophytic fungus in Artemisia annua[J]. Plant Science,2000,151(1):67-73.

[80]Khare E,Mishra J,Arora N K. Multifaceted interactions between endophytes and plant:developments and prospects[J]. Frontiers in Microbiology,2018,9:2732.

[81]車永梅,趙方貴,陳同金,等. AM真菌、木霉和PGPR組合的促生效應研究[J]. 青島農業大學學報(自然科學版),2019,36(2):95-102.

[82]Zhang F L,Liu Z H,Gulijimila M,et al. Functional analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene of the biocontrol fungus Trichoderma asperellum ACCC30536[J]. Canadian Journal of Plant Science,2016,96(2):265-275.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

[83]Tall S,Meyling N V. Probiotics for plants?Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability[J]. Microbial Ecology,2018,76(4):1002-1008.

[84]Heinz K M,Harding P A,Ek-Ramos M J,et al. Fungal endophytes in knock out rose and performance effects of entomopathogens on marigold and zinnia[J]. HortScience,2018,53(12):1791-1798.

[85]Fontana D C,de Paula S,Torres A G,et al. Endophytic fungi:biological control and induced resistance to phytopathogens and abiotic stresses[J]. Pathogens,2021,10(5):570.

[86]Bilal S,Shahzad R,Imran M,et al. Synergistic association of endophytic fungi enhances Glycine max L. resilience to combined abiotic stresses:heavy metals,high temperature and drought stress[J]. Industrial Crops and Products,2020,143:111931.

[87]Zhang S W,Gan Y T,Xu B L. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression[J]. Frontiers in Plant Science,2016,7:1405.

[88]Karthiba L,Saveetha K,Suresh S,et al. PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice[J]. Pest Management Science,2010,66(5):555-564.

[89]Senthilraja G,Anand T,Durairaj C,et al. Chitin-based bioformulation of Beauveria bassiana and Pseudomonas fluorescens for improved control of leafminer and collar rot in groundnut[J]. Crop Protection,2010,29(9):1003-1010.

[90]Shrivastava G,Ownley B H,Augé R M,et al. Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect[J]. Symbiosis,2015,65(2):65-74.

[91]Batool R,Umer M J,Wang Y Z,et al. Synergistic effect of Beauveria bassiana and Trichoderma asperellum to induce maize (Zea mays L.) defense against the Asian corn borer,Ostrinia furnacalis (Lepidoptera,Crambidae) and larval immune response[J]. International Journal of Molecular Sciences,2020,21(21):8215.

[92]Farias C P,De Carvalho R C,Resende F M L,et al. Consortium of five fungal isolates conditioning root growth and arbuscular mycorrhiza in soybean,corn,and sugarcane[J]. Anais da Academia Brasileira de Ciências,2018,90(4):3649-3660.

[93]Prabhukarthikeyan R,Saravanakumar D,Raguchander T. Combination of endophytic Bacillus and Beauveria for the management of Fusarium wilt and fruit borer in tomato[J]. Pest Management Science,2014,70(11):1742-1750.7DCEB35C-4A52-4DB8-8E68-37F0210FBCFA

猜你喜歡
內生性抗逆性
體育教育對高職院校學生心理資本干預研究
比較優勢內生結構變動與政策干預
基于內生性視角的大股東掏空與公司績效關系研究
高管與職工薪酬差距對企業績效的影響
高管與職工薪酬差距對企業績效的影響
慈善捐贈、企業績效與合理區間把控——基于內生性視角的經驗分析
甲殼素對蔬菜抗逆性的影響
植物生長調節劑誘導植物抗逆性研究進展
社會網絡內生性問題研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合