?

背景離子類型和濃度對聚苯乙烯微塑料/鉛在飽和石英砂中共運移的影響

2022-07-19 01:10常博焜陳怡汀呂家瓏胡斐南
中國環境科學 2022年7期
關鍵詞:石英砂運移介質

常博焜,陳怡汀,曹 鋼,胡 良,呂家瓏,杜 偉**,胡斐南,2*

背景離子類型和濃度對聚苯乙烯微塑料/鉛在飽和石英砂中共運移的影響

常博焜1,陳怡汀1,曹 鋼1,胡 良1,呂家瓏1,杜 偉1**,胡斐南1,2*

(1.西北農林科技大學資源與環境學院,陜西 楊凌 712100;2.中國科學院水利部水土保持研究所,陜西 楊凌 712100)

為闡明水化學條件對微塑料和重金屬運移的影響,初步明確兩種環境污染物共運移過程中的耦合效應及其對環境條件的響應機制,研究了背景電解質離子不同價態和濃度組成條件下1μm 聚苯乙烯微塑料(PS-MPs)和Pb2+在飽和一維砂柱中的單獨及共遷移行為.結果表明:背景離子濃度的增加或價態的升高均會抑制PS-MPs的單獨運移能力,當Na+濃度從1mmol/L增加到100mmol/L,PS-MPs和石英砂之間的排斥勢壘下降了1348kT;當Ca2+濃度從1mmol/L增加到100mmol/L,PS-MPs和石英砂之間的排斥勢壘下降了956kT. PS-MPs/Pb2+二元體系中Pb2+能降低PS-MPs的遷移能力,背景離子濃度和價態的提升可削弱Pb2+對PS-MPs運移能力的抑制性.當Na+濃度從1mmol/L增加到100mmol/L,PS-MPs和石英砂之間的排斥勢壘下降了1100kT;當Ca2+濃度從1mmol/L增加到100mmol/L,PS-MPs和石英砂之間的排斥勢壘下降了543kT.背景離子濃度的增加或價態的升高能促進Pb2+的單獨運移能力.PS-MPs/Pb2+二元體系中,PS-MPs能夠促進Pb2+的運移,背景離子濃度較低時,PS-MPs負載Pb2+的遷移率較高,反之亦然.對于PS-MPs和Pb2+單運移體系,背景陽離子濃度和價態的提升可進一步屏蔽PS-MPs及石英砂表面負電荷,競爭吸附石英砂表面結合位點,抑制PS-MPs運移,促進Pb2+運移;對于PS-MPs和Pb2+共運移體系,背景離子濃度和價態的提升可通過調節Pb2+與PS-MPs及石英砂表面的相互作用,削弱Pb2+對PS-MPs遷移能力的抑制作用.背景離子對PS-MPs表面位點的競爭吸附及對電荷的屏蔽效應影響PS-MPs對Pb2+的負載遷移能力.

微塑料;聚苯乙烯;重金屬;鉛離子;多孔介質;共遷移

大量塑料制品暴露于水域和陸地生態系統,并通過物理、化學、生物等過程降解為微塑料,由此引起的環境污染問題已經逐漸受到世界各地的關注[1-2].陸地生態系統中微塑料釋放量是海洋系統釋放量的4~23倍,是微塑料的重要源-匯[3-4].因此開展陸地生態系統中微塑料環境行為的研究十分必要.

多孔介質中的微塑料運移過程是其在陸地生態系統中普遍存在的環境行為.通常,微塑料以膠體懸浮態或者顆粒凝聚形式賦存于環境中.已有研究表明,微塑料的尺寸、形狀、類型、聚集狀態以及不同的溶液化學性質、多孔介質類型、溫度等運移環境,共同影響并決定了多孔介質中微塑料復雜的運移過程[5-6].微塑料運移可對環境生態安全產生多重威脅.一方面,微塑料表面能夠負載重金屬等污染物,擴大污染元素的空間傳輸范圍[7-8];另一方面,重金屬離子也可借助離子—微塑料表面絡合作用,改變微塑料膠體粒徑和其表面電荷,影響微塑料在運移過程中的穩定性和流動性[9-10].

聚苯乙烯(PS)是生產生活中廣泛使用的熱塑性材料,其微顆粒具有粒徑小、比表面積大的特點,在自然環境中極易吸附和攜帶重金屬離子[11-12].PS吸附的重金屬濃度比一般材料高出10~100倍[13].PS制品在經過物理、化學和生物處理時產生的PS-MPs進入土壤后必然對環境質量提升和人體健康保障產生威脅.鉛具有急性毒性、長期積累和持久性的特點,是陸地環境中最常見的重金屬污染物.可在農作物不同部位富集,經由食物鏈進入人體,極大地損害身體健康[14].已有研究表明,MPs對Pb2+有較高的吸附能力,土壤中的MPs可積累大量的Pb2+,其吸附量隨著環境中Pb2+濃度的增加而增大[15-18].Pb2+可通過特異性吸附及顆粒內擴散作用與MPs結合[19].因此,自然環境中PS-MPs與Pb2+可相互作用并通過共運移形成協同污染,對生態環境構成潛在威脅.PS- MPs表面富含-CH官能團,極易與環境中的Pb2+結合,并隨著環境化學條件變化將吸附態Pb2+再次釋放[20].研究表明,pH和鹽度可通過改變PS-MPs和Pb2+的電荷狀態影響兩者間相互作用[21],但溶劑化學條件對二者在環境中的遷移行為的影響仍需進一步探究.因此,本研究將探索不同離子價態和離子濃度下PS-MPs和Pb2+在飽和一維砂柱中的單獨運移和共遷移行為,并基于DLVO理論和ADE模型,揭示PS-MPs和Pb2+在飽和多孔介質中的運移機制,為微塑料和重金屬協同污染的防控提供一定理論基礎.

1 材料與方法

1.1 供試材料的制備

1.1.1 PS-MPs懸浮液 10g/L的單分散熒光聚苯乙烯懸浮液(粒徑約1μm,密度為1.05g/cm3,最大激發波長470nm,最大發射波長526nm,激發和發射狹縫寬度均為5nm)購自天津倍思樂色譜技術開發中心.先前針對微塑料運移和沉積行為的研究中使用的微塑料顆粒濃度通常在1~30mg/L,考慮到自然水生環境中Na+、Ca2+濃度普遍低于1000mmol/L[22-23].因此選擇用1mmol/L,10mmol/L, 100mmol/L NaCl和CaCl2作為背景電解質溶液將PS-MPs懸浮液稀釋為10mg/L.使用100mmol/L NaOH和HCl將懸浮液的初始pH值調整為6.0±0.3.

1.1.2 鉛溶液 去離子水中溶解適量的Pb(NO3)2,制備Pb2+儲備溶液(1000mg/L).自然水體中Pb2+的濃度范圍一般在ng/L至mg/L[24].然而探索Pb2+和PS- MPs的共運移行為,需要PS-MPs能夠吸附一定量的Pb2+.因此,本研究將Pb2+稀釋至實驗條件所需的10mg/L(高于自然水體中的濃度).使用0.1mol/L NaOH和HCl將溶液的初始pH值調整為6.0±0.3,以避免Pb2+的水解和沉淀[25].

1.1.3 石英砂前處理 選取平均粒徑為0.75mm的石英砂(SiO2)(周至縣石英砂有限公司,中國陜西)作為柱遷移實驗中的多孔介質.用自來水、0.1mol/L HCl和0.1mol/L NaCl依次清洗石英砂以去除其中的鐵、鋁等氧化物,最后用去離子水多次沖洗,在105℃條件下烘干后備用[26].

1.2 飽和石英砂柱中PS-MPs/Pb2+遷移實驗

采用柱遷移實驗研究PS-MPs和Pb2+在飽和多孔介質中的垂向遷移行為.采用濕填法,將洗凈烘干的石英砂填滿長15cm,內徑3cm的有機玻璃柱,填充柱的孔隙體積(PV)約45mL,平均孔隙率(砂柱的孔隙體積與總體積之比)約為0.42.為支撐多孔介質,在柱頂及柱底各放一張孔徑為50μm的尼龍網[27].使用硝酸鉀溶液進行非反應性示蹤實驗,利用Hydrus- 1D擬合求得對流彌散系數,以確定溶質流動性和柱性能[26].柱遷移實驗包括在不同水化學條件下(背景離子分別為Na+/Ca2+,離子濃度均為1,10,100mmol/L, pH為6.0)PS-MPs和Pb2+在砂柱中的單獨運移和共同運移.實驗開始前利用蠕動泵(HL-2B,上海瀘西分析儀器廠有限公司,中國)自下而上注入至少10PV去離子水,以排除柱中石英砂之間的氣泡.接著通入至少3PV背景電解液,以穩定溶液化學條件.實驗中先通入3PV相同背景溶液的PS-MPs/Pb2+/混合物懸浮液(考慮到懸浮液的穩定性,在進樣前進行超聲處理10min),再通入3PV背景電解液,控制流速為1ml/min,使用四通道部分自動收集器(EBS-20,上海瀘西分析儀器廠有限公司,中國)按10min時間間隔連續收集流出液.遵循以上操作路徑,開展PS-MPs和Pb2+的單獨運移和共運移試驗,采用熒光分光光度法[28](LS55,珀金埃爾默,美國)和火焰原子吸收光譜法(AA530,珀金埃爾默,美國)分別測定流出液中PS-MPs與Pb2+的濃度,以確定PS-MPs與Pb2+在遷移過程中對應的濃度變化,并獲得穿透曲線,各處理重復兩次,利用Hydrus-1D擬合穿透曲線.

1.3 性質表征及模型預測

1.3.1 性質表征 使用動態光散射儀(Nanobook Omni,布魯克海文公司,美國),設置入射波長為635nm,散射角90°工作條件下測定PS-MPs懸浮液的水動力學直徑.將10g石英砂與40mL背景電解質溶液置于100mL三角瓶中,用細胞破碎儀(XO-900D,南京先歐儀器制造有限公司,中國)在50%功率(450W)條件下超聲分散10min,采用高靈敏度zeta電位分析儀(ZETA PALS,布魯克海文公司,美國)測定不同水化學條件下PS-MPs和石英砂的zeta電位,并基于測定結果進行DLVO能量計算.使用傅里葉變換紅外光譜(Nicolet iS 50,Thermo Scientific, America)分析PS-MPs吸附Pb2+前后官能團的變化情況.通過掃描電子顯微鏡-能量色散光譜儀(SEM-EDS)(S-4800,日立,日本)觀察了PS-MPs的表面形態和初級尺寸以及砂柱口石英砂表面PS-MPs的沉積狀況和表面元素(圖1).

圖1 吸附Pb2+前后PS-MPs的FTIR光譜圖(a), PS-MPs粒度分布圖(b), PS-MPs運移后砂柱入口處石英砂表面SEM-EDS圖像(c)及PS-MPs與Pb2+共同運移后砂柱入口處石英砂表面SEM-EDS圖像(d)

1.3.2 膠體運移行為的評估 對流-彌散模型是描述溶質運移的常用數學模型.利用一維飽和流條件下的對流彌散方程分析飽和多孔介質中NO3-的遷移規律,使用Hydrus-1D計算對流彌散系數并擬合穿透曲線.數學模型如下[26]:

式中:w是水流中溶質的濃度,mg/L;是阻滯因子,表示介質中平衡反應的級數;是彌散系數,cm2/min;水流速度,cm/min;是膠體聚沉速度系數,min?1.

1.3.3 PS-MPs與介質表面間相互作用能的表征 應用DLVO理論計算PS-MPs顆粒間和PS- MPs與石英砂表面間的相互作用能.DLVO能量(DLVO)由范德華力相互作用能(LW)和靜電相互作用能(EL)組成.利用公式(3)和(4)計算PS-MPs與石英砂之間的LW和EL,利用公式(5)和(6)計算PS-MPs顆粒之間的LW和EL[29-31]:

式中:132是PS-MPs-水-石英砂的Hamaker常數(9.8×10-21J),是PS-MPs-水的Hamaker常數(4.6× 10-21J)其中PS-MPs、石英砂、水的Hamaker分別為6.78×10-20J、8.8×10-20J、3.7×10-20J[32];p1p2是PS-MPs的顆粒半徑;是相互作用表面之間的距離;0是真空介電常數,常溫下為8.854×10-12C/V/m;是水的相對介電常數(78.4);是德拜長度的倒數,常溫下取0.104nm;是玻爾茲曼常數(1.38×10-23J /K);是絕對溫度;是某離子價態;e是電子電荷量(1.6×10-19C);0是膠體與固相顆粒表面間的最小平衡接觸距離(0.157nm);是極性作用力在水溶液中的特征衰減長度(0.6nm);ps分別是PS-MPs和石英砂的zeta電位.

2 結果與討論

2.1 不同離子濃度/價態條件下PS-MPs的單獨遷移特征及其影響機制

由圖2可知,隨著背景離子濃度的增大,NaCl和CaCl2體系中PS-MPs的最大出流濃度比分別從0.78和0.45下降到0.25和0.14,穿透率分別從78.8%和42.8%下降到24.8%和13.6%.說明在所有試驗條件下,PS-MPs的穿透能力均隨著背景離子濃度的增大而減弱,這可能由于高濃度背景離子使PS-MPs大量沉積在石英砂表面,導致能夠穿透多孔介質的PS-MPs逐漸變少[33].溶膠是熱力學不穩定系統,因此引用經典DLVO理論描述PS-MPs顆粒之間以及PS-MPs與石英砂之間的相互作用.根據雙電層理論可知,膠體穩定性與膠體表面電荷性質有關,相鄰PS-MPs顆粒表面同種電荷數量越多,它們之間的靜電排斥力越強,PS-MPs顆粒間的穩定性越好[34-37].此時,PS-MPs不易凝聚沉積,具有較好的遷移性,反之亦然.本研究中,Na+/Ca2+陽離子可通過靜電作用吸附在帶負電的PS-MPs顆粒表面并削弱其表面電負性(表1),使PS-MPs顆粒間(圖4)以及PS-MPs顆粒與石英砂之間(圖3)的靜電排斥力減弱, PS-MPs膠體穩定性及遷移性相繼降低.隨著背景陽離子濃度的提升,PS-MPs顆粒表面電負性進一步削弱.如表1所示,當Na+和Ca2+離子濃度分別從1mmol/L增至100mmol/L時,PS-MPs的zeta電位(絕對值)分別降低了55.09%和65.13%, PS-MPs電負性的迅速下降必將導致其膠體穩定性驟降,加劇其在石英砂顆粒表面的絮凝沉積.由圖3可知,當Na+和Ca2+濃度為1mmol/L時,兩體系中PS-MPs與石英砂之間的DLVO合力表現為斥力,說明在低濃度背景電解液中,石英砂與PS-MPs之間的相互作用由靜電排斥力主導,石英砂對PS-MPs的吸附量相對較小.且砂柱中PS-MPs的沉積量較少,不會因其對砂柱孔隙的大量堵塞而阻礙PS-MPs的運移.當Na+和Ca2+濃度分別從1mmol/L增加到100mmol/L 時,兩體系排斥勢壘分別下降了1348kT和955kT.說明隨著背景離子濃度的升高,二者表面的電負性因陽離子對表面負電荷逐漸增強的屏蔽效應而減弱,導致PS-MPs與石英砂之間的斥力勢能減少,勢壘降低,總勢能逐漸由范德華力構成的引力勢能主導.此時PS-MPs因與石英砂相互吸引而嚴重抑制其自身運移,且穿透曲線出現明顯的熟化現象[28],表明已經沉積在石英砂表面的PS-MPs可能會繼續通過靜電吸引的方式吸附更多的PS-MPs,使介質表面PS-MPs沉積逐層增多,大量沉積態PS-MPs導致飽和多孔石英砂介質孔隙堵塞.

比較兩種背景電解液的穿透曲線(圖2)可知, Ca2+對PS-MPs運移的抑制作用強于Na+.例如,Ca2+濃度為1mmol/L時,PS-MPs的最大出流濃度比為0.45,穿透率為42.8%,低于1mmol/L NaCl時PS-MPs的最大出流濃度比(0.78)和穿透率(78.8%); Ca2+濃度為10mmol/L時,PS-MPs的最大出流濃度比為0.25,穿透率為24.1%,遠低于10mmol/L NaCl時PS-MPs的最大出流濃度比(0.45)和穿透率(43.9%).不同價態離子對膠體凝聚作用的影響符合Schulze- Hardy原則,即與低價離子組成體系相比,高價離子組成體系中PS-MPs膠體更易凝聚并沉積在石英砂柱中,這主要是因為Ca2+比Na+具有更強的屏蔽表面負電荷的能力,繼而導致更低的PS-MPs表面電位[38].由表1可知,在相同離子濃度下,PS-MPs在CaCl2溶液中的zeta電位明顯低于NaCl溶液,表列結果驗證了推論的正確性.另外,通過圖3,圖4可知,相同離子濃度下CaCl2溶液中PS-MPs與石英砂間以及PS-MPs顆粒間具有較NaCl溶液中更低的排斥勢壘,說明高價態陽離子對PS-MPs的表面電位、膠體穩定性及其在多孔介質表面的沉積效應的確產生了更顯著的影響[39].此外,Ca2+可通過陽離子橋接作用促進PS-MPs之間的團聚,增強膠體的瀝濾作用[40-41],亦可通過橋接作用連接PS-MPs和石英砂顆粒,使后者表面粗糙度增加,形態更不規則, PS-MPs更易滯留在砂柱中并可能堵塞多孔介質之間的孔隙[26].上述結果及分析清晰地表明,不同價態金屬陽離子濃度的升高均會抑制PS-MPs的運移,且高價態陽離子對PS-MPs運移的抑制作用要比低價態陽離子更加明顯.

表1 實驗條件和理化信息

續表1

注:MEC為流出液中溶質的最大濃度百分比eff為溶質的穿透率DLS diameter PS-MPs為通入石英砂柱的懸濁液中PS-MPs的水合粒徑.

2.2 不同離子濃度/價態條件下Pb2+的單獨遷移特征及其影響機制

石英砂表面帶負電荷,帶正電荷的Pb2+易通過靜電引力吸附在石英砂表面.在不同背景離子及其濃度條件下,Pb2+的遷移滯留能力有較大差異.如圖5所示,隨著背景電解液中Na+和Ca2+的濃度從0.1mmol/L增至100mmol/L,Pb2+的最大出流率分別從0.60和0.68上升到0.87和0.93,穿透率分別從50.1%和71.6%上升到92.6%和99.1%,這表明介質對Pb2+的吸附能力不斷減弱,更多的Pb2+能夠穿透石英砂柱.背景離子濃度與Pb2+的遷移速率呈正相關,這主要是因為隨著背景離子濃度的增大,石英砂表面負電位降低,對Pb2+的靜電引力變弱.同時, Na+/Ca2+與Pb2+競爭吸附有限的石英砂結合位點, Na+/Ca2+離子濃度的增加會使其位點競爭能力增強,且石英砂表面的吸附態Pb2+也可能因高濃度的Na+和Ca2+而解吸附,重新回到孔隙水并以溶解態Pb2+的形式流出[42].

由圖5可知,Pb2+的運移穿透曲線表現出明顯的不對稱性,并伴隨拖尾現象.不對稱性有可能是因為石英砂對Pb2+的吸附能力有限,隨著Pb2+的不斷注入,石英砂表面對Pb2+的吸附能力逐漸減弱,進而導致其遷移能力逐漸增強.拖尾現象也說明,部分吸附在石英砂表面的Pb2+受到水流的沖刷作用易造成脫附現象[14].拖尾現象隨著背景離子溶液濃度的增加或離子價態的升高愈發顯著,這說明此時石英砂對Pb2+的吸附能力較弱,導致在水流沖刷作用下更多的Pb2+能夠脫離石英砂表面重新回到孔隙水中,并以溶解態鉛的形式穿透砂柱[19,43];隨著離子價態及其濃度的升高,穿透曲線對稱性逐漸顯現,Pb2+穿透能力較強,在石英砂中不會占據過多的結合位點,并對隨后通過石英砂表面的Pb2+的運移能力造成較大的影響.

如圖5所示,相同濃度的不同價態離子對Pb2+在飽和多孔介質中的運移影響迥異.Ca2+濃度為1mmol/L時,Pb2+的最大出流濃度比為0.68,穿透率為71.6%,高于1mmol/L Na+時Pb2+的最大出流濃度比(0.60)和穿透率(50.1%);當Ca2+濃度為10mmol/L時,Pb2+的最大出流濃度比為0.84,穿透率為86.4%,運移能力遠強于同濃度Na+體系中Pb2+的運移能力,與100mmol/L Na+體系中Pb2+的最大出流濃度比(0.87)和穿透率(92.6%)接近,這是因為Ca2+的電荷中和效應強于Na+,能夠更有效的屏蔽石英砂表面的負電荷,從而通過減弱石英砂對Pb2+的靜電吸引促進Pb2+的運移[38].

2.3 不同離子濃度/價態條件下PS-MPs和Pb2+的共遷移特征及其影響機制

PS-MPs和Pb2+在飽和石英砂介質中的單獨運移實驗結果表明,背景離子濃度/價態的確對兩種環境污染物的傳輸產生了重要影響.為探究二者共運移過程中污染物遷移特征以及離子濃度/價態對共遷移過程產生的影響開展了不同背景離子及其濃度條件下PS-MPs和Pb2+的共運移實驗.

2.3.1 Pb2+對PS-MPs運移的影響 通過比較PS-MPs在單獨運移(圖2)和共遷移(圖6a,b)體系中的穿透曲線可知,其在共運移體系中的最大出流濃度比和穿透率均低于相同條件下單一體系中對應的最大流出濃度比和穿透率,說明Pb2+共存條件下PS-MPs的穿透能力明顯下降.最近的研究證明,微塑料對重金屬的吸附是符合Freundlich模型的物理吸附過程[19-20].通過FTIR分析PS-MPs吸附Pb2+前后官能團的變化情況.有趣的是,PS-MPs在吸附Pb2+后,沒有出現或消失新的特征峰.結果表明,吸附過程中可能以物理吸附為主.一方面, PS-MPs的穿透能力明顯下降可能是由于吸附在PS-MPs表面帶正電荷的Pb2+能夠橋接表面帶負電荷的PS-MPs和石英砂,促使更多的PS-MPs沉積在石英砂表面[43].另一方面,由表1可知,共運移體系中PS-MPs的zeta電位均低于單體系PS-MPs的zeta電位,意味著Pb2+的存在使得PS-MPs的zeta電位更接近正值,這將降低PS-MPs顆粒間和PS-MPs與石英砂之間由靜電力支配的排斥勢壘,導致更多的PS-MPs沉積在石英砂表面,進一步抑制其運移能力[44-45].通過對比單獨運移和共運移體系中PS-MPs和石英砂間的DLVO相互作用(圖3和圖7)可知,在相同的水化學條件下,共運移體系中PS-MPs與石英砂之間的排斥勢壘均低于單一體系中二者之間的排斥能壘.當Na+濃度為1,10,100mmol/L時,與單獨運移體系相比,共運移體系中PS-MPs與石英砂之間的排斥勢壘分別下降了704kT,662kT,456kT;當Ca2+濃度為1, 10mmol/L時,排斥勢壘分別下降了413kT,192kT (單獨運移和共運移體系,Ca2+濃度為100mmol/L時不存在排斥能壘),計算結果佐證了以上推論.

圖7 不同電解質濃度條件下PS-MPs和Pb2+在NaCl(a)和CaCl2(b)體系中共運移的DLVO能量分布

2.3.2 PS-MPs對Pb2+運移的影響 Pb2+能夠抑制PS-MPs在多孔介質中的遷移.同時,PS-MPs對Pb2+的吸附也提高了后者在環境介質中的運移能力[46].如圖(6c,d)所示,相同條件下共遷移體系中Pb2+的最大出流濃度比和穿透率均高于單一體系(圖5a,b)中對應的最大出流濃度比和穿透率.這說明:第一, PS-MPs的存在能夠增加多孔介質中Pb2+的遷移能力,擴大其污染范圍;第二,Pb2+在PS-MPs表面的負載遷移是其穿透石英砂柱的重要途徑.顯然,PS- MPs和Pb2+的相互作用為共運移過程中后者的大量遷移提供了可能.現有理論認為,重金屬可通過靜電力、表面絡合和沉淀吸附在微塑料表面,亦可被微塑料表面形成的水膜吸附,這些直接/間接相互作用對環境中微塑料和重金屬的共遷移產生了至關重要的影響[47-48].

2.3.3 離子濃度/價態對PS-MPs和Pb2+共運移的影響 背景電解液中的Na+和Ca2+可通過干預PS- MPs膠體和石英砂顆粒的表面電荷性能影響Pb2+的吸附能力.如表1所示,當背景離子濃度從1mmol/L增至100mmol/L時,PS-MPs(Pb2+)在單運移和共運移體系中的出流濃度比之差逐漸減小,說明隨著背景離子濃度的增加,Pb2+對PS-MPs運移的抑制作用和PS-MPs對Pb2+運移的促進作用均逐漸減弱.一方面,較高背景離子濃度導致PS-MPs穩定性下降,易團聚沉積并可能占據石英砂表面的吸附位點,致使微塑料攜帶Pb2+共同運移的能力降低,即PS-MPs對Pb2+運移的促進作用減弱;另一方面,背景離子濃度的增加使其競爭吸附表面位點的能力增強[49-50],可能導致Pb2+在PS-MPs和石英砂之間的橋聯作用及Pb2+對PS-MPs運移的抑制作用相繼減弱.離子價態對共遷移過程中PS-MPs和Pb2+運移的影響與單獨運移的影響趨勢相同,在共運移體系中,高價態背景離子會抑制PS-MPs的運移并促進Pb2+的運移.與PS-MPs單獨運移試驗的穿透曲線相比,共運移試驗中Pb2+對PS-MPs運移的抑制作用在Ca2+體系中更弱.因為相比于Na+,Ca2+具有更強的表面吸附位點競爭和膠體雙電層壓縮能力,因此Ca2+體系中Pb2+對PS-MPs運移能力的抑制作用將顯著減弱.然而,不同價態的背景離子對共運移中Pb2+的運移影響并不顯著,這可能是因為游離態Pb2+是單體系中Pb2+遷移的唯一形式,而共遷移體系中Pb2+可以通過PS-MPs負載和游離態兩種形式穿透石英砂柱,致其最大出流濃度比接近1,Ca2+和Na+對共運移試驗中Pb2+的運移沒有產生明顯影響.

3 結論

3.1 PS-MPs單獨運移體系中,背景陽離子濃度的增大能夠增強其對PS-MPs與石英砂表面負電荷的屏蔽效應,致使二者之間的排斥勢壘及PS-MPs膠體的穩定性下降,最終導致PS-MPs在石英砂表面沉積,運移能力減弱.Ca2+較Na+有更強的表面電荷屏蔽能力,且其能在PS-MPs和石英砂之間扮演橋聯作用,導致Ca2+體系中PS-MPs遷移能力更弱.

3.2 Pb2+單獨運移體系中,背景陽離子濃度的增大使其對石英砂表面負電荷的屏蔽效應及競爭石英砂表面吸附位點的能力增強,繼而使Pb2+不易附著在石英砂表面,運移能力逐漸增強.Ca2+較Na+有更強的表面電荷屏蔽能力及吸附位點競爭能力,因此相同濃度條件下Ca2+體系中Pb2+的運移能力更強.

3.3 PS-MPs與Pb2+共運移受到背景離子濃度、價態以及遷移物特性的共同影響.Pb2+能夠通過物理吸附行為吸附在PS-MPs表面,并橋聯、屏蔽石英砂與PS-MPs表面的負電荷降低二者間的排斥勢壘,減弱PS-MPs顆粒間的穩定性,繼而抑制PS-MPs的遷移能力,該過程中背景離子濃度和價態的提升削弱了Pb2+抑制PS-MPs運移的能力;PS-MPs能夠促進Pb2+的運移,Pb2+在PS-MPs表面的負載遷移是其穿透石英砂柱的重要途徑.背景離子的濃度較低時,PS-MPs負載Pb2+的遷移率較高,反之亦然.該過程中背景離子對PS-MPs表面位點的競爭吸附及對電荷的屏蔽效應發揮了重要作用.

[1] 楊光蓉,陳歷睿,林敦梅.土壤微塑料污染現狀、來源、環境命運及生態效應[J]. 中國環境科學, 2021,41(1):353-365.

Yang G Y, Chen L R, Lin D M. Status, sources, environmental fate and ecological consequences of microplastic pollution in soil [J]. China Environmental Science, 2021,41(1):353-365.

[2] Wang W F, Ge J, Yu X Y, et al. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective [J]. Science of the Total Environment, 2019,708:134841.

[3] Zhang S L, Yang X M, Gertsen H, et al. A simple method for the extraction and identification of light density microplastics from soil [J]. Science of the Total Environment, 2018,616-617:1056-1065.

[4] Peng G Y, Zhu B S, Yang D Q, et al. Microplastics in sediments of the Changjiang Estuary [J]. Environmental Pollution, 2017,225:283-290.

[5] Ren Z F, Gui X Y, Xu X Y, et al. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminants–A critical review [J]. Journal of Hazardous Materials, 2021,419:126455.

[6] Wu X L , Liu X Y, Li Z Y,et al. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type [J]. Science of the Total Environment, 2020,707:136065.

[7] 李宵慧,徐紅霞,孫媛媛,等.多孔介質中微塑料的環境行為研究進展[J]. 中國環境科學, 2021,41(6):2798-2811.

Li X H, Xu H X, Sun Y Y, et al. Review on the environmental behaviors of microplastics in porous media [J]. China Environmental Science, 2021,41(6):2798-2811.

[8] 王俊杰,陳曉晨,李權達,等.老化作用對微塑料吸附鎘的影響及其機制[J]. 環境科學, 2022,43(4):2030-2038.

Wang J J, Chen X C, Li Q D,et al. Effect of aging on the Cd adsorption by microplastics and the relevant mechanisms [J]. Environmental Science, 2022,43(4):2030-2038.

[9] Ling X, Yan Z H, Liu Y X, et al. Transport of nanoparticles in porous media and its effects on the co-existing pollutants [J]. Environmental Pollution, 2021,283,117098.

[10] 馮天朕,陳 蘇,陳 影,等.微塑料與Cd交互作用對小麥種子發芽的生態毒性研究[J]. 中國環境科學, 2022,42(4):1892-1900.

Feng T Z, Chen S, Chen Y, et al. Study on ecological toxicity of microplastics and cadmium interaction on wheat seed germination [J]. China Environmental Science, 2022,42(4):1892-1900.

[11] Camacho M, Herrera A, Gómez M, et al. Organic pollutants in marine plastic debris from Canary Islands beaches [J]. Science of the Total Environment, 2019,662:22-31.

[12] Alimi O S, Budarz F J, Hernandez L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018,52(4):1704–1724.

[13] Yao J Y, Wang H N, Ma C X, et al. Cotransport of thallium(I) with polystyrene plastic particles in water-saturated porous media [J]. Journal of Hazardous Materials, 2022,422:126910.

[14] 郭春鳳,劉 玲,唐鳳雪,等.常見濕生植物對鎘、鉛污染水環境的修復效果研究 [J]. 植物科學學報, 2021,39(5):535-542.

Guo C F, Liu L, Tang F X, et al. Remediation effects of commom wetland plants on cadmium- and lead-polluted water environment [J]. Plant Science Journal, 2021,39(5):535-542.

[15] Abbasi S, Keshavarzi B, Moore F, et al. Investigation of microrubbers, microplastics and heavy metals in street dust: a study in Bushehr city, Iran [J]. Environmental earth sciences, 2017,76(23):1-19.

[16] Yu H, Zhang Z, Zhang Y, et al. Metal type and aggregate microenvironment govern the response sequence of speciation transformation of different heavy metals to microplastics in soil [J]. Science of The Total Environment, 2021,752:141956.

[17] Zhou Y F, Liu X N, Wang J. Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China [J]. Science of the Total Environment, 2019,694:133798.

[18] Li W J, Lo H S, Wong H M, et al. Heavy metals contamination of sedimentary microplastics in Hong Kong [J]. Marine Pollution Bulletin, 2020,153:110977.

[19] Davranche M, Veclin C, Pierson-Wickmann A C, et al. Are nanoplastics able to bind significant amount of metals? The lead example [J]. Environmental pollution, 2019,249:940-948.

[20] Jiang Y J, Qin Z M, Fei J, et al. Surfactant-induced adsorption of Pb(II) on the cracked structure of microplastics [J]. Journal of Colloid and Interface Science, 2022,621:91-100.

[21] 李亞男,陳夢潔,吳 淵,等.納米塑料聚苯乙烯對水中鉛離子的吸附行為研究 [J]. 環境科學學報, 42(3):1-9.

Li Y N, Chen M J, Wu Y, et al. Study on adsorption behavior of nanoplastics polystyrene for lead ions in water [J]. Acta Scientiae Circumstantiae, 42(3):1-9.

[22] Li M, He L, Zhang X W, et al. Different surface charged plastic particles have different cotransport behaviors with kaolinite particles in porous media [J]. Environmental Pollution, 2020,267:115534.

[23] 趙君怡,張克強,王 風,等.豬場廢水灌溉對地下水中鉀、鈣、鈉、鎂含量的影響 [J]. 水土保持學報, 2011,25(5):135-139.

Zhao J Y, Zhang K Q, Wang F, et al. Influence of livestock wastewater irrigation on Potassium, Calcium, Sodium and Magnesium contents in groundwater [J]. Journal of Soil and Water Conservation, 2011,25(5): 135-139.

[24] Zhou Q Q, Yang N, Li Y Z, et al. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017 [J]. Global Ecology and Conservation, 2020,22:e00925.

[25] Li X H, Xu H X, Gao B, et al. Cotransport of herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: Effect of ion type and concentration [J]. Environmental Pollution, 2019,254:112940.

[26] Cao G, Sun J X, Chen M H, et al. Co-transport of ball-milled biochar and Cd2+in saturated porous media [J]. Journal of Hazardous Materials, 2020,416:125725.

[27] Hou J, Xu X Y, Lan L, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors [J]. Environmental Pollution journal, 2020, 263:114499.

[28] Dong Z Q, Zhang W, Qiu Z L, et al. Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: Effect of NPs/C60ratio and seawater salinity [J]. Water Research, 2019,148:469-478.

[29] Hogg R, Healy T W, and Fuerstenau D W. Mutual coagulation of colloidal dispersions [J]. Transactions of the Faraday Society, 1966, 62(615):1638-1651.

[30] Oss C J, Chaudhury M K, Good R J. Interfacial lifshitz—van der waals and polar interactions in macroscopic systems [J]. Chemical Research, 1988,88:927–941.

[31] Gregory. Approximate expressions for retarded van der waals interaction [J]. Journal of Colloid and Interface Science, 1981,83: 138-145.

[32] Hu E Z, Shang S Y, Fu Z T, et al. Cotransport of naphthalene with polystyrene nanoplastics (PSNP) in saturated porous media: Effects of PSNP/naphthalene ratio and ionic strength [J]. Chemosphere, 2020, 245:125602.

[33] Wu X L, Liu X Y, Li Z Y, et al. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type [J]. Science of the Total Environment, 2020,707:136065.

[34] Li Y, Wang X J, Fu W Y,et al. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling [J]. Water Research, 2019,161:486–495.

[35] Dong Z Q, Zhu L, Zhang W ,et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand [J]. Environmental Pollution, 2019:113177.

[36] Quik J T K, Velzeboer I, Wouterse M, et al. Heteroaggregation and sedimentation rates for nanomaterials in natural waters [J]. Water Research, 2014,48(1):269–279.

[37] Jiang Y J, Yin X Q, Xi X L,et al. Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media [J]. Water. Research, 2021,196:117016.

[38] Li S C, Liu H, Gao R, et al. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic. matter [J]. Environmental Pollution, 2018,237:126–132.

[39] Sasidharan S, Torkzaban S, Bradford S A, et al. Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014,457:169– 179.

[40] Peng Y H, Tsai Y C, Hsiung C E, et al. Influence of water chemistry on the environmental behaviors of commercial ZnO nanoparticles in various water and wastewater samples [J]. Journal of Hazardous Materials, 2017,322:348–356.

[41] 張 文,董志強,黃 睿,等.海洋多孔介質中微塑料和富勒烯的共遷移[J]. 中國環境科學, 2019,39(12):5063–5068.

Zhang W, Dong Z Q, Huang R, et al. Cotransport of microplastics and fullerene in marine porous media [J]. China Environmental Science, 2019,39(12):5063-5068.

[42] Tang S, Lin L J, Wang X S, et al. Pb(II) uptake onto nylon microplastics: Interaction mechanism and adsorption performance [J]. Journal of Hazardous Materials, 2020,386:121960.

[43] Hua Z L, Tang Z Q, Bai X, et al. Aggregation and resuspension of graphene oxide in simulated natural surface aquatic environments [J]. Environmental Pollution, 2015,205:161–169.

[44] Shen M H, Yin Y G, Booth A, et al. Effects of molecular weight- dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions [J]. Water Research, 2015,71:11-20.

[45] Akdogan Z and Guven B. Microplastics in the environment: A critical review of current understanding and identification of future research needs [J]. Environmental Pollution, 2019,254:113011.

[46] Cauwenberghe L V and Janssen C R. Microplastics in bivalves cultured for human consumption [J]. Environmental Pollution, 2014, 193:65–70.

[47] Jiang Y J, Yin X Q, Guan D, et al. Co-transport of Pb(II) and oxygen-content-controllable graphene oxide from electron-beam- irradiated graphite in saturated porous media [J]. Journal of Hazardous Materials, 2019,375:297–304.

[48] 張瑞昌,李澤林,魏學鋒,等.模擬環境老化對PE微塑料吸附Zn(II)的影響[J]. 中國環境科學, 2020,40(7):3135-3142.

Zhang R C, Li Z L, Wei X F, et al. Effects of simulated environmental aging on the adsorption of Zn(II) onto PE microplastics [J]. China Environmental Science, 2020,40(7):3135-3142.

[49] Ahechti M, Benomar M, Alami M E, et al. Metal adsorption by microplastics in aquatic environments under controlled conditions: exposure time, pH and salinity [J]. International Journal of Environmental Analytical Chemistry, 2022,102(5):1118-1125.

[50] Purwiyanto A I S, Suteja Y, Trisno, et al. Concentration and adsorption of Pb and Cu in microplastics: Case study in aquatic environment [J]. Marine Pollution Bulletin journal, 2020,158:111380.

Effects of background ion types and concentrations on the co-transport of polystyrene microplastics / lead in saturated quartz sand.

CHANG Bo-kun1, CHEN Yi-ting1, CAO Gang1, HU Liang1, Lü Jia-long1, DU Wei1**, HU Fei-nan1,2*

(1.College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China;2.Institute of Soil and Water Conservation, CAS & Ministry of Water Resources, Yangling, Shaanxi 712100, China)., 2022,42(7):3193~3203

In order to elucidate the effect of hydrochemical conditions on the transport of microplastics and heavy metals, and to clarify the coupling effect in the co-transport process of the two environmental pollutants and their response mechanism to environmental conditions preliminarily, the effects of background electrolyte ions with different valence and concentrations on the individual and co-transport behaviors of 1μm polystyrene microplastics (PS-MPs) and Pb2+in a saturated one-dimensional sand column were studied. The experimental results showed that the increase in the background ion concentration or the valence would inhibit the individual transport ability of PS-MPs. When the Na+concentration increased from 1mmol/L to 100mmol/L, the repulsive barrier between PS-MPs and quartz sand decreased by 1348kT; when the Ca2+concentration increased from 1mmol/L to 100mmol/L, the repulsive barrier between PS-MPs and quartz sand decreased by 956kT. Pb2+in PS-MPs/Pb2+binary system could reduce the transport ability of PS-MPs, and the increase of the background ion concentration and the valence can weaken the inhibition of Pb2+on the transport ability of PS-MPs. When the Na+concentration increased from 1mmol/L to 100mmol/L, the repulsive barrier between PS-MPs and quartz sand decreased by 1100kT; when the Ca2+concentration increased from 1mmol/L to 100mmol/L, the repulsive barrier between PS-MPs and quartz sand decreased by 543kT. The increase in the background ion concentration or the valence can promote the individual transport ability of Pb2+. PS-MPs can promote the transport of Pb2+in the binary system of PS-MPs/Pb2+. When the background ion concentration was low, the transport of Pb2+loaded by PS-MPs was higher, and vice versa. For PS-MPs and Pb2+individual transport systems, the increase in background cation concentration and valence can further shield the negative charges on the surface of PS-MPs and quartz sand, competitive adsorption the surface binding sites of quartz sand, inhibits the transport of PS-MPs while promoting Pb2+transport. For the co-transport system of PS-MPs and Pb2+, the increase in background ion concentration and valence can weaken the inhibitory effect of Pb2+on the transport ability of PS-MPs by adjusting the interaction between Pb2+and PS-MPs and the surface of quartz sand. The competitive adsorption of background ions to PS-MPs’ surface sites and the shielding effect on charges affect the transport ability of Pb2+loaded by PS-MPs.

microplastic;polystyrene;heavy metals;lead ion;porous media;co-transport

X145

A

1000-6923(2022)07-3193-11

常博焜(1998-),男,黑龍江穆棱人,西北農林科技大學碩士研究生,主要從事微塑料在多孔介質中的運移方面研究.

2021-12-30

陜西省自然科學基礎研究計劃(2021JQ-170)

*責任作者, 副研究員, hufeinan-629@163.com, **, 講師, weidu0932@126.com

猜你喜歡
石英砂運移介質
線切割絕緣介質收納系統的改進設計
燃氣管網泄漏模式建立及應用
頁巖油多孔介質孔隙尺度運移殘留規律分析
重介質旋流器選煤技術在我國的創新發展與應用
信息交流介質的演化與選擇偏好
磁化微咸水及石膏改良對土壤水鹽運移的影響
曲流河復合點壩砂體構型表征及流體運移機理
鳴律
五水偏硅酸鈉生產方法的部分工藝設備改進
次氯酸鈉預氧化除錳試驗研究
91香蕉高清国产线观看免费-97夜夜澡人人爽人人喊a-99久久久无码国产精品9-国产亚洲日韩欧美综合